
Concept Lattices Constrained by Attribute
Dependencies
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Abstract. The input data to formal concept analysis consist of a col-
lection of objects, a collection of attributes, and a table describing a
relationship between objects and attributes (so-called formal context).
Very often, there is an additional information about the objects and/or
attributes available. In the analysis of the data, the additional informa-
tion should be taken into account.
We consider a particular form of the additional information. The infor-
mation is in the form of particular attribute dependencies. The primary
interpretation of the dependencies is to express a kind of relative impor-
tance of attributes. We introduce the notion of a formal concept compat-
ible with the attribute dependencies. The main gain of considering only
compatible formal concepts and disregarding formal concepts which are
not compatible is the reduction of the number of resulting formal con-
cepts. This leads to a more comprehensible structure of formal concepts
(clusters) extracted from the input data. We illustrate our approach by
examples.
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1 Introduction and problem setting

Finding interesting patterns in data has traditionally been a challenging prob-
lem. Particular attention has been paid to discovering interesting clusters in
data. Recently, there has been a growing interest in so-called formal concept
analysis (FCA) [4] which provides methods for finding patterns and depen-
dencies in data which can be run automatically. The patterns looked for are
called formal concepts. Both foundations and applications (classification, soft-
ware (re)engineering, document and text organization, etc.) of formal concept
analysis are documented (see [4] and [1], and the references therein).

The central notion of all clustering methods is that of a cluster. Clusters are
supposed to be meaningful pieces of data which are cohesive in some way. To
have a good notion of a cluster, one should exploit all the information about the
data available which can contribute to identification of meaningful clusters.

Formal concept analysis deals with input data in the form of a table with
rows corresponding to objects and columns corresponding to attributes which
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describes a relationship between the objects and attributes. The data table is
formally represented by a so-called formal context which is a triplet 〈X, Y, I〉
where I is a binary relation between X and Y , 〈x, y〉 ∈ I meaning that the
object x has the attribute y. For each A ⊆ X denote by A↑ a subset of Y
defined by

A↑ = {y | for each x ∈ X : 〈x, y〉 ∈ I}.

Similarly, for B ⊆ Y denote by B↓ a subset of X defined by

B↓ = {x | for each y ∈ Y : 〈x, y〉 ∈ I}.

That is, A↑ is the set of all attributes from Y shared by all objects from A
(and similarly for B↓). A formal concept in 〈X, Y, I〉 is a pair 〈A,B〉 of A ⊆ X
and B ⊆ Y satisfying A↑ = B and B↓ = A. That is, a formal concept consists
of a set A of objects which fall under the concept and a set B of attributes
which fall under the concept such that A is the set of all objects sharing all
attributes from B and, conversely, B is the collection of all attributes from Y
shared by all objects from A. This definition formalizes the traditional approach
to concepts which is due to Port-Royal logic [2]. The sets A and B are called the
extent and the intent of the concept 〈A,B〉, respectively. The set B (X, Y, I) =
{〈A,B〉 | A↑ = B,B↓ = A} of all formal concepts in 〈X, Y, I〉 can be naturally
equipped with a partial order ≤ defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (or, equivalently, B2 ⊆ B1).

That is, 〈A1, B1〉 ≤ 〈A2, B2〉 means that each object from A1 belongs to A2 (or,
equivalently, each attribute from B2 belongs to B1). Therefore, ≤ models the
natural subconcept-superconcept hierarchy under which dog is a subconcept of
mammal.

The structure of B (X, Y, I) is described by the so-called main theorem of
concept lattices [4,6].

Theorem 1. (1) The set B (X, Y, I) is under ≤ a complete lattice where the
infima and suprema are given by∧

j∈J

〈Aj , Bj〉 = 〈
⋂
j∈J

Aj , (
⋃
j∈J

Bj)↓↑〉 ,
∨
j∈J

〈Aj , Bj〉 = 〈(
⋃
j∈J

Aj)↑↓,
⋂
j∈J

Bj〉 . (1)

(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to
B (X, Y, I) iff there are mappings γ : X → V , µ : Y → V such that

(i) γ(X) is
∨

-dense in V, µ(Y ) is
∧

-dense in V;
(ii) γ(x) ≤ µ(y) iff 〈x, y〉 ∈ I.

In the basic setting of formal concept analysis, no further information except
for 〈X, Y, I〉 is taken into account. However, more often than not, both the set
of objects and the set of attributes are supplied with an additional information.
Further processing of the input data (formal context) should therefore take the
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additional information into account. For example, some attributes may be rele-
vant (or relevant to some degree) with respect to a particular kind of decisions
while some may be not. When processing a respective formal context in order
to get some support for the decisions in question, the attributes which are not
relevant to the decision may be disregarded. In the end, this may result in a
simplification of the overall processing.

In this paper, we consider additional information which has the form of
formulas (so called AD-formulas) describing particular dependencies between
attributes expressing their relative importance. We introduce the notion of a
formal concept compatible with an AD-formula. This enables us to eliminate
formal concepts which are not compatible with the information about the rela-
tive importance of attributes. An important effect of the elimination is a natural
reduction of the size of the resulting conceptual structure making the structure
more comprehensible. This paper extends in a natural way our previous ap-
proach [3] in that the constraints expressible by AD-formulas are more general
and thus more expressive than those of [3]. Such an extension is needed, as we
discuss in the text and show by examples.

2 Constraints by attribute dependencies

Basic motivation When people categorize objects by means of the object at-
tributes, they naturally take into account the importance of attributes. Usually,
attributes which are less important are not used to form large categories (clus-
ters, concepts). Rather, less important attributes are used to make a finer cate-
gorization within a larger category. For instance, consider a collection of certain
products offered on a market, e.g. home appliances. When categorizing home
appliances, one may consider several attributes like price, the purpose of the ap-
pliance, the intended placement of the appliance (kitchen appliance, bathroom
appliance, office appliance, etc.), power consumption, color, etc. Intuitively, when
forming appliance categories, one picks the most important attributes and forms
the general categories like “kitchen appliances”, “office appliances”, etc. Then,
one may use the less important attributes (like “price ≤ $10”, “price between
$15–$40”, “price > $100”, etc.) and form categories like “kitchen appliance with
price between $15–$40”. Within this category, one may further form finer cate-
gories distinguished by color. This pattern of forming categories follows the rule
that when an attribute y is to belong to a category, the category must contain an
attribute which determines a more important characteristic of the attribute (like
“kitchen appliance” determines the intended placement of the appliance). This
must be true for all the characteristics that are more important than y. In this
sense, the category “red appliance” is not well-formed since color is considered
less important than price and the category “red appliance” does not contain
any information about the price. Which attributes and characteristics are con-
sidered more important depends on the particular purpose of categorization.
In the above example, it may well be the case that price be considered more
important that the intended placement. Therefore, the information about the
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relative importance of the attributes is to be supplied by an expert (the person
who determines the purpose of the categorization). Once the information has
been supplied, it serves as a constraint for the formation of categories. In what
follows, we propose a formal approach to the treatment of the above-described
constraints to formation of categories.

Constraints by attribute-dependency formulas Consider a formal context
〈X, Y, I〉. We consider constraints expressed by formulas of the form

y v y1 t · · · t yn. (2)

Formulas of this form will be called AD-formulas (attribute-dependency for-
mulas). The set of all AD-formulas will be denoted by ADF . Let now C ⊆ ADF
be a set of AD-formulas.

Definition 1. A formal concept 〈A,B〉 satisfies an AD-formula (2) if we have
that

if y ∈ B then y1 ∈ B or · · · or yn ∈ B.

The fact that 〈A,B〉 ∈ B (X, Y, I) satisfies an AD-formula ϕ is denoted by
〈A,B〉 |= ϕ. Therefore, |= is the basic satisfaction relation (being a model)
between the set B (X, Y, I) of all formal concepts (models, structures) and the
set ADF of all AD-formulas (formulas).

As usual, |= induces two mappings, Mod : 2ADF → 2B(X,Y,I) assigning a
subset

Mod(C) = {〈A,B〉 ∈ B (X, Y, I) | 〈A,B〉 |= ϕ for each ϕ ∈ C}

to a set C ⊆ ADF of AD-formulas, and Fml : 2B(X,Y,I) → 2ADF assigning a
subset

Fml(U) = {ϕ ∈ ADF | 〈A,B〉 |= ϕ for each 〈A,B〉 ∈ U}

to a subset U ⊆ B (X, Y, I).
The following result is immediate [5].

Theorem 2. The mappings Mod and Fml form a Galois connection between
ADF and B (X, Y, I). That is, we have

C1 ⊆ C2impliesMod(C2) ⊆ Mod(C1), (3)
C ⊆ Fml(Mod(C)), (4)

U1 ⊆ U2impliesFml(U2) ⊆ Fml(U1), (5)
U ⊆ Mod(Fml(U)). (6)

for any C, C1, C2 ⊆ ADF, and U,U1, U2 ⊆ B (X, Y, I).

Thus, more generally, for U ⊆ B (X, Y, I) and C ⊆ ADF we write U |= C if
U ⊆ Mod(C) which is equivalent to C ⊆ Fml(U) (the meaning: each 〈A,B〉 ∈ U
satisfies each ϕ ∈ C).
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Definition 2. For C ⊆ ADF we put

BC (X, Y, I) = Mod(C)

and call it the constrained (by C) concept lattice induced by 〈X, Y, I〉 and C.

For simplicity, we also denote BC (X, Y, I) simply by BC . That is, BC (X, Y, I)
is the collection of all formal concepts from B (X, Y, I) which satisfy each AD-
formula from C (satisfy all constraints from C).

Note that (3)–(6) have a natural interpretation. For instance, (3) says that
the more formulas we put to C (the more constraints), the fewer formal concepts
are in BC .

Remark 1. (1) In [3], we introduced constraints by a hierarchy on Y which is
represented by a partial order E on Y . A formal concept 〈A,B〉 ∈ B (X, Y, I)
is called compatible with E if for each y ∈ B and y E y′ we have y′ ∈ B.
Denote B (X, 〈Y,E〉, I) the set of all formal concepts from B (X, Y, I) which are
compatible with E. It is clear that putting CE = {y1 v y2 | 〈y1, y2〉 ∈ E}, we
have B (X, 〈Y,E〉, I) = BCE (X, Y, I). This way our current approach generalizes
that one of [3].

(2) Note that our present approach is needed. For instance, if y, y1, and y2

stand for “price > $100”, “kitchen appliance”, and “office appliance”, respec-
tively, then y v y1 t y2 represents a natural constraint which cannot be directly
expresses by a hierarchy E in the sense of [3].

In the rest of this section we briefly discuss selected topics related to con-
straints by AD-formulas. Due to the limited scope, we omit details.

Structure of BC (X, Y, I) Contrary to [3], we lose some nice properties under
the present approach. For example, although BC (X, Y, I) is a partially ordered
subset of B (X, Y, I), it does no need not be a sup-sublattice of B (X, Y, I) as is
the case of E.

Example 1. Let X = {x1, x2}, Y = {y1, y2, y3}, I =
{〈x1, y2〉, 〈x1, y3〉, 〈x2, y1〉, 〈x2, y3〉}, C = {y3 v y1 t y2}. Then BC is not a
sup-sublattice of B (X, Y, I).

Entailment of AD-formulas Another interesting issue, in fact, a very important
one, is that of entailment of AD-formulas (i.e. the notion of entailment of an
AD-formula by a set of AD-formulas). Namely, AD-formulas which follow from
C may be ignored because do not represent any additional constraint. Conversely,
it might be interesting to look for a base of a set C of AD-formulas, i.e. a subset
C′ ⊆ C such that each ϕ ∈ C follows from C′ and C′ is a minimal one with this
property. Due to the limited scope, we omit any further details.
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Expressive power of AD-formulas A given y ∈ Y may occur on left hand-side of
several AD-formulas. For example, we may have y v y1 t y2 and y v y3 t y4.
Then, for a formal concept 〈A,B〉 to be compatible, it has to satisfy the following:
whenever y ∈ B then it must be the case that y1 ∈ B or y2 ∈ B, and y3 ∈ B or
y4 ∈ B. Therefore, it is tempting to allow for expressions of the form

y v (y1 t y2) u (y3 t y4)

with the intuitively clear meaning of compatibility of a formal concept and a
formula of this generalized form. Note that a particular form is also e.g. y v
y2uy3. One may also want to extend this form to formulas containing disjunctions
of conjunctions, e.g.

y v (y1 u y2) t (y3 u y4).

It is not difficult, however, somewhat tedious, to show that the expressive power
of such generalized formulas remains the same. More precisely, to each set C of
generalized formulas there exists a set C′ of ordinary AD-formulas such that for
each formal concept 〈A,B〉 we have that 〈A,B〉 |= C iff 〈A,B〉 |= C′.

3 Examples

We now present illustrative examples. We assume that the reader is familiar
with Hasse diagrams which will be used for visualization of concept lattices
and attribute hierarchies. We label the nodes corresponding to formal concepts
by boxes containing concept descriptions. For example, ({1, 3, 7}, {3, 4}) is a
description of a concept the extent of which consists of objects 1, 3, and 7, and
the intent of which consists of attributes 3 and 4.

Example 2. Using attribute dependencies for generation of views on
databases. Suppose we have a relational database with particular car models as
objects and selected car properties as attributes. We have attributes like “hatch-
back”, “sedan”, “diesel engine”, “gasoline engine”, “air-conditioning”, “ABS”,
etc. This data can be understood as a (bivalent) formal context. This context
induces a corresponding concept lattice containing all formal concepts hidden in
the database. In general, this concept lattice contains a large number of formal
concepts. This fact makes the concept lattice not comprehensible by humans.
With respect to a particular aim (e.g. a decision making), the concept lattice
will contain both important and natural concepts as well as concepts which are
considered not important.

To get a more precise idea, suppose a customer wants to buy a car and wants
to look at the concept lattice to help him select one. He has a certain idea of
what the car should fulfill. Some car properties can be more important for him
then others.

Consider the formal context 〈X, Y, I〉 in Tab. 1 . The context contains cars as
the objects (labeled 1–8) and some of their properties as the attributes (labeled
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1 2 3 4 5 6 7 8

car 1 1 0 1 0 0 1 0 1
car 2 1 0 1 0 1 1 0 1
car 3 0 1 1 0 0 0 0 1
car 4 0 1 0 1 1 0 0 0
car 5 0 1 1 0 1 1 0 0
car 6 0 1 0 1 0 1 1 0
car 7 0 1 0 1 1 1 1 1
car 8 0 1 0 1 0 0 0 1

attributes: 1 - diesel engine, 2 - gasoline engine, 3 - sedan, 4 - hatchback, 5 - air-
conditioning, 6 - airbag, 7 - power stearing, 8 - ABS

Table 1. Formal context given by cars and their properties.

({},{1,2,3,4,5,6,7,8})

({3},{2,3,8})

({7},{2,4,5,6,7,8})({2},{1,3,5,6,8})
({5},{2,3,5,6})

({6,7},{2,4,6,7})

({7,8},{2,4,8})
({2,5},{3,5,6})

({5,7},{2,5,6})

({3,5},{2,3})

({1,2},{1,3,6,8})

({4,7},{2,4,5})({2,7},{5,6,8})

({4,5,7},{2,5})({1,2,5},{3,6})

({1,2,3},{3,8})
({2,5,7},{5,6})

({3,7,8},{2,8})
({1,2,7},{6,8})({5,6,7},{2,6})

({2,4,5,7},{5})

({4,6,7,8},{2,4})

({1,2,3,5},{3}) ({1,2,3,7,8},{8})
({1,2,5,6,7},{6})

({3,4,5,6,7,8},{2})

({1,2,3,4,5,6,7,8},{})

Fig. 1. Concept lattice corresponding to the context from Tab. 1
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1–8). The concept lattice B (X, Y, I) corresponding to formal concept 〈X, Y, I〉
contains 27 formal concepts and is depicted in Fig. 1.

The formal concepts of B (X, Y, I) represent all concept-clusters that are
present in the data. No attention is paid to importance or relative importance
of attributes.

Let us now consider some attribute dependencies and the corresponding con-
strained concept lattices B (X, Y, I) .

First, consider a set of AD-formulas (7)–(12). They represent the fact that
most important car propeties (for a particular user) are the kind of engine, etc.

air − conditioning v hatchback t sedan (7)
powerstearing v hatchback t sedan (8)

airbag v hatchback t sedan (9)
ABS v hatchback t sedan (10)

hatchback v gasoline engine t diesel engine (11)
sedan v gasoline engine t diesel engine (12)

The concept lattice B (X, Y, I) constrained by AD-formulas (7)–(12) contains
13 formal concepts and is depicted in Fig. 2.

({},{1,2,3,4,5,6,7,8})

({3},{2,3,8})

({7},{2,4,5,6,7,8})

({2},{1,3,5,6,8})

({5},{2,3,5,6})

({7,8},{2,4,8})

({1,2},{1,3,6,8})

({6,7},{2,4,6,7})

({3,5},{2,3})

({4,7},{2,4,5})

({4,6,7,8},{2,4})

({3,4,5,6,7,8},{2})

({1,2,3,4,5,6,7,8},{})

Fig. 2. Concept lattice constrained by AD-formulas (7)–(12)
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Second, consider a set of AD-formulas (13)–(18). Contrary to the previous
example, the importance of the type of a car and the kind of the engine are
reversed.

air − conditioning v diesel engine t gasoline engine (13)
powerstearing v diesel engine t gasoline engine (14)

airbag v diesel engine t gasoline engine (15)
ABS v diesel engine t gasoline engine (16)

gasoline engine v hatchback t sedan (17)
diesel engine v hatchback t sedan (18)

The concept lattice B (X, Y, I) constrained by AD-formulas (13)–(18) con-
tains 14 formal concepts and is depicted in Fig. 3.

({},{1,2,3,4,5,6,7,8})

({3},{2,3,8})
({7},{2,4,5,6,7,8})

({2},{1,3,5,6,8})

({5},{2,3,5,6})

({7,8},{2,4,8}) ({1,2},{1,3,6,8})

({4,7},{2,4,5})

({6,7},{2,4,6,7}) ({3,5},{2,3})

({4,6,7,8},{2,4}) ({1,2,3,5},{3})

({1,2,3,4,5,6,7,8},{})

Fig. 3. Concept lattice constrained by AD-formulas (13)–(18)

Third, suppose the user finds the most important car property to be safety.
The situation is described by AD-formulas (19)–(26)
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air − conditioning v diesel engine t gasoline engine (19)
powerstearing v diesel engine t gasoline engine (20)

gasoline engine v hatchback t sedan (21)
diesel engine v hatchback t sedan (22)

sedan v ABS (23)
hatcback v ABS (24)

ABS v airbag (25)
airbag v ABS (26)

The concept lattice B (X, Y, I) constrained by AD-formulas (19)–(26) con-
tains 6 formal concepts and is depicted in Fig. 4.

({},{1,2,3,4,5,6,7,8})

({2},{1,3,5,6,8})

({7},{2,4,5,6,7,8})

({1,2},{1,3,6,8})

({1,2,7},{6,8})

({1,2,3,4,5,6,7,8},{})

Fig. 4. Concept lattice constrained by AD-formulas (19)–(26)
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