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Preface

This volume contains the Late Breaking Papers of ILP 2012: the 22nd International Con-
ference on Inductive Logic Programming held on September 17-19, 2012 in Dubrovnik.

The ILP conference series, started in 1991, is the premier international forum on learning
from structured data. Originally focusing on the induction of logic programs, it broadened
its scope and attracted a lot of attention and interest in recent years. The conference now
focuses on all aspects of learning in logic, multi-relational learning and data mining, sta-
tistical relational learning, graph and tree mining, relational reinforcement learning, and
other forms of learning from structured data.

This edition of the conference solicited three types of submissions:

1. long papers (12 pages) describing original mature work containing appropriate ex-
perimental evaluation and/or representing a self-contained theoretical contribution.

2. short papers (6 pages) describing original work in progress, brief accounts of orig-
inal ideas without conclusive experimental evaluation, and other relevant work of
potentially high scientific interest but not yet qualifying for the above category.

3. papers relevant to the conference topics and recently published or accepted for pub-
lication by a first-class conference such as ECML/PKDD, ICML, KDD, ICDM etc.
or journal such as MLJ, DMKD, JMLR etc.

We received 20 long and 21 short submissions, and 1 previously published paper. Each
submission was reviewed by at least 3 program commitee members. The short papers
were evaluated on the basis of both the submitted manuscript and the presentation at the
conference. Accepted papers presenting work in progress, i.e., reports on ongoing research
are collected in this volume.

The conference program included 3 invited talks. In the lecture entitled Declarative Mod-
eling for Machine Learning, Luc De Raedt proposed to apply the constraint programming
methodology to machine learning and data mining and to specify machine learning and
data mining problems as constraint satisfaction and optimization problems. In this way it
is possible to develop applications and software that incorporates machine learning or data
mining techniques by specifying declaratively what the machine learning or data mining
problem is rather than having to outline how the solution needs to be computed.

Ben Taskar’s talk Geometry of Diversity and Determinantal Point Processes: Representa-
tion, Inference and Learning discussed approaches to inference and learning in graphical
models using determinantal point processes (DPPs) that offer tractable algorithms for ex-
act inference, including computing marginals, computing certain conditional probabilities,
and sampling. He presented recent work on a novel factorization and dual representation
of DPPs that enables efficient inference for exponentially-sized structured sets.

Geraint A. Wiggins spoke about Learning and Creativity in the Global Workspace and
presented a model based on Baars Global Workspace account of consciousness, that at-
tempts to provide a general, uniform mechanism for information regulation. The key ideas
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involved are: information content and entropy, expectation, learning multi-dimensional,
multi-level representations and data, and data-driven segmentation. The model was origi-
nally based in music, but can be generalised to language. Most importantly, it can account
for not only perception and action, but also for creativity, possibly serving as a model for
original linguistic thought.

The conference was kindly sponsored by the Office of Naval Research Global, the Ar-
tificial Intelligence journal and the Machine Learning journal. We would like to thank
Easychair.org for supporting submission handling. Our deep thanks go also to Nada
Lavrač, Tina Anžič and Dragan Gamberger for the local organization of the conference
and Radomı́r Černoch for setting up and maintaining the conference web site.

March 21, 2013
Ferrara, Prague

Fabrizio Riguzzi
Filip Zelezny
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Stefan Wrobel Fraunhofer IAIS - Univ. of Bonn
Akihiro Yamamoto Kyoto University
Gerson Zaverucha PESC/COPPE - UFRJ
Filip Zelezny Czech Technical University in Prague

6



Additional Reviewers

D

Di Mauro, Nicola
Duboc, Ana Luisa
F

Ferilli, Stefano
S

Stein, Sebastian
T

Trajanov, Aneta

7



Contents

A Link-Based Method for Propositionalization
Quang-Thang Dinh, Christel Vrain and Matthieu Exbrayat 10

MicroRNAs robustness in genetic regulatory networks
Andrei Doncescu, Katsumi Inoue and Jacques Demongeot 26

A Problog Model For Analyzing Gene Regulatory Networks
Antonio Goncalves, Irene Ong, Jeffrey Lewis and Vitor Costa 38

Creative Problem Solving by Concept Generation Using Relation Structure
Katsutosh Kanamori and Hayato Ohwada 44

On Computing Minimal Generators in Multi-Relational Data Mining with re-
spect to theta-Subsumption
Noriaki Nishio, Atsuko Mutoh and Nobuhiro Inuzuka 50

A Wordification Approach to Relational Data Mining: Early Results
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A Link-Based Method for Propositionalization

Quang-Thang DINH, Matthieu EXBRAYAT, Christel VRAIN

LIFO, Bat. 3IA, Université d’Orléans
Rue Léonard de Vinci, B.P. 6759, F-45067 ORLEANS Cedex 2, France
{Thang.Dinh,Matthieu.Exbrayat,Christel.Vrain}@univ-orleans.fr

http://www.univ-orleans.fr/lifo/

Abstract. Propositionalization, a popular technique in Inductive Logic
Programming, aims at converting a relational problem into an attribute-
value one. An important facet of propositionalization consists in building
a set of relevant features. To this end we propose a new method, based on
a synthetic representation of the database, modeling the links between
connected ground atoms. Comparing it to two state-of-the-art logic-
based propositionalization techniques on three benchmarks, we show that
our method leads to good results in supervised classification.

1 Introduction

Propositionalization is a popular technique in ILP, that aims at converting a re-
lational problem into an attribute-value one [1–5]. Propositionalization usually is
decomposed into two main steps: generating a set of useful attributes (features)
starting from relational representations and then building an attribute-value
table, which can be mono-instance (a single tuple for each example) or multi-
instance (several tuples for an example). Traditional attribute-value algorithms
can then be applied to solve the problem. Approaches for constructing automat-
ically the new set of attributes (features) can be divided into two trends [6, 7]:
methods based on logic or inspired from databases.

The first trend follows the ILP tradition which is logic-based. This trend,
as far as we know, includes the first representative LINUS system [8] and its
descendants, the latest being RSD [9], HiFi [4] and RelF [5]. For these systems,
examples are mostly represented as first-order Herbrand interpretations and fea-
tures are conjunctions of first-order function-free atoms. The search for features
is based on a template (a set of ground atoms of which all arguments fall in ex-
actly one of two categories: “input” or “output”) or mode declarations (defining
the predicates and assigning a type and mode to each of their arguments).

The second trend is inspired from databases and appeared later beginning
with systems like Polka [2], RELAGGS [10] and RollUp [7]. Those systems build
attributes, which summarize information stored in non-target tables by applying
usual database aggregate functions such as count, min, max, etc.

In this paper, we propose a new method, called Link-Based Propositional-
ization or LBP, to build features for propositionalization from a set of ground
atoms, without information on templates or mode declarations. The method was
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initially designed to learn the structure of Markov logic networks [11], where it
was used as a strategy to build a boolean table and to find dependent literals.
The originality of the method is to build an abstract representation of sets of
connected ground atoms, allowing thus to represent properties between objects.

LBP differs from the classical logic-based approaches both in the semantic of
the boolean table and in the search for features. For example, the RelF system
uses a block-wise technique to construct a set of tree-like conjunctive relational
features while the others, like HiFi or RSD use the traditional level-wise ap-
proaches. The search in LBP does not rely on template or mode declarations,
but on a synthetic representation of the dataset, namely the links of the chains,
which allows to build features as well as to construct the boolean table based
on the regularities of these chains. The notion of chain is related to relational
path-finding [12] and relational cliché [13].

Our propositional method is presented in Section 2. We present related works
in Section 3. Section 4 is devoted to experiments and finally, Section 5 concludes
this paper.

2 Link-Based Propositionalization

Given as input a database DB and a query predicate Q, we present here a
heuristic Link Based Propositionalization method (LBP) in order to transform
relational information in data into an approximative representation in form of a
boolean table. Once this boolean table has been learnt, it can be used for several
tasks: looking for the most frequent patterns satisfied by instances of predicate
Q, looking for the most discriminative patterns satisfied by positive examples of
Q, or as input of a propositional learner for learning a model classifying positive
from negative examples.

2.1 Preliminary notions

Let us recall here some basic notions of first order logic. We consider a function-
free first order language composed of a set P of predicate symbols, a set C of
constants and a set of variables. An atom is an expression p(t1, . . . , tk), where p
is a predicate and ti are either variables or constants. A literal is either a positive
or a negative atom; it is called a ground literal when it contains no variable and
a variable literal when it contains only variables. A clause is a disjunction of
literals. Two ground atoms are connected if they share at least a constant (or
argument).

A variabilization of a ground clause e, denoted by var(e), is obtained by
assigning a new variable to each constant and replacing all its occurrences ac-
cordingly.

The method that we propose is based on an abstract representation of sets
of connected atoms, either ground atoms or variable atoms. This abstract repre-
sentation is learned from sets of connected ground atoms and it is used to build
sets of connected variable literals. Let us first introduce this representation.

A Link-Based Method for Propositionalization
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2.2 An abstract representation

The idea underlying this method is to detect regularities in ground atoms: we
expect that many chains of connected atoms are similar, and could thus be
variabilized by a single chain. The similarity between chains of ground atoms is
captured by the notion of links that we introduce in this paper and that models
the relations between connected atoms.

Definition 1. Let g and s be two ground literals (resp. two variable literals). A
link between g and s is a list composed of the name of the predicates of g and s
followed by the positions of the shared constants (resp. variables). It is written
link(g, s) = {G S g0 s0 / g1 s1 / . . . } where G and S are the predicate symbols
of g and s, gi ∈ [1, arity(g)], si ∈ [1, arity(s)] and the combinations / gi si /
mean that the constants respectively at position gi in g and si in s are the same.
If g and s do not share any constant then link(g,s) is empty.

We are interested in representing the properties of sets of connected literals.
In order to have a sequential representation of these properties, we consider only
chains of literals defined as follows:

Definition 2. A chain of ground literals (resp. variable literals) starting from
a ground (resp. variable) literal g1 is a list of ground (resp. variable) literals
〈g1, ..., gk, ...〉 such that ∀i > 1, link(gi−1, gi) is not empty and every constant
(resp. variable) shared by gi−1 and gi is not shared by gj−1 and gj, 1 < j < i. It
is denoted by chain(g1) = 〈g1, ..., gk, ...〉. The length of the chain is the number
of atoms in it.
The link of the chain gc = 〈g1, ..., gk, ...〉 is the ordered list of links link(gi, gi+1),
i ≥ 1, denoted by link(gc) = 〈link(g1, g2)/.../link(gi, gi+1)/...〉. The link of a
chain composed of a single atom is the empty list. When a chain is composed of
only two atoms, its link is the link between its two atoms. A chain of ground lit-
erals (resp. variable literals) is called, for short, a ground chain (resp. a variable
chain).

Let us notice that in this definition, it is only require that the variable shared
by gi−1 and gi is not used in previous links. But there may exist in gi−1 or in gi

some constants occurring in gj , j < i − 1. Sometimes, it may be useful to know
if a link has been obtained from a chain of ground atoms or from a chain of
variable literals. In such situations, the term link is prefixed by g-, for expressing
that the link has been obtained by a ground chain or by v-.

Definition 3. A link 〈g1, ..., gk〉 is said to be a prefix of another link 〈s1, ..., sn〉,
if link(gi, gi+1) = link(si, si+1), ∀i, 1 ≤ i < k.

Example 1. Let DB1 = {P(a, b), Q(b, a), R(b, c), S(b), S(c)} be a set of ground
atoms. P(a, b) and Q(b, a) are connected by the two shared constants a and
b. The constant a occurs respectively at position 1 of the ground atom P(a, b)
and at position 2 of the ground atom Q(b, a). Similarly, the constant b occurs

A Link-Based Method for Propositionalization
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respectively at position 2 of the ground atom P(a, b) and at position 1 of the
ground atom Q(b, a). We have: link(P(a, b), Q(b, a)) = {P Q 1 2 / 2 1}.

A possible chain starting from the ground atom P(a, b) is 〈P(a, b), R(b, c),
S(c)〉. Its link is 〈{P R 2 1 } / {R S 2 1}〉. The link of the chain 〈P(a, b), R(b,
c)〉 is 〈{P R 2 1 }〉; it is a prefix of the previous link.

On the other hand, 〈P(a, b), R(b, c), S(b)〉 is not a chain as the constant b
shared by R(b, c) and S(b) is already used to link P(a, b) and R(b, c).

Definition 4. A variabilization of a link l is a chain c of variable literals, so
that link(c) = l.

Let us for instance consider the link 〈{P Q 1 1}〉 where Q is a unary predicate.
Then there is a single way, up to a renaming of variables, of variabilizing it,
preserving the link, that is P (A, B), Q(A). Nevertheless, given a link there may
exist several ways of variabilizing it into a variable chain.

Let us now consider the link 〈{P R 1 2} / {R R 1 1} 〉. This gives the scheme
P (slot1, slot2), R(slot3, slot4), R(slot5, slot6) with the constraints slot1 = slot4,
slot1 6= slot3, slot2 6= slot3, slot2 6= slot4 (thus satisfying the link {P R 1 2})
slot3 = slot5, slot3 6= slot6, slot4 6= slot5, slot4 6= slot6 (for respecting the link
{R R 1 1} ) and the constraints slot3 6= slot4 (for having a chain). Up to a
renaming of variables, it can be variabilized into

P (X, Y ), R(Z, X), R(Z, W ) or into P (X, Y ), R(Z, X), R(Z, Y ).
These two variabilizations correspond to two different strategies for filling

the slots from left to right by variables, starting from the first atom composed
of the first predicate and different variables as arguments. The first one con-
sists in introducing a new variable each time there is no constraints on a slot
of a predicate. The second one consists in trying to fill it with a variable that
already exists, respecting the inequality constraints, thus leading to a more spe-
cific conjunction than the first one. This second strategy can still lead to several
variabilizations, when several constants already introduced fulfill the constraints.
The number of variabilizations can be reduced by using information on types of
arguments when predicates are typed.

We define two strategies for variabilizing a link, and a third strategy for
variabilizing a link, given the ground chain it comes from.

Definition 5. Let P be the first predicate occurring in the link and let n be its
arity. In both strategies, the first atom is P (X1, . . . , Xn). Then slots are filled
from left to right. For each slot with no equality constraints to fulfill:

– general variabilization: introduce a new variable
– specific variabilization: if possible, use a variable already introduced that fulfill

all the inequalities constraints on this slot and the type of the argument.
– simple strategy: given a ground chain and its link, variabilize the ground

chain, simply turning constants into variables.

2.3 Creation of a set of features

Let us consider a target predicate Q and a training dataset DB. We aim at
building a set of variable chains F linked to Q given DB such that for each

A Link-Based Method for Propositionalization
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true ground atom A built with predicate Q in DB, and for each chain chain(A)
starting from A, there exists a chain c in F such that link(chain(A)) = link(c).
It is reasonable to expect that many chains (starting from several ground atoms)
are similar in the sense that their links are identical and could thus be variabilized
by a single chain, with the same link.

The algorithm can be sketched as follows (in practice the length of the chains
is limited by an integer k)
• for each ground atom A of the target predicate P,

• find every chain starting from A
• build the corresponding link and check whether it is a prefix of a link

already built
• if not, variabilize it.
In the current implementation, we have chosen the simple variabilization

strategy, thus variabilizing the ground chain that has lead to the link under
process. Moreover, we design two versions: in the first one (called LBP+), only
positive ground atoms are considered, in the second one (called LBP-), positive
and negative ground examples are considered.

Example 2. Let DB be a database composed of 14 ground atoms as follows: ad-
visedBy(bart, ada), student(bart), professor(ada), publication(t1,bart), publica-
tion(t2, bart), publication(t1, ada), publication(t2, ada), advisedBy(betty, alan),
student(betty), professor(alan), publication(t3, betty), publication(t3, alan), pub-
lication(t3, andrew), professor(andrew).

Figure 1 illustrates the production of chains of ground literals with the cor-
responding links and the resulting variable chains, using advisedBy as the target
predicate, and bounding the length of chains to 4.

Starting from advisedBy(bart, ada), several chains of ground literals can
be built. For each chain, its link is built. For instance, the first chain built
is {advisedBy(bart, ada) student(bart)}, leading to the link {advisedBy student
1 1}. This link is stored in the Set of Links and a first variable chain is created
from this link.

The second chain {advisedBy(bart, ada), publication(t1, bart), publication(t1,
ada), publication(t2,ada)} leads to the link 〈{advisedBy publication 1 2} / {publi-
cation publication 1 1}/ {publication publication 2 2}〉. This link is not a prefix of
the previous link, it is stored and a new variable chain is built from this link. Let
us insist here on the fact that this chain depends on the variabilization strategy.
The general strategy would lead to the chain {advisedBy(A, B), publication(C,
A), publication(C, D), publication(E,D)}. The specific strategy first introduces
the new variable C as first argument of the first occurrence of publication (it
cannot be equal to A or to B, otherwise it would have been written in the first
link), leading to {advisedBy(A, B), publication(C, A)}. When considering the
second occurrence of publication, its first argument is given by the link. For its
second argument, since no equality constraint is given on it, instead of introduc-
ing a new variable, it tries to use a previous variable: it cannot be A (it would
have been given in the link), therefore it chooses B, leading to {advisedBy(A, B),
publication(C, A), publication(C,B)}. Finally the third occurrence of publication

A Link-Based Method for Propositionalization

14



advisedBy(Betty,Alan)

publication(T3,Andrew)

publication(T3,Betty) student(Betty)

professor(Andrew)

professor(Alan)

professor(Alan)

publication(T3,Andrew) professor(Andrew)

student(Betty)

publication(T3,Alan)

publication(T3,Alan)publication(T3,Betty)

publication(T2,Bart) publication(T2,Ada) publication(T1,Ada)
professor(Ada)advisedBy(Bart,Ada)

publication(T1,Ada) publication(T1,Bart)
publication(T2,Bart)
student(Bart)

professor(Ada)

publication(T2,Bart)publication(T2,Ada) publication(T1,Bart)
student(Bart)

publication(T1,Bart) publication(T1,Ada) publication(T2,Ada)
professor(Ada)

student(Bart)

Training dataset DB

advisedBy(Bart,Ada)
student(Bart)
professor(Ada)
publication(T1,Bart)
publication(T2,Bart)
publication(T1,Ada)
publication(T2,Ada)
advisedBy(Betty,Alan)

publication(T3,Betty)

student(Betty)
professor(Alan)

publication(T3,Alan)

professor(Andrew)
publication(T3,Andrew)

{advisedBy(A,B) student(A)
{advisedBy(A,B) publication(C,A) publication(C,B)  publication(D,B)
{advisedBy(A,B) publication(C,A) publication(C,B)  professor(B)
***
***
{advisedBy(A,B) professor(B)
{advisedBy(A,B) publication(C,B) publication(C,A)  student(A)
{advisedBy(A,B) publication(C,B) publication(C,A)  publication(D,A)
***
***

***
***

***
{advisedBy(A,B) publication(C,B) publication(C,D) professor(D)

{adv stu 1 1}
{adv pub 1 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv pub 1 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv prof 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub stu 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 2 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 2 2} | {pub pub 1 1} | {pub stu 2 1}
{adv stu 1 1}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv prof 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub prof 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub stu 2 1}

Variable litteralsLinks of chains

Chains of ground literals

***

***

Fig. 1. The variabilization process using chains and links (length ≤ 4)

is introduced: its second argument is given by the link, no constraint is given on
the first argument, no previous constant can be used (A and B do not have the
same type and C cannot be used, because of the link. Thus we get {advisedBy(A,
B), publication(C, A), publication(C,B), publication(D,B)}. Since we know the
ground chain that has lead to this link, the third strategy, called simple strategy
variabilizes the ground chain, simply turning constants into variables. In this
specific case, it leads to the same variable chain as the specific strategy. The
simple strategy is the one we choose in the current implementation.

The third chain {advisedBy(bart, ada), publication(t1, bart), publication(t1,
ada), professor(ada)} leads to the link 〈{advisedBy publication 1 2} / {publica-
tion publication 1 1}/ {publication professor 2 1}〉. This link is not a prefix of the
previous link, it is stored and a new variable chain is built from this link leading
to {advisedBy(A, B), publication(C, A), publication(C, B), professor(B)}.

A Link-Based Method for Propositionalization
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The process goes on. For instance, the chain {advisedBy(bart, ada), publica-
tion(t2, bart), publication (t2, ada), publication(t1,ada)} leads to the same link
as the second chain, and it is not kept.

The three stars sign (***) displayed in Figure 1 means that there is no new
variabilization for the corresponding chain. As can be seen, at the end, there are
16 ground chains starting from ground atoms built with advisedBy but only 7
different links and therefore 7 variable chains. Let us notice that the notion of
chains allows to capture interesting relations, as for instance the relation between
advisedBy(A, B) and the fact that A and B have a common publication.

Let us notice that for improving the efficiency of the implementation, types
information on predicates are used, as for instance professor(person), student (per-
son), advisedBy(person, person), publication(title, person).

2.4 Creating a Set of Variable Literals and a Boolean Table

In classical approaches for propositionalization, the chains that have been built
become features. Here, we intend to benefit from the structure of the chains.
For instance, if we consider the variable chain {advisedBy(A, B), publication(C,
B), publication(C, D), professor(D)}, it can be split into 4 literals, with the
requirement that given an instantiation of A and B (or a ground atom built
on advisedBy), professor(D) will be set to true if there exists an instantiation
of C and of D such that publication(C, B), publication(C, D), professor(D) are
true. Therefore professor(D) equal to True means that the entire chain is true.
On the other hand, publication(C, D) may be true with only publication(C, B)
true.

Starting from the set of variable chains that has been built, we build a set
of variable literals, renaming variables when necessary. In order to achieve this,
we use a tree-structure representation of the chains. The idea is that for each
variable literal, there exists a single chain linking this literal to the target literal.
The process is divided into three steps: switch, sort and featurize.

The switch operation looks for sequences of two variable literals in two differ-
ent chains that would be similar up to a permutation of these two literals, as for
instance publication(C, A), publication(C, B) in one chain and publication(C, B),
publication(C, A) in the other one.

Then chains are sorted as follows: a chain c1 precedes a chain c2 if c1 is shorter
than c2 or c1 has the same length as c2 and l1 precedes l2 where l1 and l2 are
respectively the first literals in c1 and c2 that differ. The order relation between
literals corresponds to the alphabetical order of the name of their predicates, or
to the (alphabetical or numerical) order of the first pair of variables that differs
if the two literasl are based on the same predicate. We must underline that such
an order relation is only introduced in order to sort chains and that is should be
given no further meaning.

A tree structure is then built, processing variable chains in turn. During this
operation, variables can be renamed, thus allowing to distinguish features. A
mapping table is used, linking the old name to the new one. More precisely,
given a variable chain l1, . . . , lp, we first look for a prefix already existing in the
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tree, possibly using a variable renaming as given in the mapping table. Let us call
i the last index of this prefix. Then we search whether any literal lj, with j > i
already occurs in the tree, which means that if this literal was introduced “as
is” in the tree, this later would contain two similar nodes at different places, and
thus with different meanings. If so, then two cases are considered to overcome
this potential problem:

– lj contains only variables of the target predicate: the chain lj, . . . , lp is
forgotten, since there exists another shorter chain linking lj with the target
predicate.

– at least one of its variables is not a variable of the target predicate. This
variable is renamed, introducing a new variable. The link between this new
variable and the original one is kept in the mapping table.

Finally, the chain is introduced in the tree, renaming variables according to
the mapping table. Let us notice that once renaming is done, it is possible that
the common prefix detected in the original chain is no longer a common prefix
(due to the renaming of the variable) and then a new branch is created as needed.

We can now see how switching and sorting lead to a valuable organization
of chains. Due to the sequential introduction of chains in the tree, chains that
share a common prefix become neighbors, sorted so that there introduction in
the tree is likely to generate as less branches as possible.

Example 3. Let us consider again the database given in Example 2. The following
links are built:

1. {[advisedBy student/1 1]}
2. {[advisedBy professor/2 1]}
3. {[advisedBy publication/1 2], [publication publication/1 1], [publication pro-

fessor/2 1]}
4. {[advisedBy publication/1 2], [publication publication/1 1], [publication pub-

lication/2 2]}
5. {[advisedBy publication/2 2], [publication publication/1 1], [publication stu-

dent/2 1]}
6. {[advisedBy publication/2 2], [publication publication/1 1], [publication pub-

lication/2 2]}
7. {[advisedBy publication/2 2], [publication publication/1 1], [publication pro-

fessor/2 1] }

Then variable chains are built. (In the current implementation, variables are
represented by an integer; here, we write them Xi to improve lisibility.)

1. {advisedBy(X1,X2), student(X1)}
2. {advisedBy(X1,X2), professor(X2)}
3. {advisedBy(X1,X2), publication(X3, X1), publication(X3,X2), professor(X2)}
4. {advisedBy(X1,X2), publication(X3,X1), publication(X3,X2), publication(X4,

X2)}
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5. {advisedBy(X1,X2) , publication(X3,X2), publication(X3,X1), student(X1)}
6. {advisedBy(X1,X2), publication(X3,X2), publication(X3,X1), publication(X4,

X1)}
7. {advisedBy(X1,X2), publication(X3,X2), publication(X3,X4), professor(X4)}

The first step switches some consecutive literals, in order to favor common
prefixes. It is applied on the 5th and 6th clauses, thus leading to:

5’. {advisedBy(X1,X2), publication(X3,X1), publication(X3,X2) , student(X1)}
6’. {advisedBy(X1,X2), publication(X3,X1), publication(X3,X2) , publication(X4,

X1)}

In the second step, they are sorted:

1. {advisedBy(X1,X2), professor(X2)}
2. {advisedBy(X1,X2), student(X1)}
3. {advisedBy(X1,X2), publication(X3, X1), publication(X3,X2), professor(X2)}
4. {advisedBy(X1,X2), publication(X3,X1), publication(X3,X2), publication(X4,

X2)}
5. {advisedBy(X1,X2), publication(X3,X1), publication(X3,X2), publication(X4,

X1)}
6. {advisedBy(X1,X2) , publication(X3,X1) , publication(X3,X2) , student(X1)}
7. {advisedBy(X1,X2), publication(X3,X2), publication(X3,X4), professor(X4)}

In the context of this example, sorting as a limited impact, but in larger
datasets it usually has a much more important influence on the organization of
links. Then the tree is built. Chains 1, 2 and 3 have only advisedBy(X1, X2)
as a common prefix. Chain 3 has a literal, namely professor(X2), that contains
only variables occurring in the head, this literal is then removed. Chains 4 and
5 have a prefix of length 3 common to chain 3 and then differs. In chain 6, the
last literal is removed. Finally, in Chain 7, variable X3 is renamed in X5 in order
to distinguish the two occurrences in different situations of publication(X3, X2).
This leads to the tree:

advisedBy(X1,X2)
— professor(X2)
— student(X1)
— publication(X3,X1)
——– publication(X3,X2)
———— publication(X4,X1)
———— publication(X4,X2)
— publication(X5,X2)
——– publication(X5,X4)
———— professor(X4)

Once the set of features is built, we transform information in the database
into a boolean table BT, where each column corresponds to a variable literal and
each row corresponds to a true/false ground atom of the target predicate. Let
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us assume that data concerning a given ground atom qr is stored in row r. Let
us also assume that column c corresponds to a given variable literal vlc. There
exists a chain vc of variable literals starting from the head literal and containing
vlc. BT [r][c] = true means that there exists a ground chain gcr starting from
the ground atom qr that makes vc true (or such that vc ⊆ var(gcr) up to a
renaming of variables). Given a ground instance qr, filling its row by considering
all the ground chains starting from qr is too expensive because it has to involve
an exhaustive search in the database. We overcome this obstacle by inversely
considering the variable chains. Each of them is then used to guide the search
in the database. This search can be performed much faster using information
about the order of predicates and positions of shared constants between two
consecutive predicates in that chain. The notion of links allows us to filter the
variable chains thus reducing the search.

3 Related Works

As previously mentioned, propositionalization approaches can be classified into
approaches based on logic and approaches inspired from databases. The ap-
proaches inspired from databases, like Polka [2], RELAGGS [10] and RollUp
[7] build attributes which summarize information stored in non-target tables by
applying usual database aggregate functions such as count, min, max, . . .

These works are quite different from the ones based on logic, which consider
examples as first-order Herbrand interpretations and features (attributes) as
conjunctions of first-order function-free atoms. The search then is based on a
template (a set of ground atoms of which all arguments fall in exactly one of
three categories: input, output, or constant) or mode declarations (define the
predicates and assign a type and mode to each argument of these predicates).
Our method belongs to the second trend based on logic, and is compared to
these approaches.

Logic-based approaches can be divided into two families : the first one as
for instance [9, 5] starts from information on the predicates (usually the modes),
build features and then uses the database to filter relevant ones, the second one as
for instance [14] or our work starts from the database, build ground conjunctions
of atoms and variabilize them to get features. Let us illustrate these two kinds
of approaches.

In [5], the authors introduce the notion of templates and features. A template
is a conjunction of ground atoms, the arguments of which are either defined as
inputs (+) or as outputs(-). To be a template, an atom must have at most one
input argument and there exists a partial irreflexive order on the terms occurring
in it (c < c′ if c and c′ occur in the same atom, c as input and c′ as output.
From a template, conjunctions of connected variable literals can be built, under
the conditions that variables can be instantiated in such a way that the ground
atoms belong to the template. A variable can be positive, when it has exactly
one input occurrence and no output occurrence, negative when it has no input
occurrence and exactly one output occurrence, or neutral when it has at least one
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input occurrence and exactly one output occurrence. A feature is then a conjunc-
tion of connected variable literals where all variables are neutral. Intuitively it
means, that each variable must be introduced as output of a single atom and can
then be described by several atoms where it occurs as input. Features are built
by aggregating blocks, where blocks are conjunctions of variable atoms, either
containing exactly one positive variable (positive block) or containing exactly
one negative variable (negative block).

In [14], conjunctions of literals are also built from the database. They use
mode declarations and they distinguish two types of predicates: path predicates
with at least one output argument and check predicates with only input argu-
ments. The features (called properties in their approach) that they build must
contain at least a check predicate. It means that ”pure” relational features, as
for instance expressing that two persons are linked if they share a common pub-
lication ({advisedBy(A,B), publication(C,A), publication(C,B)} cannot be built.
The check predicates play an important role in the search strategy, since given
a saturated ground clause, they start from the atoms built with a check literal
and look for the path allowing to connect them to the head.

Our method differs from the classical logic-based approaches both in the se-
mantic of the boolean table and in the search for features.

Meaning of the table: To form an attribute-value table, most methods
define each propositional feature (column) corresponding to a variable literal
(SINUS and DINUS [8] for example) or to a conjunction of several variable lit-
erals (the genetic method [15], RSD [9], HiFi [4] and RelF [5]). In LBP, each
propositional feature (column) corresponds to a variable literal and each row
corresponds to a true/false ground atom of the query predicate.

Searching: To construct features, most methods use syntactical constraints
in the form of template or mode declarations for limiting the search space, then
apply some techniques to calculate the truth values for each feature. For exam-
ple, the RelF system uses a block-wise technique to construct a set of tree-like
conjunctive relational features while the others, like HiFi or RSD use the tra-
ditional level-wise approaches. The search in LBP does not rely on template or
mode declarations, but on a synthetic representation of the dataset, namely the
links of the chains, which allows building features as well as constructing the
boolean table based on the regularities of these chains. The notion of chain is
related to relational path-finding [12] and relational cliché [13].

4 Experiments

4.1 Systems, Databases and Methodology

We propose to evaluate LBP according to classification accuracy, as traditionally
used in propositionalization[4, 5, 7, 9]. Accuracy is relevant as it expresses the
ability of LBP to produce discriminative features. More information is given in
the form of the F1 score of both positive and negative groups.
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We compared LBP to two state-of-the-art logic-based systems: RelF [5] and
RSD [9]. For the comparison of logic-based and database-inspired methods, we
refer to [6, 7, 16] for further reading. We performed experiments on three popular
datasets:

– IMDB consists of a database on films (6 predicates, 302 constants, 1224
true/false ground atoms). We learned the predicate workedUnder (i.e. who
worked under the direction of who).

– UW-CSE describes an academic department (15 predicates, 1323 constants,
2673 ground atoms). We learned the predicate advisedBy (i.e., who is the
advisor of who).

– CORA consists of citations of computer science papers (10 predicates, 3079
constants, 70367 true/false ground atoms). We learned the predicate same-
Bib (i.e. do two citations refer to the same paper).

LBP has first been built over the Alchemy platform 1, since as written in the
introduction, the idea of a linked-based representation of the database had first
been introduced for learning Markov Logic networks [11]. The datasets have thus
been used in their Alchemy form. Each set consists of 5 folds, which have been
used for cross-validation. A new version of LBP, independent from Alchemy,
has been built in Java and this is this new version that is used in the following
experiments.

To evaluate the outputs of LBP, RELF and RSD, the set of features that
have been produced and their corresponding boolean tables have then been given
as inputs of a discriminative tool. The three systems produce output data in
the Weka format, and we have chosen to test the discriminative power of the
features on decision tree classifiers, using the WEKA [17] implementation of J48
and REPTree. We have chosen these two decision tree learners as they differ on
the way trees are built: J48 implements the C4.5 algorithm while REPTree is a
faster tree decision learner.

In most of cases, datasets are highly unbalanced. Given the closed world
assumption, many negative examples could be generated. Therefore beside the
pre-existing negative ground atoms of the target predicate, additional negative
examples are generated randomly, to reach a rate of 4 negatives per positive.
We mean, that based on a closed world assumption, we consider that all posi-
tive examples are explicitely given and that negative examples can be deduced
from these latter. In the considered datasets, no or few negative examples are
explicitely given. We thus keep these explicit negative examples and generate a
subset of the implicit ones. This is empiric but it seems to be a fair way to get
enough negative examples while not leading to too much overhead.

4.2 Dataset formats

The data input formats of the three systems we compared do differ and choices
have to be made to encode the requirements of the systems. We briefly detail

1 http://alchemy.cs.washington.edu/
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how we proceeded to adapt them, starting from the Alchemy-like format. LBP
requires only a database expressed by a set of ground atoms, positive and neg-
ative examples; type information can be given to improve the efficiency of the
system. On the other hand, Relf and RSD need more information.

Alchemy-like data used in LBP consists of a “.db” file that contains the
ground atoms. It usually comes with a “.mln” file that contains both the de-
scription of the predicates and some elements to help building a Markov logic
network (which is out of the scope of this paper). The target predicate is de-
fined at runtime. The description of the predicates can be very simple. In our
case we only consider their name and arity, together with the type of arguments
(e.g. advisedBy(person, person)). No mode or other additional declaration bias
is used.

Relf learns by interpretation, which means that its input data consists of
a set of independent world interpretations (i.e. a set of ground facts), which
are annotated as valid or not. To comply to this data organization, we proceed
as follows. Starting from each ground atom of the target predicate, we build
an interpretation based on the saturation of this ground atom. We tag this
interpretation as true of false based on the sign of the target atom. This latter
is of course removed from the interpretation. In the case where the arity of the
target predicate is higher that 1, as for instance advisedBy, we have to specify in
the interpretation the constants occurring in the target atom. We thus introduce
an additional predicate that is similar to the target one, but which is always true.
Beside this data file, Relf needs an additional file that contains a template to
guide its data exploration. Let us insist on the fact that this template has a high
influence on the results.

RSD data input can take several forms. In the approach we use, input data
consists of three files. First a “.b” knowledge base contains the mode declaration
of the predicates that distinguishes between the target predicate (modeh) and
the body predicates (modeb). The knowledge base also contains the positive
ground atoms of the body predicates. Two other files are needed, a “.f” one and
a “.n” one, that respectively contain the true and false ground atoms of the target
predicate. The arity of the target predicate must be equal to 1. Thus, we have
had to modify our datasets by introducing additional predicates: a new target
predicate of arity 1, the variable of which is a new one, and linking predicates
of arity 2 that link the new variable to the ones of the original target predicate.
The new variable is set as an input one in the modes declaration.

We have used similar feature declaration biases for RSD and RelF. For LBP,
we arbitrarily set the maximal length of considered g-chains (v-chains) to k = 4,
in order to explore a rich while tractable search space. For RSD, due to the
additional predicates we introduced, we set this maximum length to 6.

Beside dataset formats, we must also notice that LBP and Relf are able to
take both learning and test datasets as input and produce the respective output
files, while RSD is not. We thus adapted the tests as follows: with LBP and Relf
we conducted a 5-fold cross validation based on our original folds, while with
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RSD we merged all of the folds as a single input, thus getting a single output
and letting Weka process with its built-in, 10-fold, cross validation.

4.3 Results

We present one table per dataset, containing for each system the global accuracy
and the F1scores for positive examples (F+) and negative examples (F-). We
used two versions of LBP, one that learns features based on the positive target
atoms only (LBP+), and one that learns features based on both positive and
negative target atoms(LBP-). Tables 1, 2 and 3 respectively correspond to the
experiments with IMDB, UW-CSE and CORA. The presented results correspond
to the average results of the 5- or 10-fold cross validation process. On each line
the best average value if set in bold face.

LBP+ LBP- Relf RSD

Accuracy 97.6 92.4 92.8 84.6
J48 F+ 0.95 0.85 0.86 0.90

F- 0.98 0.946 0.95 0.69

Accuracy 97.6 92.6 92.8 84.9
REPTree F+ 0.95 0.82 0.86 0.90

F- 0.98 0.9 0.95 0.70

Table 1. Imdb experiments

LBP+ LBP- Relf RSD

Accuracy 90.4 93.9 91.1 85.8
J48 F+ 0.79 0.86 0.81 0.91

F- 0.94 0.96 0.94 0.71

Accuracy 91.6 94.5 91.3 85.8
REPTree F+ 0.82 0.87 0.82 0.91

F- 0.95 0.96 0.94 0.72

Table 2. Uw-cse experiments

We have got no results with RSD and REFL on Cora. More precisely, the
systems terminate but provide no results. We can observe that in general the
best accuracy is achieved with one of the two versions of LBP. Nevertheless,
due to the fact that, depending on the dataset, either one or the other performs
better, we cannot conclude that one of them is globally more performant from
a statistical significance point of view.
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LBP+ LBP- Relf RSD

Accuracy 87.9 86.8 - -
J48 F+ 0.76 0.74 - -

F- 0.92 0.91 - -

Accuracy 87.2 86.9 - -
REPTree F+ 0.75 0.74 - -

F- 0.91 0.91 - -

Table 3. Cora experiments

We also achieve the best F1Scores, except on UWCSE, where RSD performs
better on the positive F1Score. Depending on the dataset, the decision tree
learning algorithm might have some influence (UWCSE) or nearly no influence
(IMDB) on the results at the average level. Nevertheless, even in this second
case, differences might be noticed when considering some folds.

The important point is that these satisfying performances are obtained with
a method that introduces no learning bias, except the types of variables, which
is much lighter than the biases of REFL and RSD.

Considering time, LBP is the slowest system (about twice than the two other
systems for UWCSE and IMDB). Implementation considerations might explain
it partially, but on the large datasets, the fact that no declaration biases, such
as modes, are available, makes the dataset exploration much longer.

Considering features, on UW-CSE, LBP+ produces c.a. 300 features, LBP-
c.a. 550 features, RELF c.a. 130 features and RSD c.a. 300 features. On IMDB,
LBP+ produces c.a. 30 features, LBP- c.a. 40 features, RELF c.a. 10 features
and RSD c.a. 100 features. The fact that we produce much more features than
RELF can be explained by at least two reasons. First, we produce features that
consist of a single variable literal. We thus have several features when other
systems produce a single conjunction. Second, due to the tree structure of our
graph of features, we have a lot of features that are set and kept “just to”
materialize a path to a leaf feature. Nevertheless, we surprisingly produce less
features than RSD.

Based on these results, we can conclude that our system is competitive to
the state-of-the-art propositional systems on these three benchmark datasets.

5 Conclusion and Future Work

In this paper, we introduce a linked-based representation of the database allow-
ing to capture relational structures in the database, and we give a first way of
integrating it in a propositional learner. Our main contribution is mainly on this
linked-based representation allowing to learn features with nearly no informa-
tion (except types of predicates). Another original contribution is the idea of
splitting features into literals, relying on the fact that they form a chain.
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Further works can be done on this representation. In the system that we have
developed, learned features are split into ground atoms. Such features could also
be used as such as in traditional propositional learners.

Although the system was designed for avoiding the user to give biases, modes
could easily be added, thus allowing to reduce the number of links. On the
other hand, most logical-based propositional learners need information: at least
type and mode declarations for predicates, more sophisticated information, as
for instance templates, which allows to reduce the search space. Giving such
templates is not so easy. Our linked-based representation could perhaps be used
as a preliminary step to learn templates.
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5. Kuželka, O., Železný, F.: Block-wise construction of tree-like relational features

with monotone reducibility and redundancy. Mach. Learn. 83(2) (2011) 163–192
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Abstract. The cell is an entity composed of several thousand types of
interacting proteins. Our goal is to comprehend the cancer regulation
mechanisms using the microRNAs. MicroRNAs are present in almost all
genetic regulatory networks acting as inhibitors targeting mRNAs. In
this paper, it is shown how the Artificial Intelligence description method
functioning on the basis of Inductive Logic Programming can be used
successfully to describe essential aspects of cancer mechanisms. The re-
sults obtained show new microRNAs markers for melanoma metastasis.

1 Introduction

New technologies have been developed developed to measure the expression level
of thousands of genes simultaneously. These genomic-scale snapshots of gene ex-
pression (i.e. how much each gene is ”turned on”) are creating a revolution in in
biology. Genes encode proteins, some of which in turn regulate other genes. Un-
derstanding genetic and metabolic networks is of the utmost importance. These
networks control essential cellular processes and the production of important
metabolites in microorganisms, and modeling such networks from model organ-
isms will drive applications to other less characterized organisms, which have a
high biotechnological potential.

The study of signaling events appears to be a key to the research, biologi-
cal, pharmacological and medical. The spread of these types of signals are not
changing the behavior of proteins on three levels: regulation of the activity, inter-
action and expression. The three levels are synchronized in a strong momentum
that leads to changes in protein activity. Since a decade signaling networks have
been studied using analytical methods based on the recognition of proteins by
specific antibodies. Parallel DNA chips (microarrays) are widely used to study
the co-expression of candidate genes to explain the etiology of certain diseases,
including cancer.

From the standpoint of Artificial Intelligence cells are sources of information
that include a myriad of intra and extra cellular signals that as the ultimate
goal of optimal output describing metabolic proteins. Diseases and cancer in
particular can be seen as a pathological alteration in the signaling networks of
the cell.
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The study of gene networks poses problems identified and studied in Artifi-
cial Intelligence over the last twenty years. It is clear identified that the reason-
ing have to handle incomplete, uncertain, revisable, contradictory and multiple
sources of information. The logical representation of signaling pathways is not
complete: biological experiments provide a number of protein interactions but
certainly not all. On the other hand the conditions and difficulty of some experi-
ments lead to obtain data which are not always accurate. Some data may be very
wrong and must be corrected or revised in the future. Finally the information
coming from different sources and experiences and can be contradictory. From
this observation, generally for most real human activities, it must, however, rea-
son and make decisions. It is the goal of logics of uncertainty and in particular
of nonmonotonic logics.

The logical approach provides an intuitive method to provide explanations
based on the expressivity of relational language. For example, logic can rep-
resent biological networks such as gene regulation, signaling transduction, and
metabolic pathways. Unlike other approaches, this method lets us introduce
background theory, observations and hypotheses within a common declarative
language. It also provides the basis for the three main forms of inference, i.e.,
deduction (prediction), abduction (explanation) and induction (generalization).

In a quarter of a century of automatic demonstration, propositional calculus
has been largely neglected in favor of more substantial logics, such as predi-
cate calculus or certain kind of non-classical logic. In the case of propositional
calculus, the algorithms of automatic demonstration, be they of syntactical or
semantic nature, are characterized by their great simplicity. It is thus easy to
analyze their limits and weak point, and to work towards an improvement in
their performance.

Another fundamental asset of propositional calculus is its decidability : we
can implement algorithms which will give a result within a finite and reasonable
time, even for non-trivial examples. In first-order logic, such algorithms cannot
exist.

1.1 Causality and classical inference

If the inference of classical logic A → B or A a B is fully described formally,
with all the ”good” logic properties (tautology, not contradiction, transitivity,
contraposition, modus ponens, ...), a description of the properties of causality is
less simple. Causality can not be seen as a classical logic relation. In this paper,
it is described and use a very simple form of causality necessary and probably
sufficient for the application to the cell.

To provide the causal links between our relations cause and blocks in a clas-
sical language (propositional calculus or first order logic) it is necessary to do
two things :

1. Describe the internal characteristics of relations and causes

2. Describe the links between these relations and classical logic
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Taking into account the aspect of discovery (abduction, field production) the
hypothesis theory is applied. The default logic raises a number of theoretical and
practical problems. To solve these problems we will use the Hypotheses Theory,
wich is a nonmonotonic logic. A fragment of this logic is close to stable model.
One advantage of hypotheses theory is that the information is described in a
classic bimodal logic. It will then be possible to use this formalism to describe
the set of all information, uncertain or not. This logic will also allow the use a
consequence finding algorithms to treat abduction.

2 Integrating induction and abduction in CF-induction

Both induction and abduction are ampliative reasoning, and agree with the logic
to seek hypotheses which account for given observations or examples. That is,
given a background theory B and observations (or positive examples) E, the
task of induction and abduction is common in finding a hypothesis H such that

B ∧H |= E, (1)

where B∧H is consistent. There are several discussions on the difference between
abduction and induction in the philosophical and pragmatic levels. On the com-
putational side, induction usually involves generalization, while abduction gives
minimal explanations for individual observation.

Inverse entailment (IE) is a logically principled way to compute abductive
and inductive hypotheses H in (1) based on the logically equivalent transforma-
tion of the equation (1) to

B ∧ ¬E |= ¬H. (2)

The equation (2) says that, given B and E, any hypothesis H deductively
follows from B ∧ ¬E in its negated form. The equation (2) is seen in literature,
e.g., [12] for abduction and [15] for induction. The equation (2) is useful for
computing abductive explanations of observations in abduction. This is because,
without loss of generality, in abduction E is written as a ground atom, and each
H is usually assumed to be a conjunction of literals. These conditions make
abductive computation relatively easy, and consequence-finding algorithms [12]
can be directly applied.

In induction, however, E can be clauses and H is usually a general rule.
Universally quantified rules for H cannot be easily obtained from the negation
of consequences of B ∧ ¬E. Then, Muggleton [15] introduced a bridge formula
U between B ∧ ¬E and ¬H:

B ∧ ¬E |= U, U |= ¬H.

As such a bridge formula U , Muggleton considers the conjunction of all unit
clauses that are entailed by B ∧ ¬E. In this case, ¬U is a clause called the
bottom clause ⊥(B,E). A hypothesis H is then constructed by generalizing a
sub-clause of ⊥(B,E), i.e., H |= ⊥(B,E). This method with ⊥(B,E) is adopted
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in Progol, but it has turned out that it is incomplete for finding hypotheses
satisfying (1).

In [13], Inoue proposed a simple, yet powerful method to handle inverse
entailment (2) for computing inductive hypotheses. The resulting method called
CF-induction does not restrict the bridge formula U as the set of literals entailed
by B∧¬E, but consider the characteristic clauses [12] of B∧¬E, which obviously
generalizes the method of the bottom clause. CF-induction then realizes sound
and complete hypothesis finding from full clausal theories, and not only definite
clauses but also non-Horn clauses and integrity constraints can be constructed
as H.

In most previous inductive methods including Progol [15], there are syntacti-
cal restrictions such that: (i) each constructed hypothesis in H is usually assumed
to be a single Horn clause, (ii) an example E is given as a single Horn clause,
and (iii) a background theory B is a set of Horn or definite clauses. From the
viewpoint of applications, these restrictions are due to the easiness for handling
such formulas. An extension to multiple non-Horn clauses in B, E, and H is,
however, useful in many applications.

First, an extension allowing multiple clauses in either a hypothesis H or an
observation E is essential in applications of abduction. In fact, recent work on
abductive inference in metabolic pathways [16] uses an independent abductive
procedure to obtain a set of literals that explain an observation. In general, there
are multiple missing data to account for an observation. This abductive inference
is independently computed in [16] not by Progol, and the inductive process for
generalization takes place by Progol only after abductive hypotheses have been
obtained. On the other hand, CF-induction can be used to compute abductive
explanations simply by taking the bridge formula U as a deduced clause. CF-
induction thus integrates induction and abduction from the viewpoint of inverse
entailment through consequence-finding [13].

Second, an extension to non-Horn clauses in representation of B,E,H is
also useful in many applications. For example, indefinite statements can be rep-
resented by disjunctions with more than one positive literals, and integrity con-
straints are usually represented as negative clauses. The clausal form is also
useful to represent causality. For example, when we want to represent inhibition
of reaction in a causal pathway network, positive and negative literals with the
predicate like inhibited can be used in the premise of each causal rule, which
results in a non-Horn clause (we will see an example afterwards). Again, the
inductive machinery of CF-induction can handle all such extended classes.

Third, introducing multiple, non-Horn clauses in a hypothesis H is an uni-
fying extension that combines the first and second extensions. In this case, a
hypothesis H forms a theory, which can also account for multiple observed data
at once.

In our application to cancer analysis, given the background theory of network
structures of a pathway and observations, we need a hypothesis H that explains
the behavior of the metabolic system. In principle, such a hypothesis consists
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of multiple non-Horn clauses each of which represents a causal relation. CF-
induction is thus particularly useful for this type of applications.

Here the structure of representation is based on the specification of CF-
induction program, which is compatible with the consequence-finding program
SOLAR [19] and the TPTP format for theorem proving. SOLAR is a Java im-
plementation of the tableaux variant of SOL resolution [12].

For example, the input clauses can be described as

input_clause(axiom1, bg, [-p(X), -q(X), r(X)]).

input_clause(example1, obs, [r(a)]).

production_field([predicates(pos_all), length < 3]).

Here, axiom1 and example1 are ID names of clauses, and bg and obs repre-
sent background knowledge and observation, respectively. The axiom1 means
ep(x)∨eq(x)∨ r(x). Each clause is represented as a list of literals. The predicate
production field indicates the production field of SOLAR, and this example
allows it to generate consequences consisting of less than 2 positive literals. In
this way, a production field can be used to specify an inductive bias in CF-
induction. There is other meta information to control deduction in SOLAR such
as the search strategy and the depth limit.In this case, CF-induction produces
the abductive hypothesis:

Hypotheses: [ [p(a)], [q(a)] ]

The current CF-induction program has several generalizers, which, given a set T
of clauses, produce a set S of clauses such that S |= T . These basic generalizers
include anti-instantiation, reverse Skolemization, Plotkin’s least generalization,
and dropping literals (see [13]).

Therefore, CF-induction is related to top-down decision tree learning algo-
rithm generating a set of rules in the form of predicate logic clauses which can
be used to separate the classes.

2.1 Signaling Pathway Representation

In this paper, it is used only a propositional representation. In practice the
detailed study of interactions will be asked to represent increases or decrease
some biological quantities which could be protein concentration. It therefore
falls outside the scope of propositional but the basic problems are the same. To
represent a change in concentration is for example possible by using predicates
such as ”increased” or ”decrease” [3].

To describe interactions between genes/proteins we use a language L of clas-
sical logic (propositional). The proposition A (resp. ¬A) says that A is true
(false). We are in a logical framework, so it is possible to represent almost ev-
erything in a natural way. Interactions between genes/proteins is a very simple
form of causality.
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3 MicroRNAs

MicroRNAs are small RNA molecules that were discovered in the 1990s in ani-
mals and plants, and which play an essential role in controlling gene expression.
In human being, more than 500 microRNAs have been identified, and we now
know that their dysfunction is associated with several diseases, including can-
cer. The microRNAS play an important role of not specific inhibition in many
circumstances of the cell life, like chromatin clock control and have a big influ-
ence on many metabolic controls of functions like energy systems, cell cycle and
defense systems against pathogens.

MicroRNAs are present in almost all genetic regulatory networks acting as
inhibitors targeting mRNAs, by hybridizing at most one of their triplets, hence
acting as translation factors by preventing the protein elongation in the ribo-
some. MicroRNAs act as source nodes in the interaction graph of genetic regu-
latory networks, which are made of elements, the genes, in interaction through
the protein they express and control important cell or tissue functions like prolif-
eration, differentiation, energy systems maintenance, and more generally home-
ostasis [3,4].

3.1 MicroRNAs Identification in Melanoma

The microRNAs appear increasingly as crucial actors in oncogenesis (miR-21 in
breast cancer ) or as a tumor suppressor. Furthermore, the expression profiles of
microRNAs in solid tumors of different origins have been made using prognostic
values.

In 2008 the circulating microRNA were revealed for the first time in serum
and plasma, with very different profiles between healthy donors (which have a
similar expression profile) and patients with breast cancer, lung , prostate with
specific expression patterns. In addition, these microRNAs have a high stability
since they form complexes with lipids or lipoproteins, allowing the resistance to
the activity of RNase and DNase. They can also withstand harsh experimental
conditions such as high temperature or high pH variation. These data therefore
show the circulating microRNAs (noninvasive) could be novel plasma biomarkers
in oncology.

Melanoma is a cancer of the skin or mucous membranes, developed at the
expense of melanocytes. In most cases, it develops first on the skin but it is
common to find melanoma of the eye (choroidal melanoma), mucous membranes
(mouth, anal canal, vagina), or even more rarely internal organs. The incidence
of this disease is increasing worldwide. In France, it was evaluated in 2010 at
approximately 7-9 new cases per year per 100 000 individuals with a mortality
rate ranging from 1.2 to 1.5 individuals.

For this study, we collected 29 subjects having metastatic melanomas and
5 healthy volunteers. The micro-arrays are spotted with microRNA of human,
murine, and viral control. In all, there were 4608 different microRNA spots and
2000 different microRNA.
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In order to highlight the existence of circulating microRNA biomarkers in
melanoma, a technique was developed for extracting microRNAs from the plasma
of healthy donors. This lets us collect a larger amount purified RNA from the
serum). The expression profile of microRNA was obtained using by a technique
of monochrome chip. These chips were spotted (labeled with fluorescent HY3
) with probes modified with bases LNA (Locked Nucleic Acid home Exiqon).
The goal was to optimize the specificity and sensitivity of probes (annealing
temperature adapted to detect microRNA with a low percentage of GC). Each
microRNA was represented by two different spots. These chips were analyzed
using image analysis software GenePix Pro 6.1.0.4 (Axon Instruments).

3.2 MicroRNAs expressed between 2 populations : healthy subjects
and patients with melanoma

Using Bayesian approach (Limma) [17] , the original human microRNA differ-
entially expressed between the two groups of subjects were identified (Fig.1 ).

Fig. 1. The different microRNAs expressed between the 2 populations (healthy subjects
and patients with melanoma).

4 Discretization of Continous Values

Discretizing time series is a research domain on its own and many works [6, 23]
have been conducted recently. Our practical problem is that we want to have a
statistically relevant (unsuppervised) discretization for N chemical compounds
concentrations over time. For that purpose, we compute an appropriate number
of levels (5) in regard to a Bayesian score such as Bayesian Information Criterion
[24].
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We use continuous (Gaussian) hidden Markov models with parameter tying,
which means that each chemical compound has a corresponding HMM but all
the N Gaussian HMM share the same parameters (means and covariances),
to share the same discrete outputed levels between the different compounds of
one experiment. This relevant discretized levels of concentration are computed
through expectation maximisation with maximum a posteriori [3, 7] . The level
of microRNA expression are represented as : very low, low, medium, high, very
high

4.1 Analysis of microRNAs expressed in melanoma

The highly aggressive character of melanoma makes it an excellent model to
probe the mechanisms underlying metastasis, the process by which cancer cells
travel from the primary tumor to distant sites in the body. Therefore, the goal
of this analysis is to find out a microRNA signature in the case of aggressive
melanoma. This signature is represented by a logical clause including the rele-
vant microRNA, age and Breslow index. One hundred thirsty microRNAs have
been identified and have been selected for modelling but only 51 has at least five
valid replicas. After identifying 23 microRNAs, which already have extensively
been studied a file containing the among of these microRNA compared with
the healthy persons was created. The 23 microRNA candidates to melonama
signature are : hsa-let-7b, hsa-miR-17, hsa-miR-18a, hsa-miR-20a, hsa-miR-
21, hsa-miR-34a, hsa-miR-130a, hsa-miR-141, hsa-miR-143, hsa-miR-145, hsa-
miR-146a, hsa-miR-152, hsa-miR-155, hsa-miR-185, hsa-miR-191, hsa-miR-200c,
hsa-miR-221, hsa-miR-222, hsa-miR-338-3p, hsa-miR-1246, hsa-miR-1290, hsa-
miR-2110, miR-27b.

The representation contains information about microRNAs (23), Breslow in-
dex, age, relapse and metastasis or die.

A logical predicate expressed for each patient has been defined. Each patient
is characterized by 23 microRNAs. An important aspect of the representation is
to consider the clause as background in CF-induction (bg).

Example1: [input_clause(patient11,bg,[hsamiR20a(patient1,medium),

hsamiR21(patient1,medium),

...

hsamiR34a(patient1,low),hsamiR222(patient1,medium),hsamiR3383p(patient1,low)]). ]

Concerning the representation of Breslow Index we decided to introduce a
predicate breslow

input_clause(patient17, obs, [breslow(patient1,medium)]).

The age of patients has been discretized according with the next empirical
information provided by doctors (low: 1-30, medium: 31-60 and high: 61 and
more) and the clause is similar to Breslow index. Relapse is an important clinical
parameter related to the number of days that the patient kept his ”health”. It is
given as low (1-500 days), medium (501-1000 days) and high (more of 1001 days).
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The predicate relapsed(X,Y) contains 2 atoms : the first one is the patient and
the second parameter gives information about the number of days considered
”healthy”.

The expert knowledge is represented by the microRNA well known in melanoma
development or invasive cancer.

input_clause(bg1, bg, [-hsamiR20a(X,high),

-hsamiR21(X,high), ...

-hsmaiR34a(X,low),

relapsed(X,high)]).

Basically, melanomas, expressions of miRNA-20a, miRNA-106a, miRNA-17,
miRNA-21, and miRNA-34a are significantly up-regulated, while miRNA-145
and miRNA-204 expression are significantly down-regulated. In our case we have
considered the microRNA-34a down-regulated. microRNA-34a maps to a chro-
mosome 1p36 region that is commonly deleted and it has been found to act as
a tumor suppressor through targeting of numerous genes associated with cell
proliferation and apoptosis. The patients analyzed have advanced ages and our
statistical analysis showed a low expression in this case.

4.2 Results in microRNA signature

The goal of our logical model is to identify the patients who have a fast evolution
of cancer. We have used CF-Induction to obtain diagnosis rules based on these
predicates. CF-Induction searches for a set of st-order predicate logic clauses
that distinguish between two classes, one which is presented to the learner as
positive and negative examples. CF-Induction is independent of the ordering
of the positive examples. Another important aspect is the possibility to check
whether B and H are consistent or not.

The most noteworthy result is the discover of a signature in the case of
aggressive melanoma represented by 5 microRNAs : 20a,21,34a, 222 and 333-3p.
This results has been obtained from the analysis of the number of examples
explained by these microRNA and compared with the the results published by
PubMed. The last two microRNAs are not well-known having a strong oncogene
or anti-oncogene regulation.

The idea was to produce all predicates : beginquote

production_field(

[

predicates(all)

]

).

[relapsed(patient25, low), -hsamiR20a(patient25, medium)]
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[relapsed(patient25, low), -hsamiR21(patient25, medium)]

[relapsed(patient25, low), -hsamiR34a(patient25, low)]

[relapsed(patient25, low), -hsamiR222(patient25, medium)]

[relapsed(patient25, low), -hsamiR3383p(patient25, low)]

Patient 25 was born in 1947 and died in 2011. The screening was done during
stage iV of his cancer.

Using CF-induction with the production field :

production_field(

[

length <= 8,

term_depth < 3,

predicates([hsamiR222(_,_),hsmaiR3383p(_,_),age(_,_),relapsed(_,_)])

]

).

we have obtained the next result.

B & H is consistent

Hypotheses:

[hsamiR21(patient25, low), hsamiR3383p(patient25, low),

hsamiR222(patient25, verylow), hsamiR20a(patient25, low),

-age(patient25, high)]

This means the patient’s age explains the observation of 4 microRNA: mi-
croRNA 21,20a, 222 and 338-3p. Therefore if we corroborate the 2 results, the
microRNA 34a is a potential marker of melanoma in the case of older people.
Basically microRNA 34a, maps to a chromosome 1p36 region that is commonly
deleted and it has been found to act as a tumor suppressor through targeting
of numerous genes associated with cell proliferation and apoptosis. A similar
result has been obtained for the patient 24, who is born in 1932 and he is still
living. Her screening was done during stage III of her cancer. It seems a strong
correlation may exist between age and the microRNA 34a.

Another interesting result concerns patient 17, who has a very low concen-
tration of microRNA 338-3p. At first glance, this could be considered a cancer
marker, but the next results :

[relapsed(patient17, high), -age(patient17, medium)]

[hsamiR3383p(patient17, veryverylow), -age(patient17, medium)]

show that in this case age is the most important parameter of melanoma evo-
lution. This person was born in 1962; the melanoma was identified for the first
time in 2006. 6 years later she remains in phase IV.
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5 Conclusion

Understanding genetic and metabolic networks is of the utmost importance.
With the development of DNA microarrays, it is possible to simultaneously an-
alyze the expression of up to thousands of genes and to construct gene networks
based on inferences over gene expression data. We have found in this study that 5
microRNAs : 20a,21,34a, 222 and 333-3p are an important indicator of melanoma
evolution. The microRNA 333-3p is not known as significantly down-regulated
in the case of aggressive melanoma. Another surprising result is the correlation
between age and microRNA 34a. Therefore, we are confident that future work
will let us appreciate the complexity of micro-RNAs in the case of the invasive
melanoma and going further to find out a signature of homeostasis. Homeosta-
sis, the subtle balance between proliferation, differentiation and cell death of
an organism is a complex phenomenon still little understood. Researchers are
pointing more and more the important role of micro-RNA in this phenomenon.
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Abstract. Transcriptional regulation play an important role in every
cellular decision. Gaining an understanding of the dynamics that govern
how a cell will respond to diverse environmental cues is difficult using
intuition alone. We introduce logic-based regulation models based on
state-of-the-art work on statistical relational learning, to show that net-
work hypotheses can be generated from existing gene expression data for
use by experimental biologists.

1 Introduction

Transcriptional regulation refers to how proteins control gene expression in the
cell. Many major cellular decisions involve changes in transcriptional regula-
tion. Thus, gaining insight into transcriptional regulation is important not just
for understanding the fundamental biological processes, but also will have deep
practical consequences in fields such as the medical sciences. With the advent of
high-throughput technologies and advanced measurement techniques molecular
biologists and biochemists are rapidly identifying components of transcriptional
networks and determining their biochemical activities. Unfortunately, under-
standing these complex multicomponent networks that govern how a cell will
respond to diverse environmental cues is difficult using intuition alone.

In this work, we aim at building probabilistic logical models thatwould un-
cover the structure and dynamics of such networks and how they regulate their
targets.

Despite the challenge of inferring genetic regulatory networks from gene ex-
pression data, various computational models have been developed for regulatory
network analysis. Examples include approaches based on logical gates [1, 2], and
probabilistic approaches, often based on Bayesian networks [3]. On one hand,
logic gates provide a natural, intuitive way to describe interactions between
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proteins and genes. On the other hand, probabilistic approaches can handle in-
complete and imprecise data in a very robust way.

Our main contribution is in introducing a model that combines the two ap-
proaches. Our approach is based on the probabilistic logic programming lan-
guage ProbLog [4, 5]. In this language, we can express true logical statements
(expressed as true rules) about a world where there is uncertainty over data, ex-
pressed as probabilistic facts. In the setting of gene expression, this corresponds
to establishing:

(1) a set of true rules describing the possible interactions existing in a cell;
(2) a set of uncertain facts describing which possible rules are applicable to a

certain gene or set of genes.

Given time-series gene expression data, we want to choose the probability
parameters that best describe the data. Our approach is to reduce this problem
to an optimization problem, and use a gradient ascent algorithm to estimate
a local solution [6] in the style of logistic regression. We further contribute an
efficient implementation to this algorithm that computes both probabilities and
gradients through binary decision diagrams (BDD). We validate our approach
by using it to study expression data on an important gene-expression pathway,
the Hog1 pathway [7].

Related Work Logic-based modeling is seen as an approach lying midway be-
tween the complexity and precision of differential equations on one hand and
data-driven regression approaches on the other[8].

Despite the difficulty of deciphering genetic regulatory networks from mi-
croarray data, numerous approaches to the task have been quite successful.
Friedman et al. [3] were the first to address the task of determining properties of
the transcriptional program of S. cerevisiae (yeast) by using Bayesian networks
(BNs) to analyze gene expression data. Pe’er et al. [9] followed up that work
by using BNs to learn master regulator sets. Other approaches include Boolean
networks (Akutsu et al. [10], Ideker et al. [11]) and other graphical approaches
(Tanay and Shamir [12], Chrisman et al. [13]).

The methods above can represent the dependence between interacting genes,
but they cannot capture causal relationships. In our previous work [14], we pro-
posed that the analysis of time series gene expression microarray data using
Dynamic Bayesian networks (DBNs) could allow us to learn potential causal
relationships.

2 Methods

Recently, there has been interest in combining logical and probabilistic rep-
resentations within the framework of Statistical Relational Learning [15]. This
framework allows the compact representation of complex networks, and has been
implemented over a large variety of languages and systems. Arguably, one of the
most popular SRL languages is the programming language ProbLog [4, 5]. This
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language was initially motivated by the problem of representing a graph where
there is uncertainty over whether edges exist or not. As a straightforward exam-
ple consider the directed graph in Figure 1.

Fig. 1. A simple directed graph, where each edge has a probability of being true.

Notice that each edge has a probability of being true. As an example, starting
from a we can reach b with probability 0.2 and c with probability 0.5. We assume
that all the different probabilities are independent.

Given the example in Fig 1, ProbLog allows one to answer several queries,
such as what is the most likely path between two nodes, and what is the total
probability that there is a path between two nodes. The algorithm takes advantage
of independence between probabilistic facts.

Note that computing the probability is not simply the sum if different paths
have a common edge. As an example, consider Pr(ae). The path abde shares
the edge de with acde, and the edge ab with abe. Summing these three paths
would count two edges twice.

Kimmig and de Raedt proposed an effective solution to this problem. The
idea is that probability can be computed as a sum if the paths do not share edges.
This can be obtained by selecting an edge (or fact), and splitting into the case
where the edge is true and the case where the edge is false. The process can be
repeated recursively until we run out of facts to split. Kimmig and de Raedt’s
key observation is that this idea is indeed the same one that is used to con-
struct binary decision diagrams (BDDs): the total probability can be obtained
by generating a BDD from the proofs.

Binary decision diagrams provide a very efficient implementation for proba-
bility computation over small and medium graphs. Unfortunately, they do not
scale to larger graphs with thousands of nodes. In this case, ProbLog implemen-
tations rely on approximated solutions, either Monte Carlo methods or often by
approximating the total probability by the probability of the best k queries [5].

3 Experimental Methodology

We obtained time-series gene expression data from Lee et al. [16] for our experi-
ments. The experiments followed the response of actively growing Saccharomyces
cerevisiae to an osmotic shock of 0.7 M NaCl. The dose of salt was selected by
the experimentalists to provide a robust physiological response but allow high
viability and eventual resumption of cell growth. The samples were collected
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before and after NaCl treatment at 30, 60, 90, 120, and 240 min (measuring the
peak transcript changes that occurs at or after 30 min) [17]. We focused our
attention on the 270 genes of the Hog1 Msn2/4 pathway from Capaldi [7] for
which we have expression data and utilized the temporal data to better estimate
the relationships from the data.

Our experiments aim for a more detailed picture of the learned network by
using the temporal nature of the data. The output generated is a weighted,
directed gene network, but nodes are connected as a gated network:

– AND: two promoter genes need to be active in order to activate a gene, as
shown in the graph. We also show the ProbLog code for the temporal model:

active(G3,T1,Z) :-

next_step(T0,T1),

and(G1,G2,G3),

active(E,T0,G1),

active(E,T0,G2).

– OR: either promoter gene needs to be active in order to activate a gene, as
shown in the graph. We also show the corresponding ProbLog code for the
temporal model.

active(G3,T1,Z) :-

next_step(T0,T1),

or(G1,G2,G3),

active(E,T0,G1).

active(G3,T1,Z) :-

next_step(T0,T1),

or(G1,G2,G3),

active(E,T0,G2).

– XOR: one promoter gene needs to be active and one repressor gene needs
to be inactive in order to activate a gene, as shown in the graph.

active(G3,T1,Z) :-

next_step(T0,T1),

xor(G1,G2,G3),

active(E,T0,G1),

not_active(E,T0,G2).

This is the only case where we allow the possibility of negative regulation.
– SINGLE: a unique promoter gene regulates the target gene.

active(G2,T1,Z) :-

next_step(T0,T1),

single(G1,G2),

active(E,T0,G1).

We use two different forms of temporal data: expression level (E), and vari-
ation (∆). We experimented with three different approaches:

(1) Level influences variation (LV).
(2) Variation influences variation (VV).
(3) Level influences level (LL).
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One important advantage of the approach is that it allows us to implement
soft constraints on the probability distribution. These constraints are imple-
mented by saying that satisfying some rule must have probability 1 or 0. In our
experiments, we implement constraints saying that a gene must be explained by
a single rule. Two example constraints for OR are of the form: The next con-
straint says that there must be a single set of parents for a gene defined with
the LV ∨ rule:

Et(G1) ∨ Et(G2)⇒ ∆t+1(G)

∧
Et(G3) ∨ Et(G4)⇒ ∆t+1(G)

→
G1 = G3 ∧G2 = G4

The second constraint ensures that we cannot use two rules of different types
at the same time:

¬( Et(G1) ∨ Et(G2)⇒ ∆t+1(G)

∧
Et(G3)⊕ Et(G4)⇒ ∆t+1(G)

)

In practice, we must be careful not to flood the system with soft constraints. In
our experiment we implemented one joint soft constraint per gene.

4 Conclusion

Learning regulatory networks from gene expression is a hard problem. Data is
noisy and relationships between genes highly complex. We present a statistical
relational approach to modeling pathways. Our approach allows us to design a
coarser and a more fine grained model, based on probabilistic gates.

We plan to continue improving the model quality and experiment with new
data. Specifically, we would like to experiment with implementing a regression
based approach, as it fits our framework naturally. Last, but not least, we would
like to investigate how to reduce the number of parameters in the model by
exploiting strong correlations between gene expression.
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Abstract. The purpose of our work is to achieve creative knowledge
processing. In this paper, we focus on the formulation of concept gener-
ation and its use in problem solving. We propose a method for solving a
problem by generating new concepts that have never appeared in exist-
ing knowledge. We propose Creative Problem Solving, which can derive
a goal state by using a creative leap invoked by concept generation.

1 Introduction

Our work seeks to achieve creative knowledge processing. Some studies have been
conducted on computational creativity and theory invention in the AI commu-
nity[1]. The intention of this paper is to formulate concept generation based on
logic, and to investigate problem solving with concept generation. Only a few
attempts have been made at such a study. There are studies Predicate Invention
in ILP,[2, 3] but our focus was not only on induction, but rather on developing
a general method of concept generation. This concept generation constitutes a
new approach to problem solving, addressing problems that induction cannot
solve. An early study described an AM[4] concept generation system cannot be
considered a general concept generation.

This paper proposes a formulation of problem solving by generating new con-
cepts that have never appeared in existing knowledge, and we confirm that such
knowledge processing is implementable. We call this kind of processing Creative
Problem Solving, and consider it is a part of creative knowledge processing.

2 Preliminaries

2.1 Knowledge and Relation Structures

We are concerned with first-order logic as representing Knowledge. Any logical
formulae can be transformed to the formulae include no functions and no indi-
vidual constants. We may regard concept generation as predicate generation.

In this paper, knowledge is defined as a set of logical formulae with no func-
tions and no individual constants. A relation structure is defined as a logical
formula that has at least one predicate variable. A relation structure also has no
functions and no individual constants.
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For example, Let S1 = {∀x, y : ¬P1(x) ∨ P2(x, y)} , S2 = {∀x, y : ¬X1(x) ∨
P2(x, y)}. When P1, P2 are predicate constants and X1 is a predicate variable,
S1 is knowledge, and S2 is a relation structure.

2.2 Simple Substitution

We define the substitution replace predicate variables with predicate constants.
Let Pvn be a universal set of free predicate variables of arity n, and let

Pcn be a universal set of invariable predicate of arity n. If Θ satisfies Θ ⊂
Pv1 × Pc1 ∪ · · · ∪ Pvi × Pci , and each variable and constant that occurs in Θ is
distinct, then we say Θ is a simple substitutionD The element of Θ is written
in a manner similar to the style of the general substitution, v/c. Here, v is the
variable and c is the constant.

For example, relation structure S1 = {∀x : X1(x, y) ∧ X2(x)} and simple
substitution Θ1 = {X1/A,X2/B} are given, then S1Θ1 = {∀x : A(x, y)∧B(x)}.

3 Concept Generation

3.1 Predicate Generation

When knowledge Σ, relation structure RS, and a predicate variable X (which
occurs in RS) are given, we define new knowledge SNEW that holds a new
predicate. If a simple substitution Θ has all predicate variables that occur in RS
except X, then SNEW is defined as follows : SNEW = RS(Θ ∪ {X/NEW}).

The new predicate NEW is obtained by generating new knowledge SNEW .
Here, the generated SNEW is determined uniquely by Σ, RS, X, Θ, and new
symbol NEW . Therefore we can regard predicate generation in terms of sets of
these five tuple (Σ,RS,X,Θ,NEW ).

3.2 Characteristics of New Knowledge

Novelty Novelty is a property representing whether new knowledge is obtained
as a logical conclusion based on existing knowledge or not. If SNEW satisfies the
condition that : for all s such that SNEW |= s and s includes NEW and Σ 6|= s,
then the predicate generation is said to possess novelty.

Consistency Consistency is the property by which new knowledge and existing
knowledge are not in contradiction. With consistent predicate generation, we can
take on Σ ∪ SNEW as new knowledge instead of SNEW .

Soundness To be sound means that Σ ∪ SNEW is consistent with all logical
formulae which are consistent with Σ and has no new predicates. If this condition
is true, then we say that the predicate generation is sound or SNEW is sound.

Creative Problem Solving by Concept Generation Using Relation Structure
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3.3 Example of Predicate Generation

Let Σ be knowledge and RS be a relation structure as follows:

Σ = {∀x : ¬bird(x) ∨ ab(x) ∨ fly(x)} ,

RS =




∀x : ¬X0(x) ∨X1(x) ∨X2(x)
∀x : ¬X3(x) ∨X0(x)
∀x : ¬X3(x) ∨ ¬X2(x)





knowledge Σ describes that birds fly if not ab. See predicate variable X3, and
consider two simple substitutions for predicate generation.

Θ1 = {X0/bird,X1/ab,X2/fly}

Θ2 = {X0/fly,X1/bird,X2/ab}

Then, predicate generations (Σ,RS,X3, Θ1, NEW1), (Σ,RS,X3, Θ2, NEW2)
generate new knowledge SN1

, SN2
as follows:

SN1
=




∀x : ¬bird(x) ∨ ab(x) ∨ fly(x)
∀x : ¬NEW1(x) ∨ bird(x)
∀x : ¬NeW1(x) ∨ ¬fly(x)





SN2
=




∀x : ¬fly(x) ∨ bird(x) ∨ ab(x)
∀x : ¬NEW2(x) ∨ fly(x)
∀x : ¬NEW2(x) ∨ ¬ab(x)





NEW1 is a new concept means such as ”flightless bird”, NEW2 means ”not
ab and fly”. SN1

has novelty and are consistent and sound. SN2
has novelty and

is consistent but not sound. In fact, if l = ¬(∀x : ¬fly(x)∨bird(x)∨ab(x)), then
Σ ∧ l is consistent, but (Σ ∪ SN2

) ∧ l is not.

4 Expand Dimension

Even if the predicate generation is inconsistent, it can be useful in expanding the
knowledge dimension. For example, consider adding a concept describing imag-
inary numbers to real-number knowledge. The rule ”the square of any number
greater than or equal to 0” is inconsistent with the new knowledge, but serves to
expand the dimension of real numbers to complex numbers, making it possible to
regard new knowledge as consistent knowledge. This is a method for expanding
the knowledge dimension naturally by predicate generation

Now, if CΣ ⊆ Σ and (Σ − CΣ) ∪ SNEW is consistent and CΣ ∪ SNEW is
inconsistent, consider C ′Σ as follows.

C ′Σ =





¬inD(x11) ∨ · · · ∨ ¬inD(x1l1) ∨ s′1
...
¬inD(xn1) ∨ · · · ∨ ¬inD(xnln) ∨ s′n





Creative Problem Solving by Concept Generation Using Relation Structure
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inD is a new predicate prepared here. s1, · · · , sn are elements of CΣ , and xj1, · · · , xjlj
are all bind variables occuring in sj . s

′
1, · · · , s′n are formulae obtained by trans-

forming s1, · · · , sn to prenex normal form and cutting out the head part. Each
formula for C ′Σ has a head part qj1xj1 · · · qjl1xjl1 that is the head part of the
corresponding sj , although these are omitted here. qjk is ∃ or ∀, equal to a qual-
ifier of sj . We can imagine that inD(x) means x is in a dimension of former
knowledge. (Σ − CΣ) ∪ C ′Σ ∪ SNEW is then consistent.

Theorem 1. For predicate generation (Σ,RS,X,Θ,NEW ), if Σ and RS are
consistent then Σ′ = (Σ − CΣ) ∪ C ′Σ ∪ SNEW is consistent.

5 Creative Leap

For predicate generation, it is important to consider whether the new knowledge
represents a leap or not. The leap enable us to achieve our creative goal.

In defining a creative leap, it is important to consider whether new predi-
cates occur in generated consequence from the conjunction of new knowledge
and existing knowledge. Formulae that have new predicates, cannot belong to
unknown facts, so they are not appropriate as leap conclusions, because a new
predicate is made by the system on its own.

Therefore, we define a Creative Leap as the case where there exist logical
formulae not having NEW , such that Σ ∪SNEW |= s and Σ 6|= s. Then, we say
the predicate generation leaps.

Theorem 2. If predicate generation is not sound, then it leaps.

6 Creative Problem Solving

When a goal state, which is not derived from existing knowledge and it’s negation
is not derived either, is given, predicate generation with a creative leap can
lead to the goal state as a consequence. Even if existing knowledge derives the
negation of the goal state, expanding of dimensions enable to lead to the goal
state. We call such problem solving Creative Problem Solving.

For example, human kind had wanted to fly like a bird. And known that
birds can fly and the wing enables them, so create new concept like a wing.

Example 1.

Σf =





∀x∃y : Bird(x)→ Has(x, y) ∧Wing(y)
∀x : Human(x)→ ¬(∃y : Has(x, y) ∧Wing(y))
∀x, y : Has(x, y) ∧WingBehavior(y)→ Fly(x)
∀x : Wing(x)→WingBehavior(x)





is given, and goal Gf = ∀x : Human(x)→ Fly(x). Then Σf cannot lead to Gf
as a consequence. Then we consider RS as follows:

Creative Problem Solving by Concept Generation Using Relation Structure
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RSf =




∀x∃y : X1(x)→ X2(x, y) ∧X3(y)
∀x, y : X2(x, y) ∧X4(y)→ X5(x)
∀x : X3(x)→ X4(x)





The simple substitution Θf as follows:

Θf = {X1/Human,X2/Has,X4/WingBehavior,X5/F ly}

Predicate generation (Σf , RSf , X3, Θf , NEWf ) then generates SNEWf
as fol-

lows :

SNEWf
=




∀x∃y : Human(x)→ Has(x, y) ∧NEWf (y)
∀x, y : Has(x, y) ∧WingBehavior(y)→ Fly(x)
∀x : NEWf (x)→WingBehavior(x)





SNEWf
possesses novelty and is consistent but not sound. SNEWf

derives Gf .
Gf was not obtained by Σf , therefore, a new predicate is generated to derive
the goal state by using a creative leap. NEWf was not generated randomly, and
may fulfill WingBehavior like a bird’s wing.

6.1 Practical Method of Predicate Generation

When a goal state is given, what prepared for generation is Σf only. The impor-
tant topic is how to prepare a relation structure and which simple substitutions
and predicate variables to choose. The problem of what predicate should be gen-
erated and what relation structure should be prepared is differs for each purpose
and each case. We show a general method of extracting relation structures from
knowledge, and present one of the methods for preparing RS, Θ, and X.

The relation structure can be gained by generalizing knowledge. Concretely,
replacing all or some predicate constants occurring in knowledge (or a subset)
with free predicate variables.

Next, the point is which RS, Θ, and X are chosen. The destination is to
derive G from Σ ∪SNEW . We propose a method of extracting relation structure
from an explanation structure inherent in existing knowledge.

Now, for a knowledge σ, let RS(σ) be a relation structure obtained by replac-
ing all of the predicate constants in σ with each independent predicate variables.

If there exists Σ∗ such that Σ∗ ⊂ Σ : ∃Θ : RS(Σ∗)Θ |= RS(G)Θ, then
we can consider predicate generation using RS(Σ∗) as a relation structure. This
RS(Σ∗) is an explanation structure that derives a result with the same structure
as G. New knowledge possossing the same explanation structure may be obtained
by using another simple substitution to derive G. It can be thought this method
is based on analogy as common structure.

Example 2. Only knowledge Σf and goal state Gf are given. Here, RS(Gf ) =
{∀x : X1(x)→ X2(x)}, and Σ∗f including RS(Gf ), can be taken :

Creative Problem Solving by Concept Generation Using Relation Structure
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Σ∗f =




∀x∃y : Bird(x)→ Has(x, y) ∧Wing(y)
∀x, y : Has(x, y) ∧WingBehavior(y)→ Fly(x)
∀x : Wing(x)→WingBehavior(x)





so we can obtain RS(Σ∗f ) in concert with RS(Gf ) as : RS(Σ∗f ) = RSf .
Let Θ = {X1/Bird,X2/F ly,X3/Has,X4/Wing,X5/WingBehavior}, then

RS(Σ∗f )Θ |= RS(Gf )Θ. Define simple substitution Θ′ as follows : Θ′ = Θf .
Then, predicate generation (Σf , RS(Σ∗f ), Θ′, X4, NEWf ) produces S′NEW : S′NEW =
SNEWf

. Leap is realized and goal state Gf is derived from S′NEW .

7 Conclusion

This paper proposed a formulation of concept generation, and an approach to
creative problem solving. A creative leap shows the new predicate is not a mere
paraphrase but achieves a new result.

We may note here that creative problem solving is similar to abduction in the
sense that it is a method of deriving a goal by generating new knowledge. If the
goal state is observed facts, we can regard creative problem solving as abduction
accompanied by concept generation. However, creative problem solving is a more
general method.

Our example of creative problem solving was the simulation of the invention
of something like an airplane. Though not every invention can be described using
this frame, it is very interesting that creative problem solving can simulate a part
of human’s creative knowledge processing and invention.

However, many problems need to be solved to develop a practical system with
creative problem solving. The problem of calculating of new-knowledge consis-
tency, determining which structures and predicate variables are important, and
selecting simple substitutions, among other factors, are important for practical
systems. Some of these problems (perhaps most of them) are depend on specific
systems.

We showed logically that concept generation may achieve creative knowledge
processing. We expect to achieve a fully creative system in future work.
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Abstract. We study the minimal generators (mingens) in multi-relational
data mining. The mingens in formal concept analysis are the minimal
subsets of attributes that induce the formal concepts. An intent for a
formal concept is called a closed pattern. In contrast to the wide atten-
tion to closed patterns, the mingens have been paid little attention in
Multi-Relational Data Mining (MRDM) field. We introduce an idea of
non redundant mingens in MRDM. The notion of mingens in MRDM is
led by θ-subsumption relation among patterns, and is useful to grasp the
structure and information in the concepts.

1 Introduction

Formal Concept Analysis (FCA) [1] is an important tool for data analysis and
knowledge discovery [2]. A formal concept is determined by its extent and its
intent. The intent of a formal concept is the closure of the attributes, itemsets,
or patterns that form a maximum characterization of the formal concept. Mining
the closed patterns [3, 4] has attracted a lot of attentions because it reduces the
number of patterns by selecting only representative patterns of their equivalent
patterns in the sense that they produce the same extent.

While a closure is the maximal pattern presenting a concept, a minimal gen-
erator (mingen) [5] is a minimal pattern. The mingens play an important role
in many contexts, e.g., database design (as key sets), graph theory (as minimal
transversals), and data mining (as minimal premises of association rules). Dong
et al. study the mingens and define Succinct System of Mingens (SSMG) [6]
which removes redundant mingens. In this paper, we state that SSMGs of a for-
mal context for relational patterns have further redundancy and propose a novel
concept of non redundant mingens based on θ-subsumption of Multi-Relational
Data Mining (MRDM) [7].

Sections 2 and 3 introduce FCA and MRDM. Section 4 describes about min-
gens. Section 5 provides a definition of minimal generators consisted of relational
patterns. Then section 6 reports experimental results on compactness.
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a b c d e g h i

t1 × × × × × × × ×
t2 × × × ×
t3 × × × × × ×
t4 × × × × ×
t5 × × × × × ×

Fig. 1. A context that involves relations
between objects and attributes.

Fig. 2. A concept lattice for the context
of Fig. 1.

2 Formal Concept Analysis

We review the basis of Formal Concept Analysis. Start with an arbitrary relation,
I ⊆ G×M , between G, a set of objects, and M , a set of attributes, and define

A 7→ AI ={m ∈M | (g,m) ∈ I for all g ∈ A} for A ⊆ G,

B 7→ BI ={g ∈ G | (g, m) ∈ I for all m ∈ B} for B ⊆M.

A triple K = (G,M, I) is called a formal context.

Definition 1 (formal concept). A pair (X, Y ) is called a formal concept of
a formal context K = (G,M, I), if it satisfies

X ⊆ G,Y ⊆M, XI = Y,X = Y I . 2

When we define an order by (X1, Y1) ≤ (X2, Y2) ⇐⇒ X1 ⊆ X2 (⇔ Y2 ⊆ Y1),
among formal concepts of a formal context K, it forms a complete lattice. We
call it the concept lattice of K.

Example 1. A Fig. 1 shows a formal context where each object has a set of
attributes. A pair (t1t2t3, cdg) (set brackets are omitted) is a formal concept,
where t1t2t

I
3 = cdg and cdgI = t1t2t3. Fig. 2 shows the concept lattice. Each

concept is labeled by its intent. ut

3 Multi-Relational Data Mining

While propositional data mining algorithms look for patterns in a single data
table, MRDM algorithms look for relational patterns, represented by logical
formulae, that involve multiple tables (relations).

Example 2. A Database Rfam in Fig. 3 includes four relations on families, where
grandfather(x) meaning x is someone’s grandfather, parent(x, y) meaning x is a
parent of y, male(x) for male x, and female(x) for female x. Then a pattern, such
as grandfather(X)← parent(X,Y ), parent(Y, Z), female(Z), can be found. ut
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grandfather

person01

person07

person12

person19

person20

parent

person01 person02

person02 person03

person02 person04

person03 person05

... ...

male

person01

person05

person07

person10

...

female

person02

person03

person04

person06

...

Fig. 3. The family DB Rfam, including grandfather, parent, male and female.

4 Succinct System of Mingens

The mingens are defined bellow.

Definition 2 (mingens). A set P ⊆M is called a mingen for a formal concept
(X, Y ) of a formal context K = (G,M, I) if P I = X but for every proper subset
P ′ ⊂ P, P ′I 6= X. ut
Example 3. In Fig. 1, bc, bg, ch, ci, gh, and gi are mingens for a formal concept
(t1t3t5, bcghi). ut
In the above example, the closed itemset bcghi has six mingens, where b, h and
i always appear together in each object and thus can be exchanged each other,
and similarly for c and g. An SSMG is a representative of each equivalence class,
which is defined bellow. A criterion which selects a representative is left to users,
because dependence between items is not defined.

Definition 3 (C-equivalence). X, Y ⊆ M are C-equivalent for a formal
concept C of a formal context K = (G,M, I), denoted X≈CY , if they satisfy
either following condition.

1. There is a concept C ′ ≥ C such that both X and Y are mingens of C ′.
2. There are subsets Z, Z ′,M ⊆ M such that X = W ∪ Z, Y = W ∪ Z ′, and

Z≈CZ ′. ut
Definition 4 (SSMG). Given an order v on M , a succinct system of mingens
(SSMG) by the order v for a formal concept C of a formal context K consists
of elements satisfied either following condition.

1. If C is a maximal formal concept in the sense of the concept lattice except
(G, ∅), an SSMG for C holds the following conditions.
– It is a mingen for C.
– It is minimal in the sense of v among all mingens in a C-equivalence

class for C.
2. Otherwise, a mingen in a C-equivalence class is an SSMG for C if it does

not include any mingen which is not an SSMG for C ′ ≥ C. ut
The definition of SSMGs in [6] uses the alphabetic lexicographic order for v
above. Since the alphabetic order is linear, there is a unique SSMG for an equiv-
alence class. Our extended definition allows a partial order and then there are
more than one SSMGs.
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Table 1. Attributes by expressed formulae.

a = gf(A)← m(A).
b = gf(A)← p(A, B), f(B).
c = gf(A)← p(A, B), p(B, C), f(C).
d = gf(A)← p(A, B), p(B, C), p(C, D), f(D).
e = gf(A)← p(A, B), p(B, C), p(C, D), m(D).
f = gf(A)← p(A, B), f(B), p(B, C), f(C)
g = gf(A)← p(A, B), f(B), p(B, C), f(C), p(C, D), m(D).
h = gf(A)← p(A, B), p(B, C), f(C), p(C, D), p(D, E), m(E).
i = gf(A)← p(A, B), p(B, C), p(C, D), f(D), p(B, E), p(E, F ), m(F ).

a b c d e f g h i

gf(01) × × × × × × × × ×
gf(07) × × × × × × × × ×
gf(12) × × × × × × ×
gf(19) × × × × × ×
gf(20) × × × ×

Fig. 4. K′
fam = (G, M, I) w.r.t Rfam

Table 2. Formal concepts of K′
fam

(G, ac)
(gf(01)gf(07)gf(12)gf(19), aceh)
(gf(01)gf(07)gf(12)gf(20), abcf)
(gf(01)gf(07)gf(19), acdehi)
(gf(01)gf(07)gf(12), abcefgh)
(gf(01)gf(07), M)

5 Mingens of MRDM

Though SSMGs remove redundant patterns, a simple application of SSMGs to
relational patterns does not remove all of redundancy. Mapix [8, 9], a miner in
MRDM, enumerates patterns consisted of property items [8] which are restricted
sets of literals. Though a search space of MRDM has no limit as long as adding
literals, that of Mapix restricts into a meaningful form by modes of predicates.

We construct a formal context K′ = (G,M, I) of property items produced by
Mapix, which we call a formal relational context, where G is a set of instances
of a target (key) relation (e.g., grandfather relation in Fig. 3), M is a set of
property items (e.g., in Table 1), and I is relation among G and M , which
indicates whether an instance satisfies a property item (e.g., K′

fam in Fig. 4).
The notion of the formal relational context was discussed in [10]. Then we can
also compute formal concepts and SSMGs of the formal relational context K′.

Logical Mingens We reduce further redundancy of SSMGs in relational pat-
terns by θ-subsumption relation, i.e. C θ-subsumes D, denoted by C � D, if
Cθ ⊆ D, for a substitution θ, where C and D are clauses.

Definition 5 (LMG). A mingen for a formal concept C of a formal relational
context K′ is called a logical mingen (LMG) for C of K′, if it satisfies the fol-
lowing conditions.

– It is an SSMG by θ-subsumption order (�).
– It is a minimal in the sense of � in among all SSMG in C-equivalence class.

ut
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Table 3. LMG Miner : the algorithm for enumerating LMG

LMG Miner(K′, supmin):

input K′ : A formal relational context;
supmin : A support threshold;

output LMG : logical mingens;

1. let LMG := ∅;
2. let I := {all attributes associated with property items};
3. let LC := {items occurring in all transactions};
4. call DFS(H := ∅, T := I − LC, LC);
5. return LMG;

DFS(H, T, LC) :

1. if sup(H) < supmin return;
2. for each x ∈ T
3. if sup(H ∪ {x}) = sup(H) let T := T − {x}, LC := LC ∪ {x};
4. if (H : LC, sup(H)) construct a new concept with sup(H)
5. for each p ∈ LC do if p � H then p is removed from LC;
6. add (H : LC, sup(H)) to LMG;
7. else remove clutter; // see [6] for details
8. for each x ∈ T
9. let Hx := H ∪ {x} and Tx := {y ∈ T | y > x};
10. call DFS(Hx, Tx, LC);

Note that the definition above uses the θ-subsumption twice, for the selection of
mingens and for the selection of SSMG.

Example 4. Table 2 shows formal concepts in a formal context K′
fam. SSMG for

D = (gf(01)gf(07)gf(12), abcefgh) is g, fe, fh, and LMG for D is only fe. ut
The Mining Algorithm The algorithm in Table 3 follows the depth-first
search framework using a set-enumeration tree (SE-tree) [11]. A node v, in-
cluding a head H and a tail T , has a search space for all itemsets Z = H ∪ T ′,
where T ′ is a nonempty subset of T . For the node labelled by ab in the SE-tree
for {a, b, c, d}, we have H = ab and T = cd, and its search space consists of
abc, abd and abcd. A local closure of H, LC(H) = {x ∈ H ∪ T | HI = HxI}, is
a closure w.r.t ancestor nodes. For all ancestor nodes v′ of v with head H ′ and
tail T ′, LC(H ′) is a proper subset of LC(H). Hence H is considered as the local
mingen for LC(H).

6 Experimental Results and Conclusion

We have done experiments on two data sets and compared between the num-
ber of patterns, the first one was with Rfam in Fig. 3 and the latter was with
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Table 4. Patterns on Rfam.

supmin(%) 80 60 40 20

Mapix 17 109 1063 4601
SSMG 12 21 39 -
LMG 6 13 22 -

Table 5. Patterns on Mutagenesis-Bonds.

supmin(%) 90 80 70 60 50 40 30 20 10

Mapix 336 360 614 721 721 925 1467 2948 6630
SSMG 9 9 13 16 16 19 31 67 149
LMG 6 6 9 12 12 14 25 58 137

Mutagenesis-Bonds. Tables 4 and 5 show the number of patterns generated by
Mapix, SSMG, and LMG. In both data sets, though SSMG and LMG had large
reduction of patterns compared with Mapix, LMG reduces patterns even more
than SSMG. Because of a complex structure of Rfam, SSMG and LMG fault the
computation with supmin = 20%.

We still need revise of the algorithm for scalability. We also need examine
the efficacy in the intuitive sense, such as readability.
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Abstract. This paper describes a propositionalization technique called
wordification. Wordification is inspired by text mining and can be seen as
a transformation of a relational database into a corpus of documents. As
in previous propositionalization methods, after the wordification step any
propositional data mining algorithm can be applied. The most notable
advantage of the presented technique is greater scalability - the propo-
sitionalization step is done in time linear to the number of attributes
times the number of examples for one-to-many databases. Furthermore,
wordification results in easily understandable propositional feature rep-
resentation. We present our initial experiments on two real-life datasets.

Keywords: propositionalization, text mining, association rules

1 Introduction

Unlike traditional data mining algorithms, which look for models/patterns in
a single table (propositional patterns), relational data mining algorithms look
for models/patterns in multiple tables (relational patterns). For most types of
propositional models/patterns there are corresponding relational patterns, for
example: relational classification rules, relational regression tree, relational as-
sociation rules, and so on.

For individual-centered relational databases, where there is a clear notion
of individual, there exist techniques for transforming such a database into a
propositional or single-table format. This transformation, called propositional-
ization [2, 4], can be used by traditional propositional learners, such as decision
tree or classification rule learners.

In this paper we introduce a novel propositionalization technique called
wordification. Wordification is inspired by text mining techniques and can be
seen as a transformation of a relational database into a corpus of documents,
where each document can be characerized by a set of properties describing the
entries of a relational database.

Unlike other propositionalization techniques [2, 3, 4, 6], which search for good
(and possibly complex) relational features to construct a subsequent proposi-
tional representation, this methodology focuses on a large number of simple
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Feature vector

Feature vector

Feature vector

Feature vector

Fig. 1. Document (or feature vector) construction for one individual.

features with the aim of greater scalability. Since the feature construction step
is very efficient, it can scale well for large relational databases. In fact, the pre-
sented methodology transforms a given database in time linear to the number
of attributes times the number of examples for one-to-many databases. Further-
more, due to the simplicity of features, the generated features are easily inter-
pretable by domain experts. On the other hand, this methodology suffers from
the loss of information, since the generated features do not explicitly connect
relations through variables. Instead, by using the Term Frequency–Inverse Doc-
ument Frequency (TF-IDF) [1], it tries to capture the importance of a certain
feature (attribute value) of a relation in an aggregate manner.

In this paper we report our initial experiments on two real-life relational
databases: a collection of best and worst movies from the Internet Movie DataBase
(IMBD) and a database of Slovenian traffic accidents.

The rest of the paper is organized as follows. In Section 2 we present the
new wordification methodology. Section 3 presents the initial experiments and
Section 4 concludes the paper by presenting some ideas for further work.

2 Wordification

This section presents the two main steps of the wordification propositionalization
technique. First, a straightforward transformation from a relational database to
a textual corpus is performed (Fig.1). One instance (i.e., one entry of the main
table) of the initial relational database is transformed into one text document
and the features (attribute values), describing the instance, constitute the words
of this document. One document is constructed simply as a list of attribute-value
pairs - words (or features) constructed as a combination of the table’s name and
the attribute’s name with its discrete value:

[table name] [attribute name] [attributevalue].

Note that every attribute needs to be discretized beforehand in order to be
able to represent every value as a word. For each instance, the features are first
generated for the main table and then for each entry from the additional tables,
and finally concatenated together.

Because we do not explicitly use existential variables in our features, we
instead rely on the Term Frequency–Inverse Document Frequency (TF-IDF)
measure to implicitly capture the importance of a certain feature for a given
instance. In the context of text mining, TF-IDF reflects the representativeness
of a certain word (feature) for the given document (instance). In the rest of this
section we refer to instances as documents and to features as words.

A Wordification Approach to Relational Data Mining: Early Results

57



Table 1. Example input for the standard East-West trains domain.

Train
tid direction
1 east
2 west

Car
cid tid shape roof wheels
1 1 rectangle none 2
2 1 rectangle peaked 3
3 2 rectangle none 2
4 2 hexagon flat 2

Load
lid cid shape
1 1 rectangle
2 1 rectangle
3 2 circle
4 3 circle
5 4 circle
6 4 hexagon

1 [car shape rectangle, car roof none, car wheels 2, load shape rectangle, load shape rectangle,
car shape rectangle, car roof peaked, car wheels 3, load shape circle] east
2 [car shape rectangle, car roof none, car wheels 2, load shape circle, car shape hexagon,
car roof flat, car wheels 2, load shape circle, load shape hexagon] west

Fig. 2. The database from Table 1 in document representation.

For a given word w in a document d from corpus D, the TF-IDF is defined

as follows: tfidf(w, d) = tf(w, d) × log |D|
|{d∈D:w∈d}| , where tf(·) represents the

frequency of word w in document d. In other words, a certain word will have
a high TF-IDF (i.e., the feature is given a high weight for this instance), if it
is frequent within this document (instance) and infrequent in the given corpus
(the original database). In other words, the weight of a word gives a strong
indication of how relevant is the feature for the given individual. The TF-IDF
weights can then be used either for filtering words with low importance or using
them directly by the propositional learner.

The technique is illustrated on a simplified version of the well-known East-
West trains domain, where the input database consists of two tables shown in
Table 1; we have one east-bound and one west-bound train, each with two cars
with certain properties. The Train table is the main table and the trains are the
instances. We want to learn a classifier to determine the direction of an unseen
train. For this purpose the class attribute (train direction) is not preprocessed
and is only appended to the resulting feature vector of words.

First, the corresponding two documents (one for each train) are generated
(Fig. 2). After this, the documents are transformed into a bag-of-words represen-
tation by calculating the TF-IDF values for each word of each document, with
the class attribute column appended to the transformed bag-of-words table.

def wordification(table,individual)
words=[]
for att,val in table[individual]:

words.append(table_att_val)
#loop through tables which contain current table’s foreign key
for secondary_table in table.secondary_tables():

words.extend(wordification(secondary_table,individual))
return

#STEP1
documents={}
for individual in main_table:

documents[individual]=wordification(main_table,individual)
#STEP2
feature_vectors=tfidf(documents)
results=propositional_learner(feature_vectors)

Fig. 3. Pseudo-code of the wordification algorithm.
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Table 2. Table properties of the experimental data.

IMDB #rows #attributes
movies 166 4
roles 7,738 2

actors 7,118 4
movie genres 408 2

movie directors 180 2
directors 130 3

director genres 243 3

Accidents #rows #attributes
accident 102,756 10
person 201,534 10

Table 3. Document properties after applying the wordification methodology.

Domain Individual #examples #words #words after filtering
IMDB movie 166 7,453 3,234

Accidents accident 102,759 186 79

3 Experimental results

This section presents the initial experiments of the wordification methodology.
We performed association rule learning in combination with the wordification
approach on two real-life datasets: the best and worst ranked IMDB movies
database and the Slovenian traffic accidents database. Table 2 lists the charac-
teristics of both databases.

The preprocessing procedure was performed on both databases as follows.
First, the wordification step was applied as described in Section 2. Next, irrel-
evant features (which have the same value across all examples) were removed,
resulting in less than half of the features (see Table 3). In order to prepare the
data for association rule mining, the data was also binarized: a feature was as-
signed value true if the corresponding TF-IDF value was above 0.06, otherwise
false.

IMDB database. The complete IMDB database is publicly available in the
SQL format1. This database contains tables of movies, roles, actors, movie gen-
res, directors, director genres.

The database used in our experiments consists only of the movies whose
titles and years of production exist on IMDB’s top 250 and bottom 100 chart2.
The database therefore consists of 166 movies, along with all of their actors,
genres and directors. Movies present in the IMDB’s top 250 chart were added
an additional label goodMovie, while those in the bottom 100 were marked as
badMovie. Additionally, attribute age was discretized; a movie was marked as
old if it was made before 1950, fairlyNew if it was produced between 1950 and
2000 and new otherwise.

After preprocessing the dataset using the wordification methodology, we per-
formed association rule learning. Frequent itemsets were generated using Rapid-
Miner’s [5] FP-growth implementation. Next, association rules for the resulting

1 http://www.webstepbook.com/supplements/databases/imdb.sql
2 As of July 2, 2012
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goodMovie← director genre drama, movie genre thriller,
director name AlfredHitchcock. (Support: 5.38% Confidence: 100.00%)

movie genre drama← goodMovie, actor name RobertDeNiro.
(Support: 3.59% Confidence: 100.00%)

director name AlfredHitchcock← actor name AlfredHitchcock.
(Support: 4.79% Confidence: 100.00%)

director name StevenSpielberg← goodMovie, movie genre adventure,
(Support: 1.79% Confidence: 100.00%) actor name TedGrossman.

Fig. 4. Examples of interesting association rules discovered in the IMDB database.

frequent itemsets were produced. Among all the discovered rules, several inter-
esting rules were found. Figure 4 presents some of the interesting rules.

The first rule states that if the movie’s genre is drama and is directed by
Alfred Hitchcock, who is also known for drama movies, then the movie is a good
movie. The second rule concludes that if a movie is good and Robert De Niro
acts in it, than it must be a drama movie. The third interesting rule shows
that Alfred Hitchcock acted only in the movies he also directed. The last rule
implies that if Ted Grossman acts in a good adventure movie, then the director
is Steven Spielberg (Ted Grossman usually plays the role of a stunt coordinator
or performer).

Traffic accident database. The second dataset consists of all accidents that
happened in Slovenia’s capital city Ljubljana between the years 1995 and 2005.
The data is publicly accessible from the national police department’s website3.
The database is multi-relational and consists of the information about the acci-
dents along with all the accidents’ participants.

noInjuries← accident trafficDensity rare,
accident location parkingLot. (Support: 0.73% Confidence: 97.66%)

person gender male← person vehicleType motorcycle.
(Support: 0.11% Confidence: 99.12%)

Fig. 5. Examples of interesting association rules discovered in the accidents database.

The data already contained discretized attributes, so further discretization
was not needed. Similarly as with the IMDB databse, preprocessing using the
wordification methodology, FP-growth itemset mining and association rule min-
ing were performed. Figure 3 presents some of the interesting rules found in the
Slovenian traffic accidents dataset.

The first rule indicates that if the traffic is rare and the accident happened in
a parking lot, then no injuries occurred. The second rule implies that whenever
a motorcycle is involved in an accident, a male person is involved.

3 http://www.policija.si/index.php/statistika/prometna-varnost
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4 Conclusion

This paper presented a novel propositionalization technique called wordification.
This methodology is inspired by text mining and can be seen as a transformation
of a relational database into a corpus of documents. As is typical for proposition-
alization methods, any propositional data mining algorithm can be applied after
the wordification step. The most notable advantage of the presented technique
is greater scalability - the propositionalization step is done in time linear to the
number of attributes times the number of examples for one-to-many databases.
Moreover, the methodology allows for producing simple, easy to understand fea-
tures, and consequently, easily understandable rules.

We have presented initial results on two real-life databases: the best and worst
movies from the IMDB database and a database of Slovenian traffic accidents.
Given that we have found some interesting patterns using our methodology,
we are motivated to further explore this approach on new datasets. In future
work we will apply the methodology to larger databases to explore its potential
limitations. Furthermore, we will experimentally compare this methodology with
other known propositionalization techniques.
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Abstract. Probabilistic logical models have proven to be very successful
at modelling uncertain, complex relational data. Most current formalisms
and implementations focus on modelling domains that only have discrete
variables. Yet many real-world problems are hybrid and have both dis-
crete and continuous variables. In this paper we focus on the Logical
Bayesian Network (LBN) formalism. This paper discusses our work in
progress in developing hybrid LBNs, which offer support for both discrete
and continuous variables. We provide a brief sketch for basic parameter
learning and inference algorithms for them.

1 Introduction

Real-world problems are hybrid in that they have discrete and continuous vari-
ables. Additionally, it is necessary to model the uncertain nature and complex
structure inherent in these problems. Most existing formalisms cannot cope with
all these challenges. Hybrid Bayesian networks [1] can model uncertainty about
both discrete and continuous variables, but not relationships between objects in
the domain. On the other hand, probabilistic logical models (PLM) [2–4] can
model uncertainty in relational domains, but many formalisms restricted them-
selves to discrete data. More recently, several approaches have been proposed
that augment PLMs in order to model hybrid relational domains. These include
Adaptive Bayesian Logic Programs [5], ProbLog with continuous variables [6],
and Hybrid Markov Logic Networks [7].

In this paper, we focus on upgrading another PLM framework called Log-
ical Bayesian Networks [8] to model continuous variables. From our perspec-
tive, LBNs have several important advantages. One, they clearly distinguish the
different components (i.e., the random variables, dependencies among the vari-
ables, and the CPDs of each variable) of a relational probabilistic model. Two,
the CPDs are easily interpretable by humans, which is not the case in other for-
malisms, such as those based on Markov random fields. This paper reports on our
preliminary work in progress on developing hybrid LBNs. We show how LBNs
can naturally represent continuous variables. We also discuss a basic parameter
learning algorithm and how Gibbs sampling can be used for inference.
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2 Background

We briefly review Logical Bayesian Networks and Gibbs sampling.

2.1 Logical Bayesian Networks

A propositional Bayesian network (BN) compactly represents a probability dis-
tribution over a set of random variables X = {X1, . . . , Xn}. A BN is a directed,
acyclic graph that contains a node for each variable Xi ∈ X. Each node in the
graph has a conditional probability distribution θXi|Parents(Xi) that gives the
probability distribution over the values that a variable can take for each possible
setting of its parents. A BN encodes the following probability distribution:

PB(X1, . . . Xn) =
i=n∏

i=1

P (Xi|Parents(Xi)) (1)

Logical Bayesian Networks upgrade propositional BNs to work with rela-
tional data [8]. LBNs contain four components: random variable declarations,
conditional dependencies, Conditional Probability Distributions (CPDs) and a
logic program. Semantically, a LBN induces a Bayesian network. Given a set
of constants, the first two components of the LBN define the structure of the
Bayesian network. The random variable declarations define which random vari-
ables appear in the network whereas conditional dependency relationships define
the arcs that connect the nodes. Finally, the conditional probability functions
determine the conditional probability distribution associated with each node in
the network. We will illustrate each of these components using the well-known
university example [9]. The logical predicates in this problem are student/1,
course/1, and takes/2. Random variables start with capital letters and con-
stants with lower-case letters. The logical predicates can then be used to define
random variables as follows:

random(intelligence(S)):- student(S).

random(difficulty(C)):- course(C).

random(grade(S,C)):- takes(S,C).

random(ranking(S)):- student(S).

Conditional dependencies are represented by a set of clauses. The clauses
state which variables depend on each other and determine which edges are in-
cluded in a ground LBN. They take the following form:

grade(S,C) | intelligence(S),difficulty(C).

ranking(S) | grade(S,C) :- takes(S,C).

The last clause means that the ranking of a student depends on the grades
of all courses the student takes. A CPD is associated with each conditional de-
pendency in a LBN. In principle, any CPD is possible. However, LBNs typically
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use logical probability trees. A logical probability tree is a binary tree where each
internal node contains a logical test (conjunction of literals) and each leaf con-
tains a probability distribution for a particular attribute. Examples are sorted
down the tree based on whether they satisfy the logical test at an internal node.

The logic program component contains a set of facts and clauses that de-
scribes the background knowledge for a specific problem. It generates the ground
Bayesian network. In the university example it may contain facts such as:

student(mary).

student(peter).

course(math).

takes(mary,math).

takes(peter,math).

The LBN specified in the running example induces a Bayesian network shown
in Figure 1.

Fig. 1. Bayesian network induced by the simple university example

Notice that the logic program defines which random variables appear in the
model, or in other words, it determines different interpretations (assignments to
random variables).

2.2 Gibbs Sampling

Gibbs sampling is an instance of a Markov Chain Monte Carlo (MCMC) algo-
rithm. It estimates a joint probability distribution over a set of random variables
by simulating a sequence of draws from the distribution. It is commonly used
when joint distributions over variables are not known or are complicated, but
local dependency distributions are known and simple. To sample a value for a
particular variable it is sufficient to only consider its Markov blanket. The time
needed for Gibbs sampling to converge to a stationary distribution is dependent
on the starting point and therefore in practice some number of examples are
ignored (burn-in period). For more details see Casella and George, [10].
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3 Our Approach

We now describe how we augment LBNs to model continuous variables.

3.1 Representation

It is relatively natural to incorporate continuous random variables in the LBNs.
We do so by adding a new random variable declaration that indicates whether a
variable is continuous and what its distribution is. For example, we could make
the following declaration:

randomGaussian(numHours(C)):- course(C).

This states that numHours(C) is a Gaussian distributed continuous random vari-
able if C is a course. Currently, we only allow Gaussian continuous variables, but
it is straightforward to incorporate other distributions.
After being declared, continuous random variables can appear in conditional de-
pendency clauses. For example:

numHours(C) | difficulty(C).

This clause states that the number of hours spent studying for a course C depends
on the difficulty of the course. The difficulty of introducing continuous variables
lies in a scenario when a discrete variable has continuous parents. Therefore,
currently, we add a restriction that a discrete random variable cannot have con-
tinuous parents. This is a common restriction in hybrid BNs as well.

Logical CPDs can easily accommodate continuous variables by adding a
Gaussian distribution in an appropriate leaf as in Figure 2. A Gaussian dis-
tribution with mean µ and standard deviation σ is:

N(µ, σ2) =
1

σ
√

2π
e−(x−µ)

2/2σ2

(2)

3.2 Parameter Learning and Inference

When learning parameters we assume a known structure, that is, the structure
of the probability tree is given. The examples are sets of interpretations where
each interpretation refers to a particular instantiation of all random variables. We
estimate the maximum likelihood of parameters. In the discrete case, this corre-
sponds to a frequency of a specific variable value in a dataset. In the continuous
case, this corresponds to computing the sample mean and standard deviation.

For estimating the mean and standard deviation we used a two-pass algo-
rithm. It first computes the sample mean:

µ =

∑n
i=1 yi
n

(3)
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Fig. 2. Logical probability tree for numHours(C)

The standard deviation is calculated in the second pass through data by
using:

σ =

√∑n
i=1(yi − µ)2

n− 1
(4)

For inference, we have implemented Gibbs sampling which allows us to esti-
mate the posterior probability of some variables given (a possibly empty) set of
evidence variables. When querying continuous variables, we can answer several
types of queries. We can estimate its mean value. Alternatively, we can estimate
the probability that its value falls into some interval (i.e., estimate its cumula-
tive distribution). We sample a continuous variable given its Markov blanket by
generating a value from a Gaussian distribution given the appropriate mean and
standard deviation coming from the CPD defined by its associated conditional
dependency clause. A discrete variable having a continuous node as its child is
sampled by using its Markov blanket, and the probability of a continuous child
given its parents is computed using Equation (2).

4 Experiments

Currently, we have an implementation that works for small datasets. We have
done preliminary experiments using synthetically generated data from the uni-
versity domain that we have used as a running example in the paper. We aug-
mented the task description with two continuous variables: numHours/1 and
attendance/1. The first one represents the number of hours a student spends
studying for a particular course, and the second one denotes the number of hours
students spent in class. We added two conditional dependency clauses making
use of these variables:

numHours(C) | difficulty(C).

attendance(C) | satisfaction(S,C):-takes(S,C)

The first clause was described in Subsection 3.1 and the second clause states
that a student is more likely to attend a class if (s)he enjoys the lectures.

To test the parameter learning, we generated synthetic datasets of varying
sizes. Unsurprisingly, we found that we could learn accurate estimates of the
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parameters. In terms of inference, we randomly selected some atoms as queries
and some as evidence. On small examples, we found that the Gibbs sampler
converged to the correct value after a reasonable number of iterations.

5 Conclusions

In this paper we presented a preliminary work on representation, learning and
querying of hybrid logical Bayesian networks. Building on this preliminary work,
in the future we will study other conditional probability models (e.g., using
Poisson distributions), learning and inference in large-scale networks, and the
application of hybrid LBNs in bio-medical applications.
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Abstract. Software patterns are widely adopted to manage the rapidly
increasing complexity of software. Despite their popularity, applying soft-
ware patterns in a software model remains a time-consuming and error-
prone manual task. In this paper, we argue that the relational nature
of both software models and software patterns can be exploited to au-
tomate this cumbersome procedure. First, we propose a novel approach
to selecting applicable software patterns, which requires only little in-
teraction with a software developer. Second, we discuss how relational
learning can be used to further automate this semi-automated approach.

Keywords: Relational Learning, Software Pattern Selection, Logic
Programming, Application

1 Introduction

The complexity of both software and the software development process has in-
creased rapidly over the past decades because of three reasons. The first reason
is the steadily increasing complexity of the problems that software tackles. The
second reason is the shift towards distributed software, which entails a number of
additional issues to account for. The third reason is the relatively long lifetime of
software, which is often much longer than that of the hardware it was originally
developed for and which requires it to adapt to an ever changing environment.

Software patterns provide established solutions to recurring issues in software
development [5, 1] and hence improve the overall quality, portability and read-
ability of a software design. Although software patterns are widely adopted by
software developers, applying patterns remains a mostly manual two-step task.
First, a developer selects the most appropriate patterns based on his or her
previous experiences. This is an increasingly difficult and time-consuming task

This research is partially funded by the Flemish government institution IWT (Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders), by the
Interuniversity Attraction Poles Programme Belgian State, Belgian Science Policy,
and by the Research Fund KU Leuven.
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due to the steadily growing number of patterns. Second, a developer instantiates
these patterns in the software design, which is a repetitive and error-prone task.

In this paper, we argue that the relational nature of both software models and
software patterns can be exploited to automate this cumbersome procedure. We
apply inductive logic programming techniques for representing these models and
patterns as well as reasoning about them. First, we propose a semi-automated
approach to selecting applicable patterns in a graphical software model. Our
approach relies on a concise relational representation of both the available soft-
ware patterns and a software model. The approach requires only little interaction
with a software developer whereas current pattern selection procedures rely on
an extensive specification of the design problem. Second, we briefly share ideas
on how relational learning techniques can further automate our approach and
hence reduce the amount of user interaction.

2 Background on Software Engineering

On a very high level, designing software is gathering requirements and ensuring
these requirements are met in the final software system. Software developers
typically identify a number of components, which each satisfy a subset of the
requirements, in order to manage the complexity of software. Components offer
their functionality through one or more interfaces via which they collaborate.

Software developers formally capture their design decisions in graphical mod-
els. Each model element can be annotated with additional information (e.g., im-
plementation details) that is required during the development process. Although
our approach is applicable to multiple types of software models, we restrict our-
selves to the Component-and-Connector Model, which is one of the most impor-
tant types of models during software development. Figure 1 shows an excerpt of
a digital newspaper system, inspired by [10], in which clients can browse through
news articles, read news articles and subscribe to specific categories of news.

Fig. 1. Software model of a digital newspaper system where rectangles represent com-
ponents and circles represent interfaces. A line denotes a component offering an inter-
face whereas a line ending in half a circle denotes a component using an interface.

Software patterns offer established solutions to recurring design issues. Along-
side a unique name, a software pattern comprises a generic description of both
the design issue it addresses and the solution it proposes (i.e., independent of
any concrete design and/or implementation decision). Furthermore, a software
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pattern contains an overview of its consequences and trade-offs, which is helpful
to decide on the most appropriate software pattern.

Automatically selecting applicable software patterns requires a formal repre-
sentation of either the design issue a software pattern addresses or the solution it
proposes. Our approach leverages Zdun and Avgeriou’s concept of primitives [12]
to formally represent a pattern’s proposed solution. Primitives have precisely
defined semantics and can be seen as building blocks for patterns. A software
pattern combines several primitives to offer a solution to a specific design issue.

Figure 2 shows the Client-Dispatcher-Server pattern, which comprises
the Client, Dispatcher and Server primitives [1].

Fig. 2. Software model of the Client-Dispatcher-Server pattern.

3 Related Work

Pattern selection has only been given little attention in academic literature.
Kampffmeyer and Zschaler [8] use a pattern intent ontology that can be queried
with design issues and return all applicable patterns. Kim and El Khawand [9]
first formally model each pattern as a set of pattern-specific roles and then deter-
mine which patterns are applicable by verifying which roles the software model
fulfills. Hsueh et al. [7] introduce a goal-driven approach that proposes applica-
ble patterns by asking relevant questions to the developer. Hasheminejad and
Jalili [6] first classify the patterns and the design issue using text classification
and then propose the best matching patterns from the design issue’s class.

Current pattern selection techniques require either an extensive specifica-
tion of the design problem (e.g., [8, 7, 6]) or the patterns’ problem descriptions
(e.g., [9]), which is often cumbersome and time-consuming, and considerably
limits their usability and reliability. Besides, it is not obvious how to extend
these techniques to new (types of) patterns since either an extensive analysis is
required or the terminology in their description should be chosen carefully.

Although automated pattern selection has only been given little attention to
date, the idea of tackling software engineering issues using machine learning is
not new. One area of interest is that of software pattern detection, where the
task is to identify applied software patterns when re-engineering legacy software.
Correa et al. [2] perform this task using Prolog as a representation language.
Another area of interest is that of software testing, where the task is to evaluate
how well software systems meet their specification [3, 11].
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4 Contributions

This section discusses the two main contributions of this paper. First, we pro-
pose Semi-Automated Role-Based Pattern Selection (SARBPS), a novel semi-
automated approach for selecting applicable software patterns in software mod-
els. The approach exploits the relational nature of both software patterns and
software models to significantly reduce the time required to decide which soft-
ware patterns are applicable in a given software model. Second, we discuss how
relational learning can be used to further automate our approach and hence
reduce the amount of user interaction.

4.1 Contribution 1: Semi-Automated Role-Based Pattern Selection

We now discuss the three steps of the SARBPS approach in turn. The first step
concerns representing the available software patterns as sets of primitives, where
each primitive fulfills one or more roles. SARBPS represents this information as
a knowledge base consisting of two classes of facts. The first class is the class
of entity facts that enumerate the available patterns, primitives and roles. The
second class is the class of relation facts that define relations between patterns
and primitives on one hand and primitives and roles on the other hand. These
relations express which primitives each pattern comprises and which role(s) each
primitive fulfills. Roles are only meaningful if fulfilled by at least one primitive.

The second step involves annotating the components and interfaces of the
software model with additional information. A software developer employs the
requirements that the components and interfaces satisfy to assign one or multiple
roles, which describe their properties and characteristics. Roles indicate which
application-independent function the annotated element fulfills in a software
system. For example, a component that provides services to other components
can be assigned the ServiceProvider role. Only roles defined in the knowledge
base constructed in the previous step can be assigned.

The third step involves selecting applicable patterns by establishing a map-
ping between the roles of the elements in the software model on one hand and
the roles of the available patterns on the other hand. For each of the available
patterns, SARBPS verifies whether it is applicable. A pattern is applicable if
and only if each of the software model’s roles is fulfilled by at least one of the
pattern’s primitives. SARBPS achieves this by querying the knowledge base it
constructed in the first step using the roles assigned during the second step.

SARBPS uses two queries to retrieve all applicable patterns from the knowl-
edge base. The first query returns for a given pattern and a given role which
of the pattern’s primitives fulfills this role or fails when no primitive is found.
The second query returns a list of applicable patterns for a given set of roles
by iteratively calling the first query for any possible combination of an available
pattern and a given role.
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Example 1. In order to illustrate our approach, we use the software model and
software pattern shown in Figures 1 and 2 respectively. Due to space constraints,
we only provide a high-level discussion in this paper.2 In the first step, we
add the Client-Dispatcher-Server pattern and the three primitives this pat-
tern comprises, Client, Dispatcher and Server, to the knowledge base. We
also add the roles ServiceProvider and ServiceRequester, which the Server

and Client primitives fulfill respectively. In the second step, we assign the
ServiceProvider role to both the NewspaperService and ClientManagement

components, and the ServiceRequester role to the Client component. In the
third step, querying the knowledge base for applicable software patterns returns
the Client-Dispatcher-Server pattern.

Although our semi-automated pattern selection approach saves significant
amounts of precious development time, manually assigning roles to components
and interfaces is still an error-prone and time-consuming task, especially for
large, real-world software systems. Therefore, we propose using relational learn-
ing to automate this task and share some ideas on how to do this in what follows.

4.2 Contribution 2: Towards Automated Role Annotations

When annotating a component or an interface with one or multiple roles, soft-
ware developers leverage the descriptions of the requirements each component or
interface fulfills. These descriptions are mostly free text but they tend to have a
simple structure. For example, one of the requirements in our running example
states that a journalist must be able to add an article to the system. In a medical
system, a requirement could be that the medical staff must be able to add a new
patient file to the system. Although the descriptions of these requirements are
completely different, it is clear that they can be written as instances of the same
abstract pattern since they share a common structure.

The missing building block is a convenient formal language for representing
software requirements. Once we have such a language, we can naturally model
requirements in a relational learning system and pose the assignment of roles to
components and interfaces as a collective classification task. We can then rep-
resent components and interfaces as entities, and collaborations amongst these
components and interfaces as relations. The classification task boils down to
learning one or multiple roles for each component. The key idea is to leverage
the expert knowledge and previous role labeling efforts of software engineers,
who can possibly already assign roles to some of the components and interfaces.

The kernel-based relational learning framework kLog [4] is a suitable learning
system to perform this task. An important advantage of kLog is that the outcome
of its graphicalization phase, a ground entity-relationship model, is conceptually
very similar to a software model and hence easily interpretable by a software
engineer. Preliminary results on a toy example yield encouraging results.

2 A thorough discussion of the running example and a Prolog implementation are avail-
able at https://people.cs.kuleuven.be/alexander.vandenberghe/sarbps.html.
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5 Conclusion and Future Work

We have introduced a novel semi-automated approach for selecting applicable
software patterns in software models, which makes developers to save significant
amounts of development time. Our approach relies on a concise relational repre-
sentation of both software patterns and software models, which allows reasoning
about them and including additional software patterns in a straightforward way.

Our main research direction is further automating the approach using rela-
tional learning techniques. The key challenge is designing a convenient formal
language for representing software requirements in a relational learning frame-
work. Furthermore, we aim to limit the number of proposed patterns by incor-
porating each pattern’s trade-offs and consequences.

Acknowledgments. We thank Paolo Frasconi and Luc De Raedt for providing
access to the kLog implementation.
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1 Introduction

The non-monotone dualization (NMD) is one of the most essential tasks required
for finding hypotheses in various ILP settings, like learning from entailment [1, 2]
and learning from interpretations [3]. Its task is to generate an irredundant prime
CNF formula ψ of the dual fd where f is a general Boolean function represented
by CNF [4]. The DNF formula φ of fd is easily obtained by De Morgan’s laws
interchanging the connectives of the CNF formula. Hence, the main task of NMD
is to translate the DNF φ to an equivalent CNF ψ. This translation is used to
find an alternative representation of the input form. For instance, given a set of
models, it is desirable to seek underlying structure behind the models.

Example 1. Suppose that a set of models M are given as follows:

M = { (bird ∧ normal ∧ flies), (¬flies ∧ ¬normal), (¬flies ∧ ¬bird) }.

By treating M as the DNF formula, we translate it into CNF with NMD:

H = (bird ∨ ¬flies) ∧ (normal ∨ ¬flies) ∧ (flies ∨ ¬normal ∨ ¬bird).

In fact, H is regarded as a hypothesis in learning from interpretations [3].

In contrast, by converting a given CNF formula into DNF, we obtain the models
satisfying the CNF formula. This fact shows an easy reduction from SAT prob-
lems to NMD, and then gives NP-hardness of it [5]. In this context, the research
has been much focused on some restricted classes of NMD.

Monotone dualization (MD) is one such class that deals with monotone
Boolean functions for which CNF formulas are negation-free [6, 7]. MD is one of
the few problems whose tractability status with respect to polynomial-total time
is still unknown. Besides, it is known that MD has many equivalent problems
in discrete mathematics, such as the minimal hitting set enumeration and the
transversal hypergraph computation [6]. Thus, this class has received much at-
tention that yields remarkable algorithms: in terms of complexity, Fredman and
Khachiyan [8] show that MD is solvable in a quasi-polynomial-total time (i.e.,
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(n + m)O(log(n+m)) where n and m denote the input and output size, respec-
tively). Uno [9] shows a practically fast algorithm whose average computation
time is experimentally O(n) per output, for randomly generated instances.

This paper aims at clarifying whether or not NMD can be solved using these
techniques of MD, and if it can be then how it is realized. In general, it is not
straightforward to use them because of the following two problems in NMD:

– NMD has to treat redundant clauses like resolvents and tautologies.

Example 2. Let a CNF formula φ be (x1 ∨x2)∧(x2 ∨x3). If we treat negated
variables as regular variables, we can apply MD to φ and obtain the CNF
formula ψ = (x1 ∨x2)∧ (x1 ∨x3)∧ (x2 ∨x2)∧ (x2 ∨x3). However, ψ contains
the tautology x2 ∨ x2 and the resolvent x1 ∨ x3 of x1 ∨ x2 and x2 ∨ x3.

– Unlike MD, the output of NMD is not necessarily unique. It is known that
the output of MD uniquely corresponds to the set of all the prime implicates
of fd [10]. In contrast, some prime implicates can be redundant in NMD
problems. Thus, the output of NMD corresponds to an irredundant subset
of the prime implicates. However, such a subset is not unique in general.

For the first problem, this paper shows a technique to prohibit any resolvents
from being generated in MD. This is done by simply adding some tautologies to
the input CNF formula φ in advance. We denote by φt and ψt the extended input
formula and its output by MD, respectively. Then, ψt contains no resolvents.

Example 3. Recall Example 2. We consider the CNF formula φt = (x1 ∨ x2) ∧
(x2∨x3)∧(x2∨x2) obtained by adding one tautology x2∨x2. Then, MD generates
the CNF formula ψt = (x1 ∨ x2) ∧ (x2 ∨ x2) ∧ (x2 ∨ x3). Indeed, ψt does not
contain the resolvent x1 ∨ x3, unlike ψ in Example 2.

By removing all tautologies from ψt, we obtain an irredundant CNF formula,
denoted by ψir. Note that ψir is (x1 ∨ x2) ∧ (x2 ∨ x3) in Example 3.

We next address the second problem using a good property of ψir: a subset
of the prime implicates is irredundant (i.e., an output of NMD) if and only
if it subsumes ψir but never subsumes ψir if any clause is removed from it.
This particular relation is called minimal subsumption. We then show that every
subset satisfying the minimal subsumption is generated by MD. In this way, we
reduce an original NMD problem into two MD problems: the one for computing
ψir, and the other for generating a subset corresponding to an output of NMD.
Due to space limitations, full proofs are omitted.

2 Background

2.1 Preliminaries

A Boolean function is a mapping f : {0, 1}n → {0, 1}. We write g |= f if
f and g satisfy g(v) ≤ f(v) for all v ∈ {0, 1}n. g is (logically) equivalent to
f , denoted by g ≡ f , if g |= f and f |= g. A function f is monotone if v ≤ w
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implies f(v) ≤ f(w) for all v, w ∈ {0, 1}n; otherwise it is non-monotone. Boolean
variables x1, x2, . . . , xn and their negations x1, x2, . . . , xn are called literals. The
dual of a function f , denoted by fd, is defined as f(x) where f and x is the
negation of f and x, respectively.

A clause (resp. term) is a disjunction (resp. conjunction) of literals which is
often identified with the set of its literals. It is known that a clause is tautology
if it contains complementary literals. A clause C is an implicate of a function f
if f |= C. An implicate C is prime if there is no implicate C ′ such that C ′ ⊂ C.

A conjunctive normal form (CNF) (resp. disjunctive normal form (DNF))
formula is a conjunction of clauses (resp. disjunction of terms) which is often
identified with the set of clauses in it. A CNF formula φ is irredundant if φ ̸≡
φ − {C} for every clause C in φ; otherwise it is redundant. φ is prime if every
clause in φ is a prime implicate of φ; otherwise it is non-prime. Let φ1 and
φ2 be two CNF formulas. φ1 subsumes φ2, denoted by φ1 ≽ φ2, if there is a
clause C ∈ φ1 such that C ⊆ D for every clause D ∈ φ2. In turn, φ1 minimally
subsumes φ2, denoted by φ1 ≽♮ φ2, if φ1 subsumes φ2 but φ1 − {C} does not
subsume φ2 for every clause C ∈ φ1.

Let φ be a CNF formula. τ(φ) denotes the CNF formula obtained by removing
all tautologies from φ. We say φ is tautology-free if φ = τ(φ). Now, we formally
define the dualization problem as follows.

Definition 1 (Dualization problem).

Input: A tautology-free CNF formula φ
Output: An irredundant prime CNF formula ψ such that

ψ is logically equivalent to φd

We call it monotone dualization (MD) if φ is negation-free; otherwise it is called
non-monotone dualization (NMD). As well known [6], the task of MD is equiv-
alent to enumerating the minimal hitting sets (MHSs) of a family of sets.

2.2 MD as MHS enumeration

Definition 2 ((Minimal) Hitting set). Let Π be a finite set and F be a
subset family of Π. A finite set E is a hitting set of F if for every F ∈ F ,
E ∩ F ̸= ∅. A finite set E is a minimal hitting set (MHS) of F if E satisfies that

1. E is a hitting set of F ;
2. For every subset E′ ⊆ E, if E′ is a hitting set of F , then E′ = E.

Note that any CNF formula φ can be identified with the family of clauses in φ.
Now, we consider the CNF formula, denoted by M(φ), which is the conjunction
of all the MHSs of the family φ. Then, the following holds.

Theorem 1. [10] Let φ be a tautology-free CNF formula. A clause C is in
τ(M(φ)) if and only if C is a non-tautological prime implicate of φd.

Hence, the output of MD for φ uniquely corresponds to τ(M(φ)): the set of all
MHSs of the family φ by Theorem 1.
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2.3 NMD as MHS enumeration

Our motivation is to clarify whether or not any NMD problem can be reduced
into some MD problems. While MD is done by the state-of-the-art algorithms
to compute MHSs [9], it is not straightforward to use them for NMD. Here, we
review the two problems explained before in the context of MHS enumeration.

1. Appearance of redundant clauses: τ(M(φ)) is prime but not irredundant.

Example 4. Recall the input CNF formula φ2 = {{x1, x2}, {x2, x3}} of Exam-
ple 2. Then, τ(M(φ2)) = {{x1, x2}, {x1, x3}, {x2, x3}}. Indeed, this contains
the redundant clause {x1, x3}.

2. Non-uniqueness of NMD solutions: there are many subsets of τ(M(φ)) that
are prime and irredundant.

Example 5. Let the input CNF formula φ be {{x1, x2, x3}, {x1, x2, x3}}.
τ(M(φ)) consists of the non-tautological prime implicates as follows:

τ(M(φ)) = {{x1, x2}, {x1, x3}, {x2, x3}, {x1, x3}, {x1, x2}, {x3, x2}}.

Then, we may notice that there are at least two irredundant subsets of τ(M(φ)):

ψ1 = {{x1, x2}, {x1, x3}, {x2, x3}}. ψ2 = {{x1, x3}, {x1, x2}, {x3, x2}}.

Indeed, ψ1 is equivalent to ψ2, and thus both are equivalent to τ(M(φ)).

To address the two problems, this paper focuses on the following CNF formula.

Definition 3 (Bottom formula). Let φ be a tautology-free CNF formula and
Taut(φ) be { x ∨ x | φ contains both x and x }. Then, the bottom formula wrt
φ (in short, bottom formula) is defined as the CNF formula τ(M(φ∪Taut(φ))).

3 Properties of bottom formulas

Now, we show two properties of bottom formulas.

Theorem 2. Let φ be a tautology-free CNF formula. Then, the bottom formula
wrt φ is irredundant.

Example 6. Recall φ2 in Example 4. Then, Taut(φ2) is {x2∨x2}, and the bottom
formula wrt φ2 is {{x1, x2}, {x2, x3}}. Indeed, it is irredundant, since it does
not contain the resolvent {x1, x3}, unlike Example 4.

While any bottom formula is irredundant, it is not necessarily prime.

Example 7. Recall the CNF formula φ in Example 5. Since Taut(φ) is the set
{{x1, x1}, {x2, x2}, {x3, x3}}, the bottom formula is as follows:

{{x1, x2, x3}, {x3, x2, x1}, {x3, x2, x1}, {x2, x3, x1}, {x2, x3, x1}, {x2, x3, x1}}.

We write C1, C2, . . . , C6 for the above clauses in turn (i.e., C4 is {x2, x3, x1}).
We then notice that the bottom formula is non-prime, because it contains a
non-prime implicate C1 whose subset {x1, x2} is an implicate of φd.

Non-monotone dualization via monotone dualization

77



As shown in Example 7, the bottom formula itself is not necessarily an output
of NMD. However, every NMD output is logically described with this formula.

Theorem 3. Let φ be a tautology-free CNF formula. ψ is an output of NMD
for φ iff ψ ⊆ τ(M(φ)) and ψ minimally subsumes the bottom formula wrt φ.

Example 8. Recall Example 5 and Example 7. Fig. 1 describes the subsump-
tion lattice bounded by two irredundant prime outputs ψ1 and ψ2 as well as
the bottom formula {C1, C2, . . . , C6}. The solid (resp. dotted) lines show the
subsumption relation between ψ1 (resp. ψ2) and the bottom formula. We then
notice that both outputs ψ1 and ψ2 minimally subsume the bottom formula.

{x1, x2} {x1, x3} {x2, x3} {x1, x3} {x1, x2} {x3, x2} 

ψ1 ψ2 

C1	
 C2	
 C3	
 C4	
 C5	
 C6	


Bottom formula 

Fig. 1. Subsumption lattice bounded by NMD outputs and the bottom formula

4 Reconstructing NMD into MD

Theorem 3 shows that every NMD output ψ can be generated by selecting a
subset ψ of τ(M(φ)) that minimally subsumes the bottom formula. Now, we
show that the task of this selection is done by MD computation.

Let the bottom formula be {C1, C2, . . . , Cn}. We then denote by Si (1 ≤
i ≤ n) the set of clauses in τ(M(φ)) each of which is a subset of Ci. Fφ denotes
the family of those sets {S1, S2, . . . , Sn}.

Theorem 4. Let φ be a tautology-free CNF formula. ψ is an output of NMD
for φ if and only if ψ is an MHS of Fφ.

Example 9. Recall Example 8. We denote each clause of ψ1 and ψ2 in Fig. 4 by
D1, . . . , D6, starting from left to right (i.e., D4 is {x1, x3}). Fφ is as follows:

Fφ = {{D1, D4}, {D1, D6}, {D2, D6}, {D3, D4}, {D3, D5}, {D2, D5}}.

By MHS computation, we have the five solutions, which contain {D1, D2, D3}
and {D4, D5, D6} that correspond to ψ1 and ψ2, respectively.

5 Concluding remarks

This paper has presented a reduction technique from arbitrary NMD problem
to two equivalent MD problems. Whereas algorithms and computation on MD
has been extensively studied, it was not clarified whether or not NMD can be
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solved using the state-of-the-art MD computation. For this open problem, we
give a solution how it is to be realized.

Our result can be used to investigate the complexity of NMD from the view-
point of MD computation. For instance, the complexity of generating one NMD
output can be described as follows:

(n + t + x)O(log(n+t+x)) + (x + 1)O(log(x+1)), (1)

where n, t and x are the sizes of the input formula φ, the tautologies Taut(φ)
and the bottom formula τ(M(φ∪Taut(φ))), respectively. This is simply derived
from the result on the complexity of MD computation [8]. Note that the right-
hand term in Formula (1) comes from the complexity of the incremental MHS
generation problem [11]. In contrast, the complexity of MD for computing the
prime implicates of φ is described as (n + m)O(log(n+m)) where m is the size of
τ(M(φ)). Hence, the difference of their complexities lies in how big the blow-up
in size can be when the bottom formula is derived. In other words, our proposal
is not a polynomial reduction to MD, and does not establish NP-completeness
of MD. However, if x is equal to m, like Example 4 and Example 7, there is no
difference between NMD and MD in terms of the complexity. In this sense, it
is an important future work to characterize those subclasses of NMD with only
polynomial increase in the problem size x.
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