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Abstract. We investigate how formal concept analysis can be applied in
a type-theoretic context, namely the context of A-terms typed & la Curry.
We first show some general results, which reveal that concept lattices
generally respect and reflect the type structure of terms. Then, we show
an application of the results in formal language theory, where we vastly
generalize existing approaches of capturing the distributional structure
of languages by means of formal concept analysis. So type theory is
interesting to formal concept analysis not only as a particular context,
but also because it allows to generalize existing contexts.

1 Introduction

Formal concept analysis (FCA) operates within what is called a context, that is
typically a set of objects, a set of attributes and a relation between them. We
will have a closer look at formal concept analysis over terms in a type theoretic
context, and show how this can be applied to formal language theory. Our first
contribution! is that we consider the case not of an atomic typing, but rather
recursive, Curry-style typing. Our objects are A-terms, which have to be assigned
types according to their syntactic structure. We show some interesting correlations
between the type theoretic structure of sets of terms, their principal typing, and
how this these interact with FCA and its lattice-theoretic operations. Our second
main contribution is that we show an application to formal language theory.
There exist interesting approaches to the distributional structure of languages
using FCA over the relation of strings and the contexts in which they occur.
However, all of these have some major limitations, as they only work with simple
string concatenation, but cannot cope with, for example, the concept of string
duplication in a language. We use a type theoretic encoding of strings as terms,
and show that this allows us to vastly generalize existing approaches.

2 A Simple Type Theory

Type theory starts with a (usually) finite set of basic types, and a finite, (usually)
small set of type constructors. Types are usually interpreted as sets; we denote the

! There is considerable work on FCA in a typed context, see, for example, 8.
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set of all objects of type 7 by ||7]|. We will consider only a single type constructor,
the usual —, where for types 0,7, 0 — 7 is the type of all functions from ||o]| to
||7]|. Basic objects are assigned some type, and all new objects we can construct
in our universe must be constructed in accordance with a typing procedure, that
is, we have to make sure that they can be assigned at least one type. Objects
which are not well-typed do not exist in the typed universe.

Given a non-empty set A of atomic types, the set of types T'p(A) is defined
as closure of A under type constructors: A C T'p(A), and if 0,7 € Tp(A), then
o — 7 € Tp(A). The order of a type is defined as ord(c) = 0 for o € A,
ord(c — 1) = max(ord(c) + 1, ord(7)).

We define a higher order signature as X := (A, C, ¢), where A is a finite set
of atomic types, C' is a set of constants, and ¢ : C' — Tp(A) assigns types to
constants. The order of X is mazx({ord(¢(c)) : ¢ € C}). Let X be a countable
set of variables. The set Tm(A(X)), the set of all A terms over X, is the closure
of C'U X under the following rules: 1. C U X C Tm(A(X)); 2. if m,n € Tm(A(X)),
then (mn) € Tm(A(X)); 3. if 2 € X,m € Tm(A(Y)), then (Az.m) € Tm(A(X)).

We omit the outermost parentheses (,) for A terms, and write Az;...x,.m for
Az1.(... (Azpm)...); furthermore, we write mymy ... m; for (... (mmz)...m;). The
set of free variables of a term m, F'V (m), is defined by 1. FV(z) = {z} : z € X, 2.
FV(c)=0:ceC,3. FV(mn) = FV(m)UFV(n),and 4. FV(Az.m) = FV (m)—{z}.
m is closed if FV(m) = 0. We write m[n/z| for the result of substituting n for
all free occurrences of z in m. a conversion is defined as Az.m ~~,, Ay.m[y/x]. A
B-redex is a term of the form (Az.m)n. We write ~»4 for 8 reduction, so we have
(Az.m)n ~»g mn/z]. The inverse of B reduction is 5 expansion. Let [m]g denote the
£ normal form of m, that is, the term without any 8 redex. This term is unique up
to a conversion for every term m. We denote by =, the smallest congruence
which contains both ~+, and ~»3. We thus write m =, n, if n can be derived
from m with any finite series of steps of S-reduction, expansion or a-conversion
of any of its subterms.

We now come to the procedure of assigning types to terms.?2 A type environ-
ment is a (possibly empty) set {z1 : a1, ... 2, : @y} of pairs of variables and types,
where each variable occurs at most once. A A-term m with F'V(m) = {z1,...,2,}
can be assigned a type « in the signature X' = (A, C, ¢) and type environment
{z1:a1,...2n : @y}, in symbols

(1) T1:Q1,... Ty 0y bym:a,

if it can be derived according to the following rules:

(cons) Fx c: ¢(c), for ¢ € C;

(var) x: a by 2 : a, where 2 € X and a € Tp(A);

2 We adopt what is known as Curry-style typing: in Church-style typing, terms cannot

be constructed without types; in Curry-style typing, terms are first constructed and
then assigned a type; so there might be the case that there is no possible assignment.
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I'Fym:p
(abs) I' = {z : a} Fx Az.m: a — S, provided I'U {z : a} is a type environment;

Abyn:a I'kFym:a—pf
(app) IFT'UAFsmn: S , provided I' U A is a type environment.

An expression of the form I' by m: « is called a judgment, and if it is derivable
by the above rules, it is called the typing of m. A term m is called typable if it has
a typing. If in a judgment we do not refer to any particular signature, we also
write ' m : . Regarding 3 reduction, we have the following well-known result:

Theorem 1 (Subject Reduction Theorem) If ' -m: o, m ~>g ', then I Fm' : o,
where I is the restriction of I' to FV (m').

Let m ~»g m’ be a contraction of a redex (Az.n)o. This reduction is non-erasing
if x € FV(n), and non-duplicating if x occurs free in n at most once. A reduction
from m to m’ is non-erasing (non-duplicating) if all of its reduction steps are non-
erasing (non-duplicating). We say a term m is linear, if for each subterm Az.n of m,
x occurs free in n exactly once, and each free variable of m has just one occurrence
free in m. Linear A-terms are thus the terms, for which each S-reduction is non-
erasing and non-duplicating. We will be mainly interested in a slightly larger class.
A term m is a Al term, if for each subterm Az.n of m, x occurs free in m at least
once. A\I terms are thus the terms which do not allow for vacuous abstraction
(see [1], chapter 9 for extensive treatment). Another important result for us is
the following: obviously, by our typing procedure a single term might be possibly
assigned many types. We call a type substitution a map 7 : A — Tp(A), which
respects the structure of types: 7(8 — v) = (7(8)) — (7 (¥)), for 8,7 € Tp(A).

Theorem 2 (Principal Type Theorem) Let m be a term, and let © := {a: '+
m: « is derivable} be the set of all types which can be assigned to m. If © = (),
then there exists a principal type B for m, such that I' - m : [ is derivable, and
for each o € O, there is a substitution w, such that o = 7, ().

Obviously, 3 is unique up to isomorphism; we will write pt(m) for the principal
type of m. The proof of the theorem is constructive, that is, 5 can be effectively
computed or shown to be nonexistent, see [6].

3 Types and Concepts

3.1 A Context of Terms

We now give a short introduction into formal concept analysis. A context is a
triple (G, M, I), where G, M are sets and I C G x M. In FCA, the entities in G
are thought of as objects, the objects in M as attributes, and for m € M, g € G,
we have (g,m) € I if the object g has the attribute m. This is all we need as
basic structure to get the machine of FCA going. For A C G, B C M, we put
A" ={meM:Vac A, (a,m)€ I}, and B:={ge€ G:Vm e B, (a,m) € I}.
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A concept is a pair (A, B) such that A> = B, BY = A. We call A the extent
and B the intent. A is the extent of a concept iff A = A9, dually for intents.
The maps [—]*, [—] are called polar maps. We order concepts by inclusion of
extents, that iS, (AlvBl) < (A2,B2) = A1 - Az.

Definition 3 Given a context B = (G, M,I), we define the concept lattice
of B as L(B) = (C, AV, T,L), where T = (G,G%), L= (M M), and for
(Ai, Bi), (A5, Bj) € €, (Ai, Bi)) N(Aj, Bj) = (AiNA;, (B;UB;)™), and (A;, Bi) v
(4;,B;) = ((4; U A4;)™, B; N B;).

We define our type theoretic context as follows. Recall that Tm(A(X)) is the
set of all A\-terms over X. We put Tm.(A(X)) := {m € Tm(A(Y)) : FV(m) = 0},
the set of closed terms, and we call Tm.(AI(X)) the set of all closed AI terms.
Furthermore, define WIT as the set of all closed and well-typed terms, that
is, the set of all terms m such that - m : « is derivable for some a by our
rules; WIT; = WIT N Tm(AI(X)). Recall that =,3 is a congruence. Let o be a
given type, and L' C ||o|| be a distinguished subset of the terms of type o; we
define L := {m : 3n € L' : m =, n}, that is, as closure of L' under =,3. Put
G =M = Tn.(A(Y)), and define the relation I C Tm.(A(X)) x Tm.(A(X)) as
follows: for m,n € Tm.(A(X)), we have (m,n) € I if nm € L. So the relation of
objects in M and G is that of function and argument, and the relation I tells us
whether the two yield a desired value. Same can be done with Tm.(AI(X)).

Obviously, we have 1= (0, Tm.(A(Y))). Regarding upper bounds, we have
to distinguish two important concepts: we first have a concept we denote T :=
(WTT, AV'), where AV (V for vacuous) is the set of all terms of the form Az.m,
where m € L and x ¢ FV(m). There is however a larger concept T > T, which
is defined as T := (Tm.(A(2)), D). The reason for this slight complication is as
follows: we want our terms to be closed, because open terms are meaningless
for us. Now, it holds that the concatenation of closed terms is again a closed
term; but the concatenation of well-typed terms need not be well-typed: for
m,n € WTT, it might be that nm ¢ WTT. Furthermore, there are A-terms n with
vacuous abstraction such that the set {nm: m € T} < 1; we would however like
our T to be absorbing; and in fact, if m ¢ WTT, then for any term n, nm,mn ¢ WTT.
So for every term m ¢ WTT, {m}”> = ). For all interesting results we have to restrict
ourselves to WTT, but for completeness of some operations we have to consider
Tm.(A(X)). Note however that if we restrict Tm.(A(X)) to Tm.(AI(X)), then T
and T coincide.?

3.2 Concept Structure and Type Structure

We have seen that each term can be assigned a most general type. Importantly,
the same holds for sets of types:

3 This is actually not straightforward, but follows as a corollary from results we present
later on.
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Lemma 4 Let T C WTT be a set of terms, such that the set of principal types
{pt(m) :m € T} is finite. If there is a set of types O, such that for eachm € T and
all® € ©, Fm: 0 is a derivable judgment, then there is a (up to isomorphism)
unique type «, such that for everym € T, Fm: « is derivable, and every 6 € ©
can be obtained by « through a type substitution.

« is usually called the most general unifier of ©; for a set of terms 7', we
also directly call it pt(T), the principal type of T; for © a set of types, we denote
it by \/ ©. A proof for this fundamental lemma can be found in [6]; again the
proof is constructive. Note that if we do not assume that the set of principal
types of terms m € T is finite, then there is no upper bound on the length of types,
and so there cannot be a finite common unifier. For convenience, we introduce
an additional type T ¢ A, such that our types are the set {T} U Tp(A). If a set
of types © does not have a common unifier, then we put \/(©) = T.

This is of immediate importance for us, as it allows us both to speak of
the principal type of a set of terms, as well as of the least upper bound of a
set of types. From there we easily arrive at the greatest lower bound of two
types «, 8, which we denote by a A 3, and which intuitively is the amount of
structure which « and 8 share. Write a < 3, if there is a substitution 7 such
that w(a) = . This is, up to isomorphism, a partial order. We now can simply
define a A 8 := /{7y : v < a,B}. It is clear that the set {7 : v < «, 8} modulo
isomorphism is finite, so the (finite) join exists in virtue of the above lemma. So
Tp(A) is lattice ordered up to isomorphism.

How does type structure behave wrt. concept structure? First of all, if A C B,
then pt(A) < pt(B). So the inclusion relation reflects type structure. This entails
that pt(A) < pt(B™7). Stronger results are hard to obtain; for example, if we
know pt(A), there is nothing we can say in general about an upper bound for
pt(AP9).

Fortunately, there is more we can say about the lattice order of concepts and
type order. Define V and A on concepts as usual. For a concept (A4, B) over the
term context, we put pti(A, B) = pt(A), pta(A, B) = pt(B).

Lemma 5 For concepts C1,Co of the term context, the following holds: (1) If
Ci < Co, then pt1(C1) < pti(Ca), and pta(Ca) < pta(Cr). (2) pti(Ci ACy) <
pt1 (Cl) /\pt1 (CQ), and (3) ptl(Cl) \/ptl(CQ) S pt1(01 V Cg)

Proof. The first claim is immediate by set inclusion. To see the second,
consider that for every m € A; N Ay, we must have pt({m}) < pt(A4;), pt({m}) <
pt(Az) by set inclusion; and so pt({m}) < pt;(C1) Apti(C2). To see the third claim,
consider the following: we can easily show that pt(A;) V pt(Asz) = pt(A; U As).
Then the claim follows from considering that pt(A; U A2) < pt((A; U A2)"). O

Definition 6 A term m is a left equalizer, if we havetbm:0; — o, Fm: 0y —
a, and 01 # 05. m is a right equalizer, if Fm: oy, Fm: as, and oy # as.

Easy examples of left equalizers are terms with vacuous abstraction; easy
examples of right equalizers are terms which do not contain constants. A term



108

Christian Wurm

which is both a left and right equalizer is Ayz.z. The following results are a bit
tedious to obtain, yet not very significant; we therefore omit the proof.

Lemma 7 Let T C WTT, such that pt(T) = T. Then each m € T% is a left
equalizer.

We can thus also speak of equalizer concepts. If we restrict our context to AI
terms, we get a stronger result:

Lemma 8 Let m be a left equalizer and A -term, such that Fx m: 60, — « and
Fxm: 60y — a. Then both 01,05 must be types inhabited by terms in Tm(AI(X)),
that is, there are terms m;, for which bx m; : 0; is derivable for i € {1,2} and
m; € Tm(AI(X)).

So when we restrict ourselves to A, we have proper restrictions on the class
of possible equalizers, in the general case we do not. For example, assume there
is a set T of terms, and pt(T") # T. Still, we might have pt(7T%) = T. Conversely,
from the fact that pt(T) = T, it does not follow that 7% = (.

Of course, all general results of FCA also hold in this particular setting. For
us, the question is not in how far is the type theoretic context interesting as a
particular context, but rather: in how far can type theoretic contexts be used
in order to generalize existing contexts? As is well-known, type theory is a very
powerful tool; we will show this by way of example in formal language theory.

4 A Language-theoretic Context

4.1 Syntactic Concepts

Syntactic concept lattices form a particular case of formal concept lattices. In
linguistics, they have been introduced in [9]. They were brought back to attention
and enriched with residuation in [2], [3], as they turn out to be useful repre-
sentations for language learning (for background on residuated lattices, see [5]).
Syntactic concept are useful to describe distributional patterns of strings?. The
most obvious way to do so is by partitioning strings/substrings into equivalence
classes: we say that two strings w,v are equivalent in a language L C T, in
symbols, w ~p v, iff for all z,y € T*, zwy € L < xvy € L.°> The problem with
equivalence classes is that they are too restrictive: a single word can ruin an
equivalence class. In particular in linguistic applications, this is bad, because
restrictions of datasets or some particular constructions might prevent us from
having, say, an equivalence class of nouns. Syntactic concepts provide a somewhat
less rigid notion of equivalence, which can be conceived of as equivalence restricted

to a given set of string-contexts (not to be confused with contexts in the sense of
FCA!).

4 Or words, respectively, depending on whether we think of our language as a set of
words or a set of strings of words.
5 This defines the well-known Nerode-equivalence.
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We now define our first language theoretic context. For L C T, B (L) =
(T*,T* x T*,I), where (b, (a,c)) € I iff abc € L. This gives rise to polar maps
> p(T*) = o(T* x T*), and < : p(T* x T*) — p(T*), where

1. for S CT*, S* := {(z,y) : Vw € S,zwy € L}; and dually
2. for CCT*xT* CY:={z:VY(v,w) € C,vzw € L}.

That is, a set of strings is mapped to the set of string contexts, in which all
of its elements can occur. For a set of string contexts C, CY can be thought of as
an equivalence class with respect to the string contexts in C’; but not in general:
there might be elements in C'* which can occur in a string context (v, w) ¢ C
(and conversely).

Definition 9 A syntactic c-concept A is a pair, consisting of a set of strings,
and a set of string contexts, written C = (S¢,C¢), such that Sz = Cc and
Cg = Sc. The syntactic c-concept lattice of a language L is defined as
L(Bc(L)) = (€ A, V, T, L), where € is the set of syntactic c-concepts of L,
and with all constants and connectors defined in the usual way.

For example, given a language L, we have (e,¢)? = L, as all and only the
strings in L can occur in L in the string context (e,€); so L is a closed set of
strings. We can give the syntactic concept lattice some more structure. We define
a monoid structure on concepts as follows: for concepts (S1,C1), (S2,Ca), we
define:

(2)  (51,C1) 0 (852,C2) = ((5152)7, (8152)"),

where 5152 = {zy : © € S1,y € Sa}. Obviously, the result is a concept. o is
associative on concepts, that is, for X, Y, Z € B, Xo (Yo Z) = (XoY)o Z
(see [10] for discussion). It is easy to see that the neutral element of the monoid
is ({€}*9, {€}*), and that the monoid structure respects the partial order of the
lattice: For concepts X, Y, Z, W € B,if X <Y, then WoXoZ <WoY oZ.

We define a similar operation e for the string contexts of concepts: (z,y) e
(w, z) = (zw, zy). This way, we still have f e (geh) = (f e g) e h for singleton
string contexts f, g, h. The operation can be extended to sets in the natural way,
preserving associativity. For example, C o (€, 5) = {(z,ay) : (z,y) € C,a € S}.
We will use this as follows:

Definition 10 Let X = (Sx,Cx),Y = (Sy,Cy) be concepts. We define the
right residual X/Y = ((C1 e (¢,5y))", (C1 ® (¢,5y))™), and the left residual
YAX := ((C1 e (Sy, €))%, (Cr e (Sy,€)™).

For the closed sets of strings S, T, define S/T := {w: for all v € T,wv € S}.
We then have Sx /Sy = Sx/y. So residuals are unique and satisfy the following
lemma:

Lemma 11 For X,Y,Z € €%, we have Y < X\Z iff X oY < Z iff X < Z/Y.

For a proof, see [2]. This shows that the syntactic concept lattice can be
enriched to a residuated lattice (a residuated lattice is precisely a lattice with
monoid structure and satisfying the law of residuation).
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4.2 Problems and Limitations

Syntactic c-concepts form a very well-behaved structure, which even forms a
complete class of models for the Full Lambek calculus, an important substructural
logic (see [10]). A major limitation of these concepts is that our only objects are
strings, and our only operation concatenation. To see why this is a restriction,
consider the following. Let Ly C T* be an arbitrary language, and put Ly :=
{ww : w € Ly}. Now, in the general case, L; will not be a closed concept of La,
because there is no general string context in which all and only the words in L,
can occur. The appropriate string context would have to be a function, as each
w € Ly has the string context (e,w). So there is a clear and simple generalization
regarding the distribution of L; in Lo, but we cannot express it.

As a second example, consider Lz := {a®" : n € N}. Here we have the following
problem: for each n € N, a™ will have a distinguishing string context. Nonetheless,
there is a very simple pattern in the language: taking a word of Lg, we just
have to concatenate it with itself, and we get a new word in Lsz. In our analysis,
however, there are no concepts Cy, Co, such that C; o (Ls, L5) o Co = (L3, L§). So
our concepts are uninformative on the pattern of this language. What we want to
have in this case is a concept of duplication. We will remedy these shortcomings
in what is to follow; we will need, however, some type-theoretic background.

5 Strings as A-Terms

The following, type theoretic encoding of language theoretic entities has been
developed in the framework on on abstract categorial grammars (introduced
in [4]). We follow the standard presentation given in [7]. Given a finite alphabet T,
a string a; ...a, € T™ over T can be represented by a A term over the signature
E;t”"g := ({0}, T, ¢), where for all a € T, ¢(a) = 0 — o0; we call this a string
signature. The term is linear and written as /aj ...an/ := Az.a1(... (apz)...).
Obviously, the variable x has to be type o, in order to make the term typable.
We then have, for every string w € T*, FE;mng Jw/ 0= o.

Under this representation, string concatenation is not entirely trivial, and
cannot be done by juxtaposition, as the result would not be typable. We can con-
catenate strings by the combinator B := Azyz.2z(yz), which concatenates its first
argument to the left of its second argument, as can be easily checked.® We can also
represent tuples of strings by terms. Let /wy/, ..., /w,/ represent strings. Then a
tuple of these strings is written as /(w1,...,wy)/ = Ax.((... (x/w1/)...)/ wn/).
The type of x here depends on the size of the tuple. We define « —,, 8 by
a—o =0, a =1 f=a— (a—, B). In general, for a term m encoding an
n-tuple , we have FE;WW m: ((0 = 0) =, (@))) = . So the types get larger
with the size of tuples; the order of the term however remains invariantly 2.

We indicate how to manipulate tuple components separately. The func-
tion which concatenates the tuple components in their order is obtained as

6 See [7] for more examples, also for what is to follow. A combinator is in general a
function over functions.
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follows: Given a tuple /(w,v)/ = Az.((z/w/)/v/, we obtain /wv/ through ap-
plication of the term: Az;.z1(Az2y.Baxay)). We can also manipulate tuples to
form new tuples: take again /(vy,w1)/ = Az.((z/v1/)/w1/); we want to convert
it into a tuple /(vive, wiws)/ = Az.((x/v1v2/)/wiws/). This is done by the term
Ayz1.y(Azexs((21Brave)Basws)). This term takes the tuple as argument and
returns a tuple of the same type. If we abstract over the term /(ve,ws2)/, this
gives us a function which concatenates two 2-tuples componentwise.

However, the general componentwise concatenation of tuples of arbitrary size
(considering strings as 1-tuples) cannot be effected by a typed A-term. The reason
is: if we do not fix an upper bound on tuple size, the types of tuples get higher
and higher, and there is no finite upper bound. So there is no finite term which
could have the appropriate type.” This means that in this setting, we must refrain
from a notion of general concatenation of any type. This will however do little
harm, as we will see.

6 Generalizing the Language-theoretic Context

Take a finite alphabet T', and fix a language L; C T*. As we have seen in the
last section, there is a bi-unique mapping 7 : T* — WTT between strings in T
and A-terms of the signature X579, Note that 4 is properly bi-unique and not
up to =.p equivalence; we map strings only onto their standard encoding, using
a standard variable. We thus obtain i[L1] C WIT, where ¢[—] is the pointwise
extension of i to sets. We close ¢[L;] under =g, and obtain L := {m : there is
n € i[L] : n =45 m}. This is the language we are working with, the type theoretic
counterpart of Li. In the sequel, for any M C T*, we will denote the closure of
i[M] under =,5 by M?*; so we have L = (L1)*.

We now define a context Br(L) = (G, M, I), where G = M = Tm (A(Z57"9)),
that is the set of closed terms over the signature X5""Y; and for m,n €
T (A(Z57™)), we have (m,n) € I iff nm € L. So for S a set of terms, we
have S* :={t:Vse€ S:ts€ L},and SV :={t:Vse€ S:st e L}

Definition 12 A t-concept is a concept (S,T) over the context B (L), where
S =T T = 5. The syntactic t-concept lattice of a language L is defined
as Lr(L) == LB (L)) = (€L AV, T, L), where €L is the set of syntactic
t-concepts of L, and with all constants and connectors defined in the usual way.

What we are still missing is an operator which allows us to define fusion
and residuation. Recall that for terms, our primitive objects, juxtaposition is
interpreted as function application. We extend this interpretation to sets of terms:
for S1,85 C Tmc(/l(fz’;t’"mg))7 we define S152 := {mn:m € S,n € T'}. Next, for t-
concepts (51, 11), (S2, T3), we simply put (S1,T1)o(S2, T2) = ((5152)"7, (5152)").

7 On the other side, once we fix an upper bound k to tuple size, it is easy to see how
to define o as A term: for ¢ < k, we simply encode all tuples as k-tuples with all jth
components, ¢ < j, containing the empty string. Then o is simply componentwise
concatenation of k-tuples, which is A-definable, as we have seen.
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That is, as before we use the closure of concatenation of extents to define o.
But there is an important restriction: concatenation of terms is not associative.
Consequently, the operation o is not associative on concepts, we have, for concepts
M,N,0 €T (MoN)oO # Mo (N oO). For example, M o N might be T,
because M N contains a term mn ¢ WTT, and consequently we have T o O = T.
Still, M o (N o O) might be well-typed. So the structure of (2B, o) is not a monoid,
but rather a groupoid. We furthermore have a left identity element 1;, such that
for every concept S, 1; 0.S = §. This is the concept of the identity function
({Ax.z}P {\x.z}”). (By the way, the identity function is also the encoding of
the empty string /e/). There is no general right identity, though: for assume we
have a term m : « for a constant atomic type «; then there is no term n such that
mn can be typed. Consequently, no n can be the right identity for m.

What are the residuals in this structure? Given the fusion operator, they are
already implicitly defined by the law of residuation O < M/N < Oo N < M &
N < O\M; what we have to show that they exist and are unique. In the sequel we
will use residuals both on sets of terms and on concepts; this can be done without
any harm, as the extent order and the concept order are isomorphic. To see more
clearly what residuation means in our context, note that for S C Tm.(A(X5""")),
we have S” := L/S; because S” is the set of all terms m, such that for alln € S,
mn € L. Dually, we have S := S\L. Consequently, we have S** = (L/S)\L,
and dually, we get S = L/(S\L). So we see that the polar maps of our Galois
connection form a particular case of the residuals, or conversely, the residuals
form a generalization of the polar maps. The closure operators are equivalent
to a particular case of what is known as type raising. More generally, we can
explicitly define residuals over a ternary relation: put (m,n,o0) € R if and only if
mn =, 0. Then we define

1. O/N :={m:Vne€ N,Jo € O : (m,n,0) € R}; dually:
2. M\O:={n:Yme M,3o € O: (mn,o0) € R}.

As is easy to see, M* :={n:Vm € M,Jo € L: (m,n,0) € R}; and M?:= {n:
Vm € M,30 € L: (m,n,0) € R}. This way, we explicitly define residuals for sets
of terms. Given this, it easily follows that residuals also exist and are unique for
concepts: (S1,11)/(Sz2,T2) = ((S1/52), (S1/52)%).

So residuals allow us to form the closure not only with respect to L, but
with respect to any other concept. This provides us with a much more fine-
grained access to the hierarchical structure of languages. On the negative side,
the o operation and residuals do not tell us anything about directionality of
concatenation on the string level. This however is unsurprising, as our treatment
of strings as A-terms serves precisely the purpose of abstracting away from this:
concatenation is done by terms automatically, and we need no longer care for this.
Obviously t-concepts provide a vast generalization of c-concepts. An immediate
question is whether this extension is conservative, in the sense that each c-closed
set is also t-closed. This is generally wrong, but holds with some restrictions:

Theorem 13 Let M,L CT*; let M?*, L* be their type theoretic counterpart in
the signature X5, If M = M"* is closed wrt. the language theoretic context



Concepts and Types — An Application to Formal Language Theory 113

Be(L), then we have M* = (M*)> N (T*)*, where (MM is closed wrt. the
type theoretic context B (L).

Proof. Let M be c-closed; every string context (w,v) € M corresponds to
a function of the form Az.B(B/w/x)/v/, which takes a term /u/ as argument,
concatenating it with a /w/ to its left and /v/ to its right, resulting in a term
Jwuw/. Call the set of these functions (M*)*. We now take (M*)><. Obviously
we have M* C (M*)®9. We show that M* D (M*)™< N (T*)*: if we have, for
we T w¢ M, but /w/ € (M*)™ N (T*), then we have i~'(/w/) € M9,
because each type context in (M*)® corresponds to a string context in M™. This
is a contradiction, as M is closed under [—]><.

So we have M* = (MM)»<N(T*)*, and (M*)™is a closed set. Furthermore, as
(M*)> C (M*)>, we have (by the laws of Galois connections) (M*)>< D (M*)><,
So we get M* O (M*)>? N (T*)*. To see that M* C (M*)> N (T*)*, consider
that as M C T*, we have M* C (T*)*; furthermore, M* C (M*)><. Therefore,
M* C (M*)P9N (T*)*. This completes the proof. d

As expected, the converse does not hold, not even for terms which encode
strings. In this sense t-concepts yield a proper generalization of c-concepts.
This however does not obtain for the extension of the lattice with fusion and
residuals: fusion in the t-concept lattice is completely incomparable to fusion in
the c-concept lattice of a language.

7 Conclusion and Possible Restrictions

One main objection to our type theoretic approach to language might be that
we produce many concepts to which we might not be able to assign any intuitive
meaning, and which tell us very little about the language in question. We easily
see what is meant by the concept of a term /w/ in a language L. We can also
make perfectly sense of the concept duplication. It is less easy to see what is
meant by the concept of the term B, which we discussed above. What can the
the distribution of such a concept in a language tell us about the language?®
So we do not have a problem with the formalism in the first place, but with its
interpretation.

Therefore, it might be reasonable to restrict our approach. We propose here
two main restrictions: First, as we already mentioned, we might restrict the
universe of terms Tm.(A(X5""9)) to A terms. A language-theoretic argument
for this point is that we are interested in the distributional structure of languages.
Vacuous abstraction, as yielding constant functions, allows us to delete arguments
or certain parts thereof. This seems to us an “unlinguistic” procedure, as we
cannot say we talk about the distribution of an object if we allow to delete
parts of it. A further restriction to linear A-terms, on the other side, does not

8 What is less unclear is its meaning as intent rather than extent: apart from some
additional technical difficulties, it must take two arguments which, when concatenated,
give a term in L.
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seem to be desirable, as then we get the same problems with our toy language
{a®" :n € N} as before.

A second restriction which might be reasonable is the restriction of type
order. As we have seen, types of second order allow us to yield all strings and
tuples of strings. If we restrict only G to second order types, we will have all
functions from second order types to second order types in M. This seems to us
a very reasonable restriction, the consequence of which we cannot discuss here
for reasons of space.

In conclusion, there are many options in further pursuing our approach, and
at this point it is unclear which direction is the most promising. But in either
way our approach might provide some contribution to the old problem of learning
infinite languages from the distributional structure of a finite fragment thereof.
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