
Towards an Automated Pattern Selection
Procedure in Software Models

Alexander van den Berghe, Jan Van Haaren,
Stefan Van Baelen, Yolande Berbers, and Wouter Joosen

{firstname.lastname}@cs.kuleuven.be
iMinds-DistriNet, Department of Computer Science, KU Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract. Software patterns are widely adopted to manage the rapidly
increasing complexity of software. Despite their popularity, applying soft-
ware patterns in a software model remains a time-consuming and error-
prone manual task. In this paper, we argue that the relational nature
of both software models and software patterns can be exploited to au-
tomate this cumbersome procedure. First, we propose a novel approach
to selecting applicable software patterns, which requires only little in-
teraction with a software developer. Second, we discuss how relational
learning can be used to further automate this semi-automated approach.

Keywords: Relational Learning, Software Pattern Selection, Logic
Programming, Application

1 Introduction

The complexity of both software and the software development process has in-
creased rapidly over the past decades because of three reasons. The first reason
is the steadily increasing complexity of the problems that software tackles. The
second reason is the shift towards distributed software, which entails a number of
additional issues to account for. The third reason is the relatively long lifetime of
software, which is often much longer than that of the hardware it was originally
developed for and which requires it to adapt to an ever changing environment.

Software patterns provide established solutions to recurring issues in software
development [5, 1] and hence improve the overall quality, portability and read-
ability of a software design. Although software patterns are widely adopted by
software developers, applying patterns remains a mostly manual two-step task.
First, a developer selects the most appropriate patterns based on his or her
previous experiences. This is an increasingly difficult and time-consuming task

This research is partially funded by the Flemish government institution IWT (Insti-
tute for the Promotion of Innovation by Science and Technology in Flanders), by the
Interuniversity Attraction Poles Programme Belgian State, Belgian Science Policy,
and by the Research Fund KU Leuven.



due to the steadily growing number of patterns. Second, a developer instantiates
these patterns in the software design, which is a repetitive and error-prone task.

In this paper, we argue that the relational nature of both software models and
software patterns can be exploited to automate this cumbersome procedure. We
apply inductive logic programming techniques for representing these models and
patterns as well as reasoning about them. First, we propose a semi-automated
approach to selecting applicable patterns in a graphical software model. Our
approach relies on a concise relational representation of both the available soft-
ware patterns and a software model. The approach requires only little interaction
with a software developer whereas current pattern selection procedures rely on
an extensive specification of the design problem. Second, we briefly share ideas
on how relational learning techniques can further automate our approach and
hence reduce the amount of user interaction.

2 Background on Software Engineering

On a very high level, designing software is gathering requirements and ensuring
these requirements are met in the final software system. Software developers
typically identify a number of components, which each satisfy a subset of the
requirements, in order to manage the complexity of software. Components offer
their functionality through one or more interfaces via which they collaborate.

Software developers formally capture their design decisions in graphical mod-
els. Each model element can be annotated with additional information (e.g., im-
plementation details) that is required during the development process. Although
our approach is applicable to multiple types of software models, we restrict our-
selves to the Component-and-Connector Model, which is one of the most impor-
tant types of models during software development. Figure 1 shows an excerpt of
a digital newspaper system, inspired by [10], in which clients can browse through
news articles, read news articles and subscribe to specific categories of news.

Fig. 1. Software model of a digital newspaper system where rectangles represent com-
ponents and circles represent interfaces. A line denotes a component offering an inter-
face whereas a line ending in half a circle denotes a component using an interface.

Software patterns offer established solutions to recurring design issues. Along-
side a unique name, a software pattern comprises a generic description of both
the design issue it addresses and the solution it proposes (i.e., independent of
any concrete design and/or implementation decision). Furthermore, a software



pattern contains an overview of its consequences and trade-offs, which is helpful
to decide on the most appropriate software pattern.

Automatically selecting applicable software patterns requires a formal repre-
sentation of either the design issue a software pattern addresses or the solution it
proposes. Our approach leverages Zdun and Avgeriou’s concept of primitives [12]
to formally represent a pattern’s proposed solution. Primitives have precisely
defined semantics and can be seen as building blocks for patterns. A software
pattern combines several primitives to offer a solution to a specific design issue.

Figure 2 shows the Client-Dispatcher-Server pattern, which comprises
the Client, Dispatcher and Server primitives [1].

Fig. 2. Software model of the Client-Dispatcher-Server pattern.

3 Related Work

Pattern selection has only been given little attention in academic literature.
Kampffmeyer and Zschaler [8] use a pattern intent ontology that can be queried
with design issues and return all applicable patterns. Kim and El Khawand [9]
first formally model each pattern as a set of pattern-specific roles and then deter-
mine which patterns are applicable by verifying which roles the software model
fulfills. Hsueh et al. [7] introduce a goal-driven approach that proposes applica-
ble patterns by asking relevant questions to the developer. Hasheminejad and
Jalili [6] first classify the patterns and the design issue using text classification
and then propose the best matching patterns from the design issue’s class.

Current pattern selection techniques require either an extensive specifica-
tion of the design problem (e.g., [8, 7, 6]) or the patterns’ problem descriptions
(e.g., [9]), which is often cumbersome and time-consuming, and considerably
limits their usability and reliability. Besides, it is not obvious how to extend
these techniques to new (types of) patterns since either an extensive analysis is
required or the terminology in their description should be chosen carefully.

Although automated pattern selection has only been given little attention to
date, the idea of tackling software engineering issues using machine learning is
not new. One area of interest is that of software pattern detection, where the
task is to identify applied software patterns when re-engineering legacy software.
Correa et al. [2] perform this task using Prolog as a representation language.
Another area of interest is that of software testing, where the task is to evaluate
how well software systems meet their specification [3, 11].



4 Contributions

This section discusses the two main contributions of this paper. First, we pro-
pose Semi-Automated Role-Based Pattern Selection (SARBPS), a novel semi-
automated approach for selecting applicable software patterns in software mod-
els. The approach exploits the relational nature of both software patterns and
software models to significantly reduce the time required to decide which soft-
ware patterns are applicable in a given software model. Second, we discuss how
relational learning can be used to further automate our approach and hence
reduce the amount of user interaction.

4.1 Contribution 1: Semi-Automated Role-Based Pattern Selection

We now discuss the three steps of the SARBPS approach in turn. The first step
concerns representing the available software patterns as sets of primitives, where
each primitive fulfills one or more roles. SARBPS represents this information as
a knowledge base consisting of two classes of facts. The first class is the class
of entity facts that enumerate the available patterns, primitives and roles. The
second class is the class of relation facts that define relations between patterns
and primitives on one hand and primitives and roles on the other hand. These
relations express which primitives each pattern comprises and which role(s) each
primitive fulfills. Roles are only meaningful if fulfilled by at least one primitive.

The second step involves annotating the components and interfaces of the
software model with additional information. A software developer employs the
requirements that the components and interfaces satisfy to assign one or multiple
roles, which describe their properties and characteristics. Roles indicate which
application-independent function the annotated element fulfills in a software
system. For example, a component that provides services to other components
can be assigned the ServiceProvider role. Only roles defined in the knowledge
base constructed in the previous step can be assigned.

The third step involves selecting applicable patterns by establishing a map-
ping between the roles of the elements in the software model on one hand and
the roles of the available patterns on the other hand. For each of the available
patterns, SARBPS verifies whether it is applicable. A pattern is applicable if
and only if each of the software model’s roles is fulfilled by at least one of the
pattern’s primitives. SARBPS achieves this by querying the knowledge base it
constructed in the first step using the roles assigned during the second step.

SARBPS uses two queries to retrieve all applicable patterns from the knowl-
edge base. The first query returns for a given pattern and a given role which
of the pattern’s primitives fulfills this role or fails when no primitive is found.
The second query returns a list of applicable patterns for a given set of roles
by iteratively calling the first query for any possible combination of an available
pattern and a given role.



Example 1. In order to illustrate our approach, we use the software model and
software pattern shown in Figures 1 and 2 respectively. Due to space constraints,
we only provide a high-level discussion in this paper.2 In the first step, we
add the Client-Dispatcher-Server pattern and the three primitives this pat-
tern comprises, Client, Dispatcher and Server, to the knowledge base. We
also add the roles ServiceProvider and ServiceRequester, which the Server

and Client primitives fulfill respectively. In the second step, we assign the
ServiceProvider role to both the NewspaperService and ClientManagement

components, and the ServiceRequester role to the Client component. In the
third step, querying the knowledge base for applicable software patterns returns
the Client-Dispatcher-Server pattern.

Although our semi-automated pattern selection approach saves significant
amounts of precious development time, manually assigning roles to components
and interfaces is still an error-prone and time-consuming task, especially for
large, real-world software systems. Therefore, we propose using relational learn-
ing to automate this task and share some ideas on how to do this in what follows.

4.2 Contribution 2: Towards Automated Role Annotations

When annotating a component or an interface with one or multiple roles, soft-
ware developers leverage the descriptions of the requirements each component or
interface fulfills. These descriptions are mostly free text but they tend to have a
simple structure. For example, one of the requirements in our running example
states that a journalist must be able to add an article to the system. In a medical
system, a requirement could be that the medical staff must be able to add a new
patient file to the system. Although the descriptions of these requirements are
completely different, it is clear that they can be written as instances of the same
abstract pattern since they share a common structure.

The missing building block is a convenient formal language for representing
software requirements. Once we have such a language, we can naturally model
requirements in a relational learning system and pose the assignment of roles to
components and interfaces as a collective classification task. We can then rep-
resent components and interfaces as entities, and collaborations amongst these
components and interfaces as relations. The classification task boils down to
learning one or multiple roles for each component. The key idea is to leverage
the expert knowledge and previous role labeling efforts of software engineers,
who can possibly already assign roles to some of the components and interfaces.

The kernel-based relational learning framework kLog [4] is a suitable learning
system to perform this task. An important advantage of kLog is that the outcome
of its graphicalization phase, a ground entity-relationship model, is conceptually
very similar to a software model and hence easily interpretable by a software
engineer. Preliminary results on a toy example yield encouraging results.

2 A thorough discussion of the running example and a Prolog implementation are avail-
able at https://people.cs.kuleuven.be/alexander.vandenberghe/sarbps.html.



5 Conclusion and Future Work

We have introduced a novel semi-automated approach for selecting applicable
software patterns in software models, which makes developers to save significant
amounts of development time. Our approach relies on a concise relational repre-
sentation of both software patterns and software models, which allows reasoning
about them and including additional software patterns in a straightforward way.

Our main research direction is further automating the approach using rela-
tional learning techniques. The key challenge is designing a convenient formal
language for representing software requirements in a relational learning frame-
work. Furthermore, we aim to limit the number of proposed patterns by incor-
porating each pattern’s trade-offs and consequences.

Acknowledgments. We thank Paolo Frasconi and Luc De Raedt for providing
access to the kLog implementation.

References

[1] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. Wiley (1996)

[2] Correa, A., Werner, C., Zaverucha, G.: Object Oriented Design Expertise Reuse:
an Approach Based on Heuristics, Design Patterns and Anti-Patterns. In: on
Heuristics, Design Patterns and Anti-patterns, in Proceedings of the 6th Interna-
tional Conference on Software Reuse. pp. 336–352 (2000)

[3] DeMillo, R.A., Offutt, A.J.: Constraint-Based Automatic Test Data
Generation. IEEE Trans. Softw. Eng. 17(9), 900–910 (Sep 1991),
http://dx.doi.org/10.1109/32.92910

[4] Frasconi, P., Costa, F., De Raedt, L., De Grave, K.: kLog: A Language for Logical
and Relational Learning with Kernels (2012), arXiv:1205.3981v3

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1994)

[6] Hasheminejad, S.M.H., Jalili, S.: Design Patterns Selection: An Automatic Two-
Phase Method. The Journal of Systems and Software 85(2), 408–424 (Feb 2012)

[7] Hsueh, N.L., Kuo, J.Y., Lin, C.C.: Object-Oriented Design: A Goal-driven and
Pattern-based Approach. Software and Systems Modeling 8(1), 67–84 (2009)

[8] Kampffmeyer, H., Zschaler, S.: Finding the Pattern You Need: The Design Pattern
Intent Ontology. In: Model Driven Engineering Languages and Systems. pp. 211–
225. No. 4735 in Lecture Notes in Computer Science (2007)

[9] Kim, D.K., El Khawand, C.: An Approach to Precisely Specifying the Problem
Domain of Design Patterns. Journal of Visual Languages & Computing 18(6),
560–591 (2007)

[10] Van Landuyt, D., Op de beeck, S., Truyen, E., Verbaeten, P.: Building a Digital
Publishing Platform Using AOSD. In: LNCS Transactions on Aspect-Oriented
Software Development. vol. 9, pp. 1–34 (December 2010)

[11] Vanmali, M., Last, M., Kandel, A.: Using a neural network in the software test-
ing process. International Journal of Intelligent Systems 17(1), 45–62 (2002),
http://dx.doi.org/10.1002/int.1002

[12] Zdun, U., Avgeriou, P.: Modeling Architectural Patterns Using Architectural
Primitives. ACM SIGPLAN Notices 40(10), 133–146 (Oct 2005)


