
A Wordification Approach to Relational Data
Mining: Early Results

Matic Perovšek1,2, Anže Vavpetič1,2, Nada Lavrač1,2,3

1 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
2 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

3 University of Nova Gorica, Nova Gorica, Slovenia
{matic.perovsek, anze.vavpetic, nada.lavrac}@ijs.si

Abstract. This paper describes a propositionalization technique called
wordification. Wordification is inspired by text mining and can be seen as
a transformation of a relational database into a corpus of documents. As
in previous propositionalization methods, after the wordification step any
propositional data mining algorithm can be applied. The most notable
advantage of the presented technique is greater scalability - the propo-
sitionalization step is done in time linear to the number of attributes
times the number of examples for one-to-many databases. Furthermore,
wordification results in easily understandable propositional feature rep-
resentation. We present our initial experiments on two real-life datasets.

Keywords: propositionalization, text mining, association rules

1 Introduction

Unlike traditional data mining algorithms, which look for models/patterns in
a single table (propositional patterns), relational data mining algorithms look
for models/patterns in multiple tables (relational patterns). For most types of
propositional models/patterns there are corresponding relational patterns, for
example: relational classification rules, relational regression tree, relational as-
sociation rules, and so on.

For individual-centered relational databases, where there is a clear notion
of individual, there exist techniques for transforming such a database into a
propositional or single-table format. This transformation, called propositional-
ization [2, 4], can be used by traditional propositional learners, such as decision
tree or classification rule learners.

In this paper we introduce a novel propositionalization technique called
wordification. Wordification is inspired by text mining techniques and can be
seen as a transformation of a relational database into a corpus of documents,
where each document can be characerized by a set of properties describing the
entries of a relational database.

Unlike other propositionalization techniques [2, 3, 4, 6], which search for good
(and possibly complex) relational features to construct a subsequent proposi-
tional representation, this methodology focuses on a large number of simple

Feature vector

Feature vector

Feature vector

Feature vector

Fig. 1. Document (or feature vector) construction for one individual.

features with the aim of greater scalability. Since the feature construction step
is very efficient, it can scale well for large relational databases. In fact, the pre-
sented methodology transforms a given database in time linear to the number
of attributes times the number of examples for one-to-many databases. Further-
more, due to the simplicity of features, the generated features are easily inter-
pretable by domain experts. On the other hand, this methodology suffers from
the loss of information, since the generated features do not explicitly connect
relations through variables. Instead, by using the Term Frequency–Inverse Doc-
ument Frequency (TF-IDF) [1], it tries to capture the importance of a certain
feature (attribute value) of a relation in an aggregate manner.

In this paper we report our initial experiments on two real-life relational
databases: a collection of best and worst movies from the Internet Movie DataBase
(IMBD) and a database of Slovenian traffic accidents.

The rest of the paper is organized as follows. In Section 2 we present the
new wordification methodology. Section 3 presents the initial experiments and
Section 4 concludes the paper by presenting some ideas for further work.

2 Wordification

This section presents the two main steps of the wordification propositionalization
technique. First, a straightforward transformation from a relational database to
a textual corpus is performed (Fig.1). One instance (i.e., one entry of the main
table) of the initial relational database is transformed into one text document
and the features (attribute values), describing the instance, constitute the words
of this document. One document is constructed simply as a list of attribute-value
pairs - words (or features) constructed as a combination of the table’s name and
the attribute’s name with its discrete value:

[table name] [attribute name] [attributevalue].

Note that every attribute needs to be discretized beforehand in order to be
able to represent every value as a word. For each instance, the features are first
generated for the main table and then for each entry from the additional tables,
and finally concatenated together.

Because we do not explicitly use existential variables in our features, we
instead rely on the Term Frequency–Inverse Document Frequency (TF-IDF)
measure to implicitly capture the importance of a certain feature for a given
instance. In the context of text mining, TF-IDF reflects the representativeness
of a certain word (feature) for the given document (instance). In the rest of this
section we refer to instances as documents and to features as words.

Table 1. Example input for the standard East-West trains domain.

Train
tid direction
1 east
2 west

Car
cid tid shape roof wheels
1 1 rectangle none 2
2 1 rectangle peaked 3
3 2 rectangle none 2
4 2 hexagon flat 2

Load
lid cid shape
1 1 rectangle
2 1 rectangle
3 2 circle
4 3 circle
5 4 circle
6 4 hexagon

1 [car shape rectangle, car roof none, car wheels 2, load shape rectangle, load shape rectangle,
car shape rectangle, car roof peaked, car wheels 3, load shape circle] east
2 [car shape rectangle, car roof none, car wheels 2, load shape circle, car shape hexagon,
car roof flat, car wheels 2, load shape circle, load shape hexagon] west

Fig. 2. The database from Table 1 in document representation.

For a given word w in a document d from corpus D, the TF-IDF is defined

as follows: tfidf(w, d) = tf(w, d) × log |D|
|{d∈D:w∈d}| , where tf(·) represents the

frequency of word w in document d. In other words, a certain word will have
a high TF-IDF (i.e., the feature is given a high weight for this instance), if it
is frequent within this document (instance) and infrequent in the given corpus
(the original database). In other words, the weight of a word gives a strong
indication of how relevant is the feature for the given individual. The TF-IDF
weights can then be used either for filtering words with low importance or using
them directly by the propositional learner.

The technique is illustrated on a simplified version of the well-known East-
West trains domain, where the input database consists of two tables shown in
Table 1; we have one east-bound and one west-bound train, each with two cars
with certain properties. The Train table is the main table and the trains are the
instances. We want to learn a classifier to determine the direction of an unseen
train. For this purpose the class attribute (train direction) is not preprocessed
and is only appended to the resulting feature vector of words.

First, the corresponding two documents (one for each train) are generated
(Fig. 2). After this, the documents are transformed into a bag-of-words represen-
tation by calculating the TF-IDF values for each word of each document, with
the class attribute column appended to the transformed bag-of-words table.

def wordification(table,individual)
words=[]
for att,val in table[individual]:

words.append(table_att_val)
#loop through tables which contain current table’s foreign key
for secondary_table in table.secondary_tables():

words.extend(wordification(secondary_table,individual))
return

#STEP1
documents={}
for individual in main_table:

documents[individual]=wordification(main_table,individual)
#STEP2
feature_vectors=tfidf(documents)
results=propositional_learner(feature_vectors)

Fig. 3. Pseudo-code of the wordification algorithm.

Table 2. Table properties of the experimental data.

IMDB #rows #attributes
movies 166 4
roles 7,738 2

actors 7,118 4
movie genres 408 2

movie directors 180 2
directors 130 3

director genres 243 3

Accidents #rows #attributes
accident 102,756 10
person 201,534 10

Table 3. Document properties after applying the wordification methodology.

Domain Individual #examples #words #words after filtering
IMDB movie 166 7,453 3,234

Accidents accident 102,759 186 79

3 Experimental results

This section presents the initial experiments of the wordification methodology.
We performed association rule learning in combination with the wordification
approach on two real-life datasets: the best and worst ranked IMDB movies
database and the Slovenian traffic accidents database. Table 2 lists the charac-
teristics of both databases.

The preprocessing procedure was performed on both databases as follows.
First, the wordification step was applied as described in Section 2. Next, irrel-
evant features (which have the same value across all examples) were removed,
resulting in less than half of the features (see Table 3). In order to prepare the
data for association rule mining, the data was also binarized: a feature was as-
signed value true if the corresponding TF-IDF value was above 0.06, otherwise
false.

IMDB database. The complete IMDB database is publicly available in the
SQL format1. This database contains tables of movies, roles, actors, movie gen-
res, directors, director genres.

The database used in our experiments consists only of the movies whose
titles and years of production exist on IMDB’s top 250 and bottom 100 chart2.
The database therefore consists of 166 movies, along with all of their actors,
genres and directors. Movies present in the IMDB’s top 250 chart were added
an additional label goodMovie, while those in the bottom 100 were marked as
badMovie. Additionally, attribute age was discretized; a movie was marked as
old if it was made before 1950, fairlyNew if it was produced between 1950 and
2000 and new otherwise.

After preprocessing the dataset using the wordification methodology, we per-
formed association rule learning. Frequent itemsets were generated using Rapid-
Miner’s [5] FP-growth implementation. Next, association rules for the resulting

1 http://www.webstepbook.com/supplements/databases/imdb.sql
2 As of July 2, 2012

goodMovie← director genre drama, movie genre thriller,
director name AlfredHitchcock. (Support: 5.38% Confidence: 100.00%)

movie genre drama← goodMovie, actor name RobertDeNiro.
(Support: 3.59% Confidence: 100.00%)

director name AlfredHitchcock← actor name AlfredHitchcock.
(Support: 4.79% Confidence: 100.00%)

director name StevenSpielberg← goodMovie, movie genre adventure,
(Support: 1.79% Confidence: 100.00%) actor name TedGrossman.

Fig. 4. Examples of interesting association rules discovered in the IMDB database.

frequent itemsets were produced. Among all the discovered rules, several inter-
esting rules were found. Figure 4 presents some of the interesting rules.

The first rule states that if the movie’s genre is drama and is directed by
Alfred Hitchcock, who is also known for drama movies, then the movie is a good
movie. The second rule concludes that if a movie is good and Robert De Niro
acts in it, than it must be a drama movie. The third interesting rule shows
that Alfred Hitchcock acted only in the movies he also directed. The last rule
implies that if Ted Grossman acts in a good adventure movie, then the director
is Steven Spielberg (Ted Grossman usually plays the role of a stunt coordinator
or performer).

Traffic accident database. The second dataset consists of all accidents that
happened in Slovenia’s capital city Ljubljana between the years 1995 and 2005.
The data is publicly accessible from the national police department’s website3.
The database is multi-relational and consists of the information about the acci-
dents along with all the accidents’ participants.

noInjuries← accident trafficDensity rare,
accident location parkingLot. (Support: 0.73% Confidence: 97.66%)

person gender male← person vehicleType motorcycle.
(Support: 0.11% Confidence: 99.12%)

Fig. 5. Examples of interesting association rules discovered in the accidents database.

The data already contained discretized attributes, so further discretization
was not needed. Similarly as with the IMDB databse, preprocessing using the
wordification methodology, FP-growth itemset mining and association rule min-
ing were performed. Figure 3 presents some of the interesting rules found in the
Slovenian traffic accidents dataset.

The first rule indicates that if the traffic is rare and the accident happened in
a parking lot, then no injuries occurred. The second rule implies that whenever
a motorcycle is involved in an accident, a male person is involved.

3 http://www.policija.si/index.php/statistika/prometna-varnost

4 Conclusion

This paper presented a novel propositionalization technique called wordification.
This methodology is inspired by text mining and can be seen as a transformation
of a relational database into a corpus of documents. As is typical for proposition-
alization methods, any propositional data mining algorithm can be applied after
the wordification step. The most notable advantage of the presented technique
is greater scalability - the propositionalization step is done in time linear to the
number of attributes times the number of examples for one-to-many databases.
Moreover, the methodology allows for producing simple, easy to understand fea-
tures, and consequently, easily understandable rules.

We have presented initial results on two real-life databases: the best and worst
movies from the IMDB database and a database of Slovenian traffic accidents.
Given that we have found some interesting patterns using our methodology,
we are motivated to further explore this approach on new datasets. In future
work we will apply the methodology to larger databases to explore its potential
limitations. Furthermore, we will experimentally compare this methodology with
other known propositionalization techniques.

Acknowledgements

We are grateful to Marko Grobelnik and Peter Ljubič for their initial work on this
topic. This work was supported by the Slovenian Research Agency and the FP7
European Commission projects MUSE (grant no. 296703) and FIRST (grant no.
257928).

References

[1] Karen Spärck Jones. A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of Documentation, 28:11–21, 1972.

[2] Stefan Kramer, Bernhard Pfahringer, and Christoph Helma. Stochastic propo-
sitionalization of non-determinate background knowledge. In Proceedings of the
Inductive Logic Programming Workshop, pages 80–94. Springer, 1998.

[3] Ondřej Kuželka and Filip Železný. Block-wise construction of tree-like relational
features with monotone reducibility and redundancy. Machine Learning, 83(2):163–
192, 2011.

[4] Nada Lavrač, Sašo Džeroski, and Marko Grobelnik. Learning nonrecursive defini-
tions of relations with LINUS. In EWSL, pages 265–281, 1991.

[5] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler.
YALE: Rapid prototyping for complex data mining tasks. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD’06), pages 935–940, Philadelphia, PA, USA, 20-23 August 2006. ACM Press,
NY, USA.

[6] Filip Železný and Nada Lavrač. Propositionalization-based relational subgroup
discovery with RSD. Machine Learning, 62:33–63, 2006.

