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Abstract. Transcriptional regulation play an important role in every
cellular decision. Gaining an understanding of the dynamics that govern
how a cell will respond to diverse environmental cues is difficult using
intuition alone. We introduce logic-based regulation models based on
state-of-the-art work on statistical relational learning, to show that net-
work hypotheses can be generated from existing gene expression data for
use by experimental biologists.

1 Introduction

Transcriptional regulation refers to how proteins control gene expression in the
cell. Many major cellular decisions involve changes in transcriptional regula-
tion. Thus, gaining insight into transcriptional regulation is important not just
for understanding the fundamental biological processes, but also will have deep
practical consequences in fields such as the medical sciences. With the advent of
high-throughput technologies and advanced measurement techniques molecular
biologists and biochemists are rapidly identifying components of transcriptional
networks and determining their biochemical activities. Unfortunately, under-
standing these complex multicomponent networks that govern how a cell will
respond to diverse environmental cues is difficult using intuition alone.

In this work, we aim at building probabilistic logical models thatwould un-
cover the structure and dynamics of such networks and how they regulate their
targets.

Despite the challenge of inferring genetic regulatory networks from gene ex-
pression data, various computational models have been developed for regulatory
network analysis. Examples include approaches based on logical gates [1, 2], and
probabilistic approaches, often based on Bayesian networks [3]. On one hand,
logic gates provide a natural, intuitive way to describe interactions between



proteins and genes. On the other hand, probabilistic approaches can handle in-
complete and imprecise data in a very robust way.

Our main contribution is in introducing a model that combines the two ap-
proaches. Our approach is based on the probabilistic logic programming lan-
guage ProbLog [4, 5]. In this language, we can express true logical statements
(expressed as true rules) about a world where there is uncertainty over data, ex-
pressed as probabilistic facts. In the setting of gene expression, this corresponds
to establishing:

(1) a set of true rules describing the possible interactions existing in a cell;
(2) a set of uncertain facts describing which possible rules are applicable to a

certain gene or set of genes.

Given time-series gene expression data, we want to choose the probability
parameters that best describe the data. Our approach is to reduce this problem
to an optimization problem, and use a gradient ascent algorithm to estimate
a local solution [6] in the style of logistic regression. We further contribute an
efficient implementation to this algorithm that computes both probabilities and
gradients through binary decision diagrams (BDD). We validate our approach
by using it to study expression data on an important gene-expression pathway,
the Hog1 pathway [7].

Related Work Logic-based modeling is seen as an approach lying midway be-
tween the complexity and precision of differential equations on one hand and
data-driven regression approaches on the other[8].

Despite the difficulty of deciphering genetic regulatory networks from mi-
croarray data, numerous approaches to the task have been quite successful.
Friedman et al. [3] were the first to address the task of determining properties of
the transcriptional program of S. cerevisiae (yeast) by using Bayesian networks
(BNs) to analyze gene expression data. Pe’er et al. [9] followed up that work
by using BNs to learn master regulator sets. Other approaches include Boolean
networks (Akutsu et al. [10], Ideker et al. [11]) and other graphical approaches
(Tanay and Shamir [12], Chrisman et al. [13]).

The methods above can represent the dependence between interacting genes,
but they cannot capture causal relationships. In our previous work [14], we pro-
posed that the analysis of time series gene expression microarray data using
Dynamic Bayesian networks (DBNs) could allow us to learn potential causal
relationships.

2 Methods

Recently, there has been interest in combining logical and probabilistic rep-
resentations within the framework of Statistical Relational Learning [15]. This
framework allows the compact representation of complex networks, and has been
implemented over a large variety of languages and systems. Arguably, one of the
most popular SRL languages is the programming language ProbLog [4, 5]. This



language was initially motivated by the problem of representing a graph where
there is uncertainty over whether edges exist or not. As a straightforward exam-
ple consider the directed graph in Figure 1.

Fig. 1. A simple directed graph, where each edge has a probability of being true.

Notice that each edge has a probability of being true. As an example, starting
from a we can reach b with probability 0.2 and c with probability 0.5. We assume
that all the different probabilities are independent.

Given the example in Fig 1, ProbLog allows one to answer several queries,
such as what is the most likely path between two nodes, and what is the total
probability that there is a path between two nodes. The algorithm takes advantage
of independence between probabilistic facts.

Note that computing the probability is not simply the sum if different paths
have a common edge. As an example, consider Pr(ae). The path abde shares
the edge de with acde, and the edge ab with abe. Summing these three paths
would count two edges twice.

Kimmig and de Raedt proposed an effective solution to this problem. The
idea is that probability can be computed as a sum if the paths do not share edges.
This can be obtained by selecting an edge (or fact), and splitting into the case
where the edge is true and the case where the edge is false. The process can be
repeated recursively until we run out of facts to split. Kimmig and de Raedt’s
key observation is that this idea is indeed the same one that is used to con-
struct binary decision diagrams (BDDs): the total probability can be obtained
by generating a BDD from the proofs.

Binary decision diagrams provide a very efficient implementation for proba-
bility computation over small and medium graphs. Unfortunately, they do not
scale to larger graphs with thousands of nodes. In this case, ProbLog implemen-
tations rely on approximated solutions, either Monte Carlo methods or often by
approximating the total probability by the probability of the best k queries [5].

3 Experimental Methodology

We obtained time-series gene expression data from Lee et al. [16] for our experi-
ments. The experiments followed the response of actively growing Saccharomyces
cerevisiae to an osmotic shock of 0.7 M NaCl. The dose of salt was selected by
the experimentalists to provide a robust physiological response but allow high
viability and eventual resumption of cell growth. The samples were collected



before and after NaCl treatment at 30, 60, 90, 120, and 240 min (measuring the
peak transcript changes that occurs at or after 30 min) [17]. We focused our
attention on the 270 genes of the Hog1 Msn2/4 pathway from Capaldi [7] for
which we have expression data and utilized the temporal data to better estimate
the relationships from the data.

Our experiments aim for a more detailed picture of the learned network by
using the temporal nature of the data. The output generated is a weighted,
directed gene network, but nodes are connected as a gated network:

– AND: two promoter genes need to be active in order to activate a gene, as
shown in the graph. We also show the ProbLog code for the temporal model:

active(G3,T1,Z) :-

next_step(T0,T1),

and(G1,G2,G3),

active(E,T0,G1),

active(E,T0,G2).

– OR: either promoter gene needs to be active in order to activate a gene, as
shown in the graph. We also show the corresponding ProbLog code for the
temporal model.

active(G3,T1,Z) :-

next_step(T0,T1),

or(G1,G2,G3),

active(E,T0,G1).

active(G3,T1,Z) :-

next_step(T0,T1),

or(G1,G2,G3),

active(E,T0,G2).

– XOR: one promoter gene needs to be active and one repressor gene needs
to be inactive in order to activate a gene, as shown in the graph.

active(G3,T1,Z) :-

next_step(T0,T1),

xor(G1,G2,G3),

active(E,T0,G1),

not_active(E,T0,G2).

This is the only case where we allow the possibility of negative regulation.
– SINGLE: a unique promoter gene regulates the target gene.

active(G2,T1,Z) :-

next_step(T0,T1),

single(G1,G2),

active(E,T0,G1).

We use two different forms of temporal data: expression level (E), and vari-
ation (∆). We experimented with three different approaches:

(1) Level influences variation (LV).
(2) Variation influences variation (VV).
(3) Level influences level (LL).



One important advantage of the approach is that it allows us to implement
soft constraints on the probability distribution. These constraints are imple-
mented by saying that satisfying some rule must have probability 1 or 0. In our
experiments, we implement constraints saying that a gene must be explained by
a single rule. Two example constraints for OR are of the form: The next con-
straint says that there must be a single set of parents for a gene defined with
the LV ∨ rule:

Et(G1) ∨ Et(G2)⇒ ∆t+1(G)

∧
Et(G3) ∨ Et(G4)⇒ ∆t+1(G)

→
G1 = G3 ∧G2 = G4

The second constraint ensures that we cannot use two rules of different types
at the same time:

¬( Et(G1) ∨ Et(G2)⇒ ∆t+1(G)

∧
Et(G3)⊕ Et(G4)⇒ ∆t+1(G)

)

In practice, we must be careful not to flood the system with soft constraints. In
our experiment we implemented one joint soft constraint per gene.

4 Conclusion

Learning regulatory networks from gene expression is a hard problem. Data is
noisy and relationships between genes highly complex. We present a statistical
relational approach to modeling pathways. Our approach allows us to design a
coarser and a more fine grained model, based on probabilistic gates.

We plan to continue improving the model quality and experiment with new
data. Specifically, we would like to experiment with implementing a regression
based approach, as it fits our framework naturally. Last, but not least, we would
like to investigate how to reduce the number of parameters in the model by
exploiting strong correlations between gene expression.
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