
Non-Functional Requirements Revisited

Feng-Lin Li
1
, Jennifer Horkoff

1
, John Mylopoulos

1
, Lin Liu

2
, Alexander Borgida

3

1: Dept. of Information Engineering and Computer Science, University of Trento, Trento, Italy

2: School of Software, Tsinghua University, Beijing, China

3: Department of Computer Science, Rutgers University, New Brunswick, USA

Abstract. Goal-Oriented Requirements Engineering (GORE) is founded on the

premise that functional and non-functional requirements (NFRs) are stakeholder

goals to be fulfilled by the system-to-be. Moreover, functional requirements are

“hard” goals with clear-cut criteria for fulfillment, while traditionally NFRs are

usually “soft” goals (aka softgoals) lacking a clear-cut criterion for success. We

argue against this distinction and in favor of a different one: traditional NFRs

(e.g., security, reliability, performance, usability etc.) are requirements for qual-

ities that existentially depend on the subject they qualify. We give examples in

support of our argument, and sketch an abstract syntax and semantics for goal

models that follow our proposal.

Keywords: Goal Model, Softgoal, Quality, Quality Constraint, Ontology

1 Introduction

The rise of goal orientation as a research paradigm for Requirements Engineering

(RE) is founded on the premise that functional and non-functional requirements can

be modeled and analyzed as (stakeholder) goals. According to this view, functional

requirements are modeled as hard goals with a clear-cut criterion for fulfillment,

while non-functional requirements (hereafter NFRs) are modeled as soft goals (aka

softgoals) with no such criterion [1], hence their name. This paradigm served as re-

search baseline for i* [2], but has also enjoyed much broader attention within the RE

community during the past 20 years.

In this position paper we challenge this orthodoxy. In particular, we argue that tra-

ditional NFRs, such as performance, reliability, maintainability, etc., are not softgoals,

but rather requirements for qualities that existentially depend on the subject they qual-

ify [3]. Moreover, as quality requirements, these kinds of NFRs are very special opta-

tive statements: they constrain the space of allowable quality values for their subject.

This key insight, missing from earlier treatments of NFRs, influences in important

ways both the abstract syntax and the semantics of requirements models.

To capture this missing existential dependence, we distinguish quality requirements

from NFRs and promote them to first-class status in our framework. At the same time,

to allow the “defuzzification” of vague quality requirements, we follow Techne [4],

which made the satisfaction of softgoals measurable by operationalizing them as

“quality constraints” – though at the time the term “quality” did not have the ontolog-

ically technical meaning to be introduced in this paper. Based on these, we revisit the

requirements model and give examples in support of our proposal.

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

109

2 Quality Requirements

DOLCE [3] is an ontology that aims at capturing the ontological categories underly-

ing natural language and human common sense. It provides a rich theory of qualities,

which we adopt here. According to DOLCE, a quality is a particular which applies to

a particular subject, and inheres in that subject, unable to exist independently from it.

This existential dependence makes the semantics of qualities different from those of

softgoals: we can only assess the satisfaction of a quality if its subject exists. For ex-

ample, we cannot assess the security of the goal “Message be Sent” unless the mes-

sage has been sent (this is also noted in [5]). However, this important existential de-

pendence of qualities has not been captured in previous GORE techniques, such as i*

[2], the NFR framework [6], Tropos, and Techne [4].

The original proposal in DOLCE associates a particular quality, say c#1, of quality

type Cost, to an individual, say trip#1, in class Trip; and then associates with c#1 the

particular cost value, say 1000 , in the Cost quality space EuroValues. We rephrase

this by using a single, higher-order function hasQualityValue, which takes as argu-

ment the quality type QT, and returns a function that maps particular subjects to their

quality values. Thus hasQualityValue(QT) can be used as in hasQualityValue(Cost)

(trip#1) to obtain the cost value 1000 . Meanwhile, we overload this function to apply

to a class/type Subj, by applying hasQualityValue(QT) to all instances of Subj, obtain-

ing the set of quality values for all these individuals. E.g., hasQualityValue(Cost)

(Trip) returns the set of all trips’ costs. Note that in order to accommodate different

degrees of accuracy, DOLCE views a quality space as consisting of regions with sub-

regions. So a trip might have “Low” cost, with “Very Low” being a sub-region.

We view a quality requirement (QR) as a constraint over the region of expected

quality values (e.g. low, fast, or high) of relevant QT (e.g. cost, speed, or performance)

for a subject (type). On the basis of the above defined function, this can be formalized

as hasQualityValue(QT)(Subj) RG, where QT is a quality type, Subj is a class of

subject individuals, RG is a possibly underspecified region of desired quality values.

To make the quality region RG measurable, quality constraints (QCs) are introduced

to precisely define its boundary [4][7]. For example, the quality requirement “the Cost

of Trip should be Low”, formally written as hasQualityValue(Cost)(Trip) Low Cost,

can be made more precise by specifying a QC: Low Cost = { | .

On this view, we can express the vagueness of quality requirements using the de-

sired regions of quality values (of corresponding qualities), which are fuzzy (e.g. low,

fast). QRs can be made measureable by operationalizing them as quality constraints.

Keep in mind that NFRs are not only quality requirements; e.g., the NFRs “Response

Time ≤ 5sec” and “Take a Nice Trip” can be modeled as hard goals and softgoals resp.

The foundational concepts related to NFRs in our framework are defined as follows.

 A softgoal is a goal without a clear-cut definition of satisfaction [2], but an inde-

pendent existence. Its satisfaction is determined by its refinements, which can in-

clude softgoals, hard goals and quality goals.

 A quality goal (QG) represents a quality requirement, which consists of a quality

type, a desired quality region and a subject, with a different representation; e.g., a

QG “Low Cost[Trip]” represents a QR “the Cost of Trip should be Low”. A quality

goal can be refined as quality goals or operationalized by a quality constraint. Its

satisfaction is determined by its subject and refinements/operationalization.

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

110

 A quality constraint precisely defines a desired quality region in the quality space

of a quality type and is achieved or denied by tasks. In our framework, quality con-

straints are metrics, but they are ontologically broader than metrics according to

Techne [4], from which this concept is adopted.

3 A Framework for Goal Models with Quality Goals

To address the observed deficiency, we propose a revisited goal modeling framework

on the basis of Techne [4], which extends i* with quality constraints, preferences and

inconsistency handling. We use extended EBNF (Extended Backus-Naur Form) to

sketch an abstract syntax, wherein “+” means one or more, “ ” means zero or more,

“ ” means ‘and’, “|” means ‘exclusive or’, “ ” means substitution, and “ ” with a

label at the top indicates particular relationship. We intend to describe a graphical

notation and don’t impose an order for elements on the right-hand side of the rules.

()

 | |

()

→

()

→

()

→

()

→

()

→

() []

Fig.1 The Abstract Syntax of the Revisited Goal Modeling Framework

The revisited requirements model is shown in Fig. 1 and visualized in Fig. 2. As the

baseline, we use goals as a means to represent requirements (thus a quality require-

ment is now represented as a quality goal). Quality Goal is the key concept in our

framework: it is expressed in the form of Quality'[Subj] (Q' [Subj] for short, e.g. “Low

Cost[Book Flight]”), in which Q' is an intentional quality with both quality type and

the desired region of quality values (e.g. Low Cost) and Subj is the type of subjects

(e.g. Book Flight) that Q' inheres in; its operationalization, namely quality constraint,

clearly specifies the region within the entire quality space.

Fig.2 The Visual Representation of the Revisited Goal Modeling Framework

A travel example is used to illustrate the concepts in the framework. In this scenar-

io, an employee Lily plans to take a leisure travel in Europe. As shown in Fig. 3, the

top-level goal is a soft goal “Take a Nice Trip”, which is refined to a hard goal “Take

a Trip” and a quality goal “Nice[Take a Trip]”. The hard goal is iteratively refined

and finally operationalized as tasks; the quality goal is refined to other quality goals

which are operationalized by quality constraints.

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

111

Fig.3 A Travelling Example

The refinement of a quality goal Q' [Subj] has two forms: via the intentional quality

Q' and via the subject Subj. The refinement of Q' can be performed by following the

existing quality type/dimension standards (e.g. ISO standards 9126 and more recently

25010), or using domain-specific knowledge. The refinement of Subj depends on

either the hierarchy of hard goals or the ontology of subjects in Fig. 4. For example,

refining by quality, Nice for subject Take a Trip usually includes Low Cost, Comfort,

Convenient and Timeliness. In our example, only a subset of them is considered:

“Nice[Take a Trip]” is refined as “Low Cost[Take a Trip]” and “Comfort[Take a

Trip]”. Refining by subject, taking a trip is composed of booking flight and hotel in

the hard goal hierarchy, so the quality “Low Cost[Take a Trip]” is refined as “Low

Cost[Book Flight]” and “Low Cost[Book Hotel]”. In brief, the refinement of quality

goals can be summarized as two rules:

()

 {

 []

 { [] [] [] (|)

()

 {

 []

 { [] [] [] (|)

In trying to understand the semantics of quality goals, we adopt a holistic perspec-

tive: a software system isn’t just code, or code plus design and requirements; rather, it

includes all the things that concern its existence, its makeup, development processes

and history. Accordingly, quality goals can have any of these aspects as subjects. To

clarify this, we give a simple ontology in Fig. 4, which defines the scope over which

qualities apply. We intend for such subjects to cover both the problem and solution

domain, allowing us to express both “as-is” and “to-be” quality requirements. Our

ontology is not claimed to be complete and can be extended on demand.

()

()

→

()

→

()

→

()

→

()

→

Fig.4 An Ontology for the Subjects of Qualities

In our proposal, the partial contribution links help and hurt are excluded, only make

and break are preserved to represent the achievement of quality constraints by tasks.

Low Cost

[Take a Trip]

Low Cost

[Book Hotel]

Low Cost

[Book Flight]

0 ≤ Price ≤ 80 €
0 ≤ Price ≤ 500 €

>>

Comfort

[Take a Trip] Comfort

[Book Flight]

Take a Trip

Book Flight

Nice

[Take a Trip]

Search

Ticket

Select

Class

Select

Seat

Make

Payment

Make

Itinerary

Select

Flight

Traveler

Take a Nice

Trip

Select

Class

Select

Flight

Y ≤ Leg Room ≤ Z

Make

Book Hotel

Break

>>

Hard Goal

Quality

Goal

Quality

Constraints

Softgoal

Task

>
>HasPriorityTo

RefineTo

OperationalizeAs

AndRefineTo

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

112

We omit help and hurt because they force on us a four-valued logic (satisfied S, de-

nied D, partially satisfied PS and partially denied PD) [8]. As such, potential conflicts

arise: if a quality goal receives both help and hurt or two competitive quality goals are

both partially satisfied/denied, it is problematic to identify which alternative solution

(i.e. a set of tasks) better satisfies given hard goals, along with concerned quality

goals [5].

 Meanwhile, make and break allow us to deal with the achievements of quality con-

straints using a simpler two-valued logic (S/D). By incorporating preferences and

priorities, our framework is able to facilitate the selection of the best alternative re-

quirements. In our goal models, the “HasPriotityTo” links will be drawn from pre-

ferred quality goals to less preferred ones, and priorities will be assigned to concerned

quality goals. In this way, we are able to obtain an ordered sequence of quality goals

based on stakeholder preferences. Future work will focus on describing use of our

framework for the requirements selection problem.

4 The Semantics of Quality Goals

Reasoning about the satisfaction of goals can be performed on goal models by using

inference rules and label propagation algorithms [8][9]. The core of existing goal

semantics can be summarized as [8]: if a goal G is AND-refined to a set of goals G1,

G2 …Gn (), then G can be satisfied only if all the sub-goals are satisfied; if G is

OR-refined, G will be satisfied if any of the sub-goals is satisfied; if a goal G1 makes

(resp. breaks) a goal G2, then G2 will be satisfied (resp. denied) if G1 is satisfied.

In our framework, the semantics of quality goals are two-fold: (i) they existentially

depend on subjects (ii) they constrain regions of quality values, which are clearly

specified by quality constraints. The existential dependence indicates: if the subject

Subj of a quality goal QG is not satisfied, then the satisfaction of QG is unknown. We

use symbol N for this situation, which means “no evidence” (axiom 1). If the subject

Subj is satisfied, then the satisfaction of QG is determined by its refinements (axiom 2

~ 4). Take axiom (2) as an example, given that QG = Q' [Subj], and QG is AND-

refined to G1…Gi …Gn (), then QG will be satisfied if its subject Subj is

satisfied and all of the sub-goals are achieved. The other axioms are structured simi-

larly.

() [] () ()

() []

→ { () (()) ()()

() []

→ { () (()) ()()

() []

→ { () (()) ()()

() []

→ { () (()) ()()

In accordance with the ontology in Fig. 4, the subjects can be processes or things

instead of goals. In such cases, we can speak of process execution or thing existence

instead of goal satisfaction. Moreover, in our framework, we use AND-refinement

and refinement, and avoid the use of explicit OR.

() []

→
 () () ()

() []

→

→ () () () () ()

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

113

() []

→

→ () () () () ()

The axioms (6 ~ 8) deal with the satisfaction of quality goals at the bottom of the

quality goal hierarchy. A quality goal QG will be satisfied, if the actual quality value

of each individual in Subj on quality type QT belongs to the region RG being speci-

fied by a quality constraint QC (axiom 6). Axiom (7 ~ 8) show the semantics of make

and break: if a task T makes (resp. breaks) a quality constraint QC, then the corre-

sponding quality goal QG of QC will also be satisfied (resp. denied). It is worth men-

tioning that to deny QG, we also need its subject Subj to be achieved; otherwise the

satisfaction of QG is unknown.

5 Conclusions and Future work

In this paper, we identified from NFRs quality requirements and model them as quali-

ty goals. Accordingly, we proposed a revisited goal modeling framework, sketching

an abstract syntax and semantics. There are several interesting and challenging prob-

lems open for discussion: How to properly and systematically handle ambiguous qual-

ities (e.g. inexpensive and low cost)? How will tasks influence the quality values of

the concerned qualities? How to incorporate context in our goal models? These will

be the key concerns in our next steps.

References

1. J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunctional require-

ments: A process-oriented approach,” Software Engineering, IEEE Transactions on, vol.

18, no. 6, pp. 483–497, 1992.

2. E. S. Yu, “Towards modelling and reasoning support for early-phase requirements engi-

neering,” in Requirements Engineering, 1997., Proceedings of the Third IEEE Interna-

tional Symposium on, 1997, pp. 226–235.

3. C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari, “WonderWeb Delivera-

ble D18, Ontology Library (final),” 2009.

4. I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne: Towards a new genera-

tion of requirements modeling languages with goals, preferences, and inconsistency han-

dling,” in Requirements Engineering Conference (RE), 2010 18th IEEE International,

2010, pp. 115–124.

5. J. Horkoff and E. Yu, “Comparison and evaluation of goal-oriented satisfaction analysis

techniques,” Requirements Engineering, pp. 1–24, 2012.

6. L. Chung, B. A. Nixon, and E. Yu, Non-Functional Requirements in Software Engineer-

ing, vol. 5. Kluwer Academic Pub, 2000.

7. I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the core ontology and problem in

requirements engineering,” in International Requirements Engineering, 2008. RE’08. 16th

IEEE, 2008, pp. 71–80.

8. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Reasoning with goal mod-

els,” Conceptual Modeling—ER 2002, pp. 167–181, 2003.

9. J. Horkoff and E. Yu, “Analyzing goal models: different approaches and how to choose

among them,” in Proceedings of the 2011 ACM Symposium on Applied Computing, 2011,

pp. 675–682.

Proceedings of the 6th International i* Workshop (iStar 2013), CEUR Vol-978

114

