On Efficient Part-match Querying of XML Data*

Michal Kratky, Marek Andrt

Department of Computer Science, VSB — Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava—Poruba
{michal.kratky,marek.andrt}@vsb.cz

Czech Republic

Abstract. The XML language have been becoming de-facto a standard
for representation of heterogeneous data in the Internet. From database
point of view, XML is a new approach to data modelling. Implementation
of a system enabling us to store and query XML documents efficiently
(so called native XML databases) require a development of new tech-
niques. The most of XML query languages are based on the language
XPath and use a form of path expressions for composing more general
queries. These languages make it possible a part-match querying string
values of elements and attributes. Particularly, such queries are common
for document-centric XML documents. The document-centric documents
are often widely unstructured, contain the mixed content and so on. In
particular, such documents are (after a transformation to well-formed
XML documents) entire information of broad Web. Previously published
multi-dimensional approaches to indexing XML data use paged and bal-
anced multi-dimensional data structures. In the paper we extend the
approach for the part-match querying XML data.

Key words: XML, indexing XML data, multi-dimensional data struc-
tures, part-match querying, XPath, XQuery

1 Introduction

The mark-up language XML (eXtensible Markup Language) [22] is recently un-
derstood as a language for data representation. Important properties of the lan-
guage are heterogeneity, extensibility, and flexibility. From database point of
view, the XML is a new approach to data modelling [18]. A well-formed XML
document or a set of documents is an XML database and the associated DTD
or schema specified in the language XML Schema [23] is its database schema.
Implementation of a system enabling us to store and query XML documents
efficiently (so called native XML databases) requires a development of new tech-
niques [I8]. A number of languages have been developed for querying over XML
data e.g., XML-QL [8], XPath [2I], and XQuery [20]. The common feature of
such languages is the usage of regular path expressions for formulation of the

* Work is partially supported by Grant of GACR No. 201/03/0912.

© V. Snésel, J. Pokorny, K. Richta (Eds.): Dateso 2004, pp. 96-105, ISBN 80-248-0457-3.
VSB — Technical University of Ostrava, Dept. of Computer Science, 2004.

On Efficient Part-match Querying of XML Data 97

path in the graph modelling an XML document. Such a path is a sequence of
element or attribute names from the root element to a leaf.

The XML data are instance of semistructured data. An unstructured data
may occur into the structured elements. Further, an XML document can be
classified on the basis of contained data, as a data-centric or document-centric.
The data-centric XML documents have got well defined regular structure and
capture a structured data, e.g. forms. Such data is often possible to map in a set
of relations [I7]. On the other hand, the document-centric documents are often
much unstructured, contain fewer elements with amount of unstructured data
(e.g. an XML database of articles). However the most of XML documents are
combined from both types (so-called hybrid documents).

Languages as the XQuery and XPath contain many constructs for querying
both data-centric and document-centric XML documents. Such languages pro-
vide structures for part-match querying values of elements and attributes. For
example, the XPath language allows a filtration unmeant elements in a result set
using the predicate filter. One from the predicate filters is filter category appli-
cable to string values of elements. For example, the function contains() provides
a selection of the elements, which contain a substring specified as a parameter.
Since a structure of the document-centric documents is not regular, languages
were necessary to extend to operators which provide a querying data with mized
content. Consequently, such systems extend classical information retrieval (IR)
models for querying XML data. For example, a query retrieving the elements con-
taining an ordered term or phrase are required in the case of querying document-
centric XML documents. In Chapter [2 some existing query languages and index
approaches for part-match querying XML data are described.

This paper addresses the indexing and querying the document-centric XML
documents using multi-dimensional data structures. Chapter |3| presents previ-
ously published multi-dimensional approach to indexing data-centric XML doc-
uments, particularly how to map paths to points in a multi-dimensional space.
Our approach enables an efficient accomplishment of querying text content of an
element or an attribute value as well as of queries based on regular path expres-
sions and XPath axes. Chapter [4] extends this approach for part-match querying
XML data. Chapter [5| describes multi-dimensional data structures UB-tree [2]
and R*-tree [3], which are used for indexing XML document. In conclusion we
summarize the paper content and outline possibilities of a future work.

2 State of the art

Recently there are many languages and algorithms deal with matching phrases
in XML documents with a mixed content. Now, some of them are described. The
XQuery-IR [7] is an extension of the XQuery language which supports phrase
matching in document fragments and ranks them according to their relevance
by using TF x IDF weights. A tenet of this weight consists in preference terms
that occur frequently with one fragment and infrequently in the rest of doc-

98 Michal Kratky, Marek Andrt

ument. The XXL [I9] is a system with similar syntax like SQL language and
using a part-match operator allowed querying conformable terms contained in
the element or attribute name. The XIRQL [9] language exploits weights and
vague predicates, using appropriate DTD, and creates disjoint index contexts
for TF x IDF weights. The weights are applied to rank of relevant document
parts regarding to a specified query.

The XKeyword [12] system applies the rank based on a graph distance be-
tween the matched words and allows matching words anywhere in a document.
Algorithm PIX (Phrase matching In XML) [2] for phrase and similar phrase
matching in XML documents does not need a exact path specification like XPath.
This algorithm provides a phrase matching overlapping separate elements. The
TIX (Text In XML) algebra [I] uses the scored pattern tree which contains
formulas of boolean combination of predicates (applicable to nodes), a set of
scoring function (calculate of the score for each node) and also edges labelled
in the sense of XPath axis. Operators as the selection, projection, join, and so
on are defined under TIX algebra and enable a ranking relevant elements which
contain the phrase in dependence on a document structure.

3 Multi-dimensional Approach to Indexing XML Data

In [I3] a multi-dimensional approach to indexing XML data was introduced. A
revision of this approach was described in [14]. This approach applies multi-
dimensional data structures (see Section |5)) to indexing XML data.

3.1 Model of XML documents

An XML document may be modelled by a tree, whose nodes correspond to el-
ements and attributes. String values of elements or attributes or empty values
occur in leafs. An attribute is modelled as a child of the related element. Conse-
quently, an XML document may be modelled as a set of paths from the root node
to all leaf nodes. Note, unique number idy (u;) of a node u; (element or attribute)
is obtained by counter increments according to the document order [I1]. Unique
numbers may be obtained using an arbitrary numbering schema. Of course, the
document order must be preserved.

Let P be a set of all paths in a XML tree. The path p € P in an XML tree is
sequence idy (uo), idy (u1), . . ., idy (Urp(p)—1), s, where 7p(p) is the length of the
path p, s is PCDATA or CDATA string, idy(u;) € D ={0,1,...,2™ — 1}, 7p is the
chosen length of binary representation of a number from domain D. Node ug
is always the root node of the XML tree. Since each attribute is modelled as a

super-leaf node with CDATA value, nodes ug, u1, . .., Urp,(p)—2 Tepresent elements
always.
A labelled path Ip for a path p is a sequence sg, s1,. .., 87, ,(1p) of names of

elements or attributes, where 77, p(Ip) is the length of the labelled path Ip, and s;

On Efficient Part-match Querying of XML Data 99

<?xml version="1.0" 7>

<books>

<book i1d="003-04312">
<title>The Two Towers</title>
<author>J.R.R. Tolkien</author>
</book>

<book id="001-00863">
<title>The Return of the King</title>
<author>J.R.R. Tolkien</author>
</book>

<book id="045-00012">
<title>Catch 22</title>
<author>Joseph Heller</author>
</book>

</books>

<!DOCTYPE books [
<!ELEMENT books (book)>
<!ELEMENT book(title,author)>
<!ATTLIST book id CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>

1>

Fig. 1. (a) DTD of documents which contain information about books and au-
thors. (b) Well-formed XML document valid w.r.t. DTD.

is the name of the element or attribute belonging to the node u;. Let us denote
the set of all labelled paths by LP. A single labelled path belongs to a path,
one or more paths belong to a single labelled path. If the element or attribute

is empty, then 7p(p) = 7.p(Ip), else 7p(p) = 7Lp(lp) + 1.

003- TheTwo jRR. 001- TheReturn J.R.R. 045- Catch22 Joseph
04312 Towers Tolkien 00863 of the King Tolkien 00012 Heller
®) ®)) ®) (©)) (10) 11 (12)

Fig. 2. Example of XML tree with unique numbers idy(u;) of elements and
attributes u; and unique numbers idr(s;) of names of elements and attributes
and their values s; (values in parenthesis).

Ezample 1 (Decomposition of XML tree to paths and labelled paths).

In Figure[I] we see an example of an XML document. In Figure 2] we see an XML
tree modelling the XML document. We see that this XML document contains
paths:

-0,1,2,°003-04312’; 0,5,6,°001-00863’ ; and 0,9,10,°045-00012° belong
to the labelled path books,book, id,

—0,1,3,’The Two Towers’;0,5,7,’The Return of the King’;and 0,9,11,
>Catch 22’ belong to the labelled path books,book,title,

100 Michal Kratky, Marek Andrt

-0,1,4,J.R.R. Tolkien’; 0,5,8,’J.R.R. Tolkien’; and 0,9,12,’Joseph
Heller’ belong to the labelled path books,book,author.

The term index which contains all strings s; of an XML document and their
unique numbers idr(s;) is used in this approach.

Definition 1 (point of n-dimensional space representing a labelled
path).

Let 2pp = D™ be an n-dimensional space of labelled paths, |D| = 2™, and
Ip € LP be a labelled path so,s1,...,5: p(p), where n = maz(trp(lp),lp €
LP) + 1. Point of n-dimensional space representing a labelled path is
defined ty, = (idr(so),idr(s1),..., idr(s;, .ap))) € Lrp, where idr(s;) is a
unique number of term s;, idp(s;) € D. A unique number idy,p(lp;) is assigned
to lp;. m

Definition 2 (point of n-dimensional space representing a path).

Let 2p = D™ be an n-dimensional space of paths, |D| = 2™, p € P be a
path idy (uo),idy (u1), ..., idy(Ur, pap)), 5 and Ip a relevant labelled path with
the unique number idrp(lp), where n = max(rp(p),p € P) + 2. Point of n-
dimensional space representing path is defined t, = (idrp(Ip),idy (uo), - . .,
idU(u‘er(lp))a ZdT(S)) €Ep. m

We define three indexes:

1. Term index. This index contains a unique number idr(s;) for each term
s; (names and text values of elements and attributes). The unique numbers
can be generated by counter increments according to the document order.
We want to get a unique number for a term and a term for a unique number
as well. This index can be implemented by the B-tree.

In Figure[2 we see the XML tree with unique numbers of terms in parenthesis.

2. Labelled path index. Points representing labelled paths together with

labelled paths’ unique numbers (also generated by counter increments) are
stored in the labelled path index.
In Figure [2| we see that the document contains three unique labelled paths
books,book,id; books,book,title; and books,book,author. We create
points (0,1,2); (0,1,4); and (0,1,6) using idy of element’s and attribute’s
names. These points are inserted into a multi-dimensional data structure
with ide 0, 1, and 2.

3. Path index. Points representing paths are stored in the path index.

In Figure [2] we see unique numbers of elements. Let us take the path to the
value The Two Towers. Relevant labelled path books,book,title has got
idrp 1 (see labelled path index). We get point (1,0,1,3,5) after insert-
ing unique numbers of labelled path idyp, unique numbers of elements idy
and term The Two Towers. This point is stored in a multi-dimensional data
structure.

On Efficient Part-match Querying of XML Data 101

An XML document is transformed to points of vector spaces and XML
queries are implemented using a multi-dimensional data structure queries. The
multi-dimensional data structures provide a nature processing of point or range
queries [2]. The point query probes if the vector is or is not present in the data
structure. The range query searches all points in a query box T3 : T, defined by
two points T, T5.

3.2 Queries for values of elements and attributes

Now, implementation of a query for values of elements and attributes and query
defined by a simple path based on an ancestor-descendent relation will be de-
scribed. Query processing is performed in three phases which are connected:

1. Finding unique numbers idr of query’s term in the term index.

2. Finding labelled paths’ id;p of query in the labelled path index.
We search the unique numbers in a multi-dimensional data structure using
point or range queries.

3. Finding points in the path index. We find points representing paths in
this index using range queries. Now, we often want to retrieve (using labelled
paths and term index) names or values of elements and attributes.

4 Efficient part-match querying of XML data

Now, an extension of the multi-dimensional approach for part-match querying
XML data is described. We aim to querying individual terms of the element and
attribute string values mainly. Operator ~= is defined for such query. The indi-
vidual terms must be indexed, but we need preserve an information about per-
tinence of the term to the path and labelled path. The Path-Labelled path-Term
(PLT) index satisfies such requirements. This storage contains points of an 3-
dimensional space 2prr = Dia, XDiq, p X Dia, . Consequently, items of the space
are points (idp(p;),idrp(Ip;), idr(t;)). In order to the index can be used for a
part-match querying, a unique number idp(p;) of path p; is stored in the first co-
ordinate of the point representing the path p;: t,, = (idp(p;), idrp(Ip;), idy (uo),
idy(u1), ..., idy(Ur.(p,)). During a parsing string values of elements and at-
tributes we could use the stop-list known in IR systems [3]. For example, fre-
quent terms (e.g. conjunctions) are eliminated by the stop-list. Such terms are
not important for a querying. Since whole values of elements and attributes are
important and ity (¢;) of the whole string ¢; is removed in the point representing
the path, whole short values are inserted in the term index and PLT index.

Ezample 2 (Creation of the PLT index).

Let us take a document-centric XML document. For example, Shakespeare’s
Hamlet in XML [6]. idpp('PLAY,SCENE, ACT,SPEECH,SPEAKER’) =
100 and idp of Dbelonging path is 110 (see Figure [3)).

102 Michal Kratky, Marek Andrt

<PLAY>...
<SCENE>. ..
<ACT>...
<SPEECH>
<SPEAKER>MARCELLUS</SPEAKER>
<LINE>It faded on the crowing of the cock.</LINE> ...
</SPEECH>

Fig. 3. A part of Shakespeare’s Hamlet in XML.

idpp('PLAY,SCENE,ACT, SPEECH,LINE’) = 101 and idp of be-
longing path is 111. Unique numbers of terms: idr(MARCELLUS') = 120,
idr('crowing’) = 121, idr('cock’) = 122, and so on. After the insertion of
points representing the path, labelled path, idr(¢;) and term ¢; into the term
index, the points are created and inserted into the PLT index: (110,100, 120),
(111,101,121), (111,101, 122), and so on. m

Now, processing the query /books/book[keywords~=’XML’]/title
over an XML database of books is described. Note, query box
(¢gb1,min(D),...,min(D)) : (gby,mazx(D),...,max(D)) may be written
as (gby, ..., %).

1. Finding id} » = idp, p('books, book, keywords’) and id}. = idr(' X ML').

2. Processing the narrow range query (*,id} p,id%) in the PLT index. The
result is k unique numbers idp(p1),. .., idp(px) of relevant paths py, ..., p.

3. Processing the complex range query (idp(p1),idsp,*,...,%),...,(idp(py),
id} p,*,...,*). The result is the points representing the relevant paths.

4. Finding id? , = id,p('books, book, title').

5. Performing the child XPath axis with id2 5 in the second coordinate. The
child XPath axis is implemented by a sequence of range queries (see [14]).
The result is m paths p{, . ,pfn.

6. Performing the complex range query (idp (p{), id2 p, %), ..., (idp(pl,),id% p, *).
An output is collection of idr(t;). Strings of titles ¢; are retrieved from the
term index and the strings are returned as a result.

Query processing of a general part-match query is a generalization of above
described procedure. The XML query languages make it possible to place a
complex query condition using boolean operators e.g., AND and OR. In described
approach a query defined by the OR operator is possible to process effectively. For
example, the query /books/book [keywords~=’XML’> OR keywords~=’SGML’]/
title is performed according to above techniques, but the first two steps are
distinguish.

1. Finding id} , = idpp("books,book, keywords'), id% = idr('XML'), and
id2 = idp('SGML').

On Efficient Part-match Querying of XML Data 103

2. Processing the narrow range queries (x,id} p,id%) and (%, id} p,id%) in the
PLT index. The result is k unique numbers idp(p1),...,idp(px) of relevant
paths p1,..., k.

Next steps of this query processing are the same.

5 Index Data Structures

Due to the fact that an XML document is represented as a set of points rep-
resenting paths and labelled paths in the multi-dimensional approach, we use
multi-dimensional data structures for their indexing, e.g., paged and balanced
multi-dimensional data structures like UB-tree [2], and R*-tree [3].

(B)UB-tree data structure applies Z-addresses (Z-ordering) [2] for mapping
a multi-dimensional space into single-dimensional. Intervals on Z-curve (which is
defined by this ordering) are called Z-regions. (B)UB-tree stores points of each
Z-regions on one disk page (tree leaf) and a hierarchy of Z-regions forms an
index (inner nodes of tree). In the case of indexing point data, an R-tree and
its variants cluster points into minimal bounding boxes (MBBs). Leafs contain
indexed points, super-leaf nodes include definition of MBBs and the other inner
nodes contain hierarchy of MBBs. (B)UB-tree and R-tree support point and
range queries [11], which are used in the multi-dimensional approach to indexing
XML data. The range query is processed by iterating through the tree and
filtering of irrelevant tree nodes, i.e. (super)Z-regions in the case of (B)UB-tree
and MBBs in the case of R-tree, which do not intersect a query box.

One more important problem of the multi-dimensional approach is the un-
clear dimension of spaces of paths and labelled paths. A naive approach is to
align the dimension of space to the maximal length of path. For example, points
of dimension 5 will be aligned to dimension 36. This technique increases the size
of index and the overhead of data structure as well. In [I5] BUB-forest data struc-
ture was published. This data structure solves the problem of indexing points
with different dimensions. The range query used in the multi-dimensional ap-
proach is called narrow range query. Points defining a query box have got some
coordinates the same, whereas the size of interval defined by other coordinates
near to the size of space’s domain. Many irrelevant regions are searched during
processing the narrow range query in multi-dimensional data structures. In [9]
Signature R-tree data structure was introduced. This data structure enables
efficient processing the narrow range query.

6 Conclusion

In our future work we would like to test this approach over a current test XML
document collections. Test queries are often defined for such collections. There-
fore a comparison of our approach with another XML indexing approaches is

104 Michal Kratky, Marek Andrt

possible. INEX [I0] collection seems to be hopeful. INEX contains 12,000 IEEE
articles since 1995. The size of the collection is 500MB.

References

1. S. Al-Khalifa, C. Yu, and H. Jagadish. Querying Structured Text in an XML
Database. In Proceedings of International Conference on Management of Data
(SIGMOD), San Diego, CA, June 2003.

2. S. Amer-Yahia, M. Fendndez, D. Srivastava, and Y. Xu. Phrase Matching in XML.
In Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

4. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts.
In Proceedings of WWCA’97, Tsukuba, Japan, 1997.

5. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient
and robust access method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, pages 322—-331.

6. J. Bosak. Shakespeare in XML, 1999, http://www.ibiblio.org/xml/examples/
shakespeare/.

7. J.-M. Bremer and M. Gertz. XQuery/IR: Integrating XML document and data re-
trieval. In Proceedings of the 5th International Workshop on the Web and Databases
(WebDB), June 2002.

8. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query
Language for XML. Technical report, WWW Consortium, August, 1998.

9. N. Fuhr and K. Grossjohann. XIRQL: An extension of XQL for information re-
trieval. In Proceedings of SIGIR, 2001.

10. N. Fuhr, N. Gvert, S. Malik, M. Lalmas, and G. Kazai.
INEX — Initiative for the Evaluation of XML Retrieval, 2003,
http://www.is.informatik.uni-duisburg.de/projects/inex/index.html.en.

11. T. Grust. Accelerating XPath Location Steps. In Proceedings of ACM SIGMOD
2002, Madison, USA, June 4-6, 2002.

12. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword proximity search on
XML graphs. In Proceedings of the ICDE, 2003.

13. M. Kratky, J. Pokorny, T. Skopal, and V. Snésel. The Geometric Framework
for Exact and Similarity Querying XML Data. In Proceedings of First EurAsian
Conferences, FurAsia-ICT 2002, Shiraz, Iran. Springer—Verlag, LNCS 2510, 2002.

14. M. Kratky, J. Pokorny, and V. SnéSel. Implementation of XPath Axes in the
Multi-dimensional Approach to Indexing XML Data. In Accepted at International
Workshop DataX, Int’l Conference on EDBT, Heraklion - Crete, Greece, 2004.

15. M. Krétky, T. Skopal, and V. Snésel. Multidimensional Term Indexing for Efficient
Processing of Complex Queries. Kybernetika, Journal of the Academy of Sciences
of the Czech Republic, accepted, 2003.

16. M. Kratky, V. Snésel, J. Pokorny, P. Zezula, and T. Skopal. Efficient Processing
of Narrow Range Queries in the R-Tree. In Submitten at VLDB 2004, 2004.

17. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expres-
sions. In Proceedings of 27th VLDB International Conference, 2001.

18. J. Pokorny. XML: a challenge for databases?, pages 147-164. Kluwer Academic
Publishers, Boston, 2001.

19

20.

21.

22.

23.

24

On Efficient Part-match Querying of XML Data 105

. A. Theobald and G. Weikum. The index-based XXL search engine for querying
XML data with relevance ranking. In Proceedings of EDBT, 2002.

W3 Consortium. XQuery 1.0: An XML Query Language, W3C Working Draft, 15
November 2002, http://www.w3.org/TR/xpath/.

W3 Consortium. XML Path Language (XPath) Version 2.0, W3C Working Dralft,
15 November 2002, http://www.w3.org/TR/xpath20/.

W3 Consortium. Extensible Markup Language (XML) 1.0, 1998,
http://www.w3.org /TR/REC-xml.

W3 Consortium. XML Schema Part 1: Structure, 2001,

http://www.w3.org/TR/xmlschema-1/.
. C. Yu. High-Dimensional Indexing. Springer—Verlag, LNCS 2341, 2002.

