
Adapting a Generic Data Synchronisation
Framework for YAWL to Access Clinical
Information Systems at the Task Level

Holger Meyer1, Sebastian Schick1, Jan-Christian Kuhr2, Andreas Heuer1

1 University of Rostock {hme,schick,ah}@informatik.uni-rostock.de,
2 GECKO mbH Rostock jan-christian.kuhr@gecko.de

Abstract. Based on a generic extensible data access framework (DAF)
[10], we devised a domain-specific extension to support interoperability
of Yawl workflow cases with hospital information systems (HIS). In the
scenario considered, the HIS is the principal system that keeps master
data and clinical data of the patient. Data transfer between HIS and the
Yawl runtime environment is facilitated via exchange of standardized
HL7 messages. The solution presented supports read and write task-
level synchronization of workflow variables using the patient’s case ID as
correlation parameter. A first proof-of-concept has been carried out in a
real clinical setting.

Keywords: Workflow, Data Access, Yawl, Healthcare, Perioperative Process

1 Introduction

Clinical value chains are in general well-structured and follow an a-priori known
execution path. Thus, such scenarios lend themselves to be supported by pro-
cess aware information systems in general and by business process management
systems (BPMS) in particular.

When a BPMS approach is adopted, particular challenges arise if the process
engine is external to existing hospital information systems. Patient’s master data
and visit-related clinical data such as diagnosis and scheduled treatments are
usually handled within a HIS, which is the principal system. However, a subset
of data is required to be known by the process execution engine to support
execution of patient’s workflow cases. Conversely, it may be necessary to map
process runtime data, such as the duration of activities, back to the HIS. These
scenarios call for a data synchronisation solution that integrates HIS with the
process execution environment.

In the Perikles project we have introduced an extendable generic data syn-
chronisation framework (DAF) [10] and then specifically adopted to the domain
of clinical healthcare. The framework helps to avoid inconsistencies within redun-
dantly maintained data and supports transactional aspects within the process
and data perspective. Therefore, a layered architecture is used with facilities

18

to access external data sources, to associate the control-flow perspective with
transactional properties like isolation, serializability and recovery.

A second extension to Yawl is the FlexY approach [11, 12], which extends the
control-flow perspective of Yawl with new concepts for handling process adapta-
tion at run-time. FlexY combines the method of late modeling with declarative
concepts and underspecification. The runtime adjustment of sub-processes is
triggered at certain points of the process according to external data provided by
the data access framework. Why flexibility is important and how it can deployed
profitably in healthcare is described elsewhere [9, 2].

In this paper we focus on the DAF approach to extend Yawl to handle
task-level read and write access to hospital information systems by exchang-
ing standardized messages. The extension described in this paper makes use of
Yawl concepts like workflow engine level extensibility (gateway mechanism),
automated tasks provided as services, tasks and sub-net variables and param-
eters based on an XML type system, flexible enactment of sub-processes and
exception handling.

2 A Generic Data Synchronisation Framework

The current version of the Yawl engine already provides a simple interface to
populate task and net variables using a data source called data gateway. In case
of using a data source some implementation effort is necessary, because Yawl
provides no standard gateways. To provide a configurable, policy based inte-
gration of external data sources, we presented a framework called Data Access
F ramework in [10]. First, we give a short overview of the main framework com-
ponents. Afterwards, we present the extensions of the framework which were
developed.

A2 A3A1 A4

var:=extVar

param

extVar:= x extVar:=var

r(x) w(x)

param

extParam extParam

A3

param

extVar:= xextVar:= var

param

A2

r(x)

extParam

w(x)

extParam

var:= f (var,...) var:=extVar var:= f (var,...)

Fig. 1. Data access on external data sources in Yawl

External Variables Access to data in external sources should be transparent
to the user who models and executes a Yawl process model. Therefor, we intro-

19

duce a new variable type external variable in Yawl [10]. An external variable
defines a view on a data source by specifying the data source and required config-
uration parameters. Additionally, each data source is encapsulated by a plug-in
implementation. The plug-in integration is outlined in the following section.

Figure 1 shows the main idea behind the external variable concept. Each
variable (c.f. Fig. 1: var) in a process model, can be bound to an external variable
(c.f. Fig. 1: extV ar), using a parameter mapping (c.f. Fig. 1: param). To bind
an external variable (c.f. Fig. 1: extV ar) to an plug-in, we use a new type of
parameter called external mapping (c.f. Fig. 1: extParam). For each net we
can define a set of external variables with the type Ext, a set of plug-in id’s
PlugInID and a set of external parameter mappings extParamID.

Definition 1 (External parameter mapping). A mapping is defined as
(pID; distKey;map; rp;wp), with:

• pID references a plug-in which should be used,
• distKey is the key attribute to identify a single XML fragment,
• map is an XQuery query which defines the transformation rule between an

external variable and the respective data source (with the ID pID),
• rp is a local read policy (consistent, read-only) for the external variable and
• wp is a local write policy (consistent, immediate) for the external variable.

In Def. 1 an external parameter mapping is defined, where pID is used to
identify a plug-in. The disKey and map parameters describe a data item in the
source and the rp and wp parameters are used to define the access policies.

Framework Architecture To support external variables within Yawl, we ex-
tend the existing Yawl data gateway implementation with our own data access
gateway [10]. However, in this scenario we use a simplified version which do
not use extended transactional services. We use a data gateway which encap-
sulates the data access framework and manages the access to different plug-in
implementations. A Data Source Manager configures further processing using
the variable mapping of the external variable and selects the plug-in which have
to be invoked.

3 Adaptation to Clinical Information Systems

In healthcare, interoperability between clinical information systems is generally
accomplished via exchange of standardized HL7 messages. HL7 messages are
made up of segments, fields and delimiters. The MSH segment in the example
(cf. Fig. 2) indicates that the message is of type ADT (admission, discharge,
transfer) and has been caused by an A01 (patient admission) trigger event.

3.1 HL7 Plug-in

Supporting clinical healthcare workflows by Yawl requires integration of given
hospital information systems with the process execution runtime. Following our

20

MSH|^~\&|SAP-ISH|ROD|ITB265||20101123025931|NP11I0|ADT^A01|0000688151|P|2.1
EVN|A01|20101123025000
PID|||265029061|265051944|Nachname001^Vorname001|Mädchenname001|19350128|F|||Musterstr1.
001^^Musterort001^^66976^DE||00000 SELBST||D|W|02
PV1|00001|I|26513.2^^^2651IA|NO||||||1A||||||||||||NO||||||||||||||||R|2651964931|||||20101123025000

Fig. 2. Example of an HL7 message

general approach, we have thus extended the existing DAF by an HL7-plug-in to
support read/write access of Yawl processes to HL7 enabled clinical systems.
The basic architecture of our approach is shown in Fig. 3.

Clinical

Data
Native XML

HL7-XML

Adapter
Data Access

Framework

HL7-XML

Plugin

YAWL

specification

HIS
YAWL Engine

2.3
HL7 message

files

HL7 Message Bus

Clinical Information

Systems

Process Execution Environment

Process

Data

Fig. 3. General architecture of the HIS - Yawl integration

Extending the Process Specification By utilizing extended attributes one
can specify at the task level data synchronization policies for individual variables.
These policies instruct the DAF about the mode of the data access (read or
write), the correlatable parameter to be used (e.g. the patient’s medical case id),
the plug-in that handles the request, and an XPath expression that extracts the
relevant data from the XML representation of the HL7 message. By calling the
plug-in the data synchronisation with HL7 sources is handled for all external
variables.

Listing 1 shows an example of a definition of an external variable. Besides
a plug-in ID (pluginID=XML_PostgreSQL_ADT_Extract), the source description is
defined by an SQL table name (xmlColumn=patientdata) together with key at-
tributes (mappingKey=medcaseid,msgtype,datetime) and the selection of an XML
fragment (mapping=//patientdata/pv1/patientclass). We also define some ini-
tial values for two of the key attributes (mappingKeyVal=,A01,[max]) and a table
for write access (writeProcess=createHl7[public.hl7out;m1]).

21

To identify HL7 messages in the database, a number of different attributes are
necessary, which are used as key attributes. Some of the key attributes are known
at design time, like message type or aggregate functions over an attribute. Other
attributes are only known at runtime, like medical case ID. These compound
primary keys are described by the mappingKey attribute.

Listing 1. External variable definition

extVar pluginID=XML PostgreSQL ADT Extract
extVar readPo l i cy=readOnly
extVar xmlColumn=pat i entdata
extVar mapping=//pat i entdata /pv1/ p a t i e n t c l a s s
extVar mappingKey=medcaseid , msgtype , datet ime
extVar mappingKeyVal=,A01 , [max]
extVar wr i t eProce s s=createHl7 [pub l i c . h l7out ;m1]

In most cases HIS assume the role of a data source. Upon the occurrence of
predefined events the HIS emits HL7 messages that travel along a message bus
or may be exported to the file system. In order to validate our approach in a real
clinical setting without running the risk of interfering with production systems,
we have used the latter method (cf. Fig. 3).

Since Yawl handles task and case variables as XML data types, every incom-
ing HL7 message needs to be transformed into an XML representation that is
compliant to the XML schema of the Yawl process specification. Conversely, all
outgoing messages must be converted from XML to a proper HL7 representation.
Therefore, depending on whether variables are specified for read or write access,
we use different tables for read and write access. We therefore extend the source
definition of an external variable, such that a second source for write access
can be defined (cf. Lst. 1: extVar_writeProcess). These bi-directional message
transformations are accomplished by an HL7-XML adapter (cf. Fig. 3). In read
mode, the adapter polls the HL7 export file for new messages and transforms
any of these into an XML representation. In order to avoid excessive transforma-
tions each time a message is accessed, all XML-formatted messages are stored
persistently in a database (cf. Fig. 3: Database HL7Messages).

3.2 Proof of Concept

The validity of our approach for real clinical settings has been demonstrated by
a single-day proof of concept (PoC) deployment in a German hospital. Figure 4
shows the principal design. While the PoC has been restricted to read-only syn-
chronization, the figure shows also write-mode use cases that may be relevant for
future evaluations. The underlying clinical scenario is a perioperative careflow,
which, for the sake of clarity, has been greatly simplified.

From the perspective of the treatment layer, each patient follows a sequence
of events, beginning with the admission to the hospital end ending with the
post-operative transport to the intensive care unit (ICU). While this sequence
is strongly aligned with the process layer, there are also important interactions
with the hospital information system.

22

The HIS layer may be viewed as consisting of two distinct components:
The patient management system (PMS) keeps the patient’s master data such as
name, address, gender, and date of birth as well as the visit-related administrative
case data. For every visit a patient may make to the hospital, the PMS assigns a
medical case ID to this visit. On the other hand, the clinical information system
(CIS) is responsible for recording and managing the medical visit-related data,
such as diagnosis, lab test results, and the planned treatment. Both subsystems
are capable of emitting and receiving HL7 messages in order to communicate
business events to other information systems or to process such events that
have been emitted by other systems. HL7 messages may contain administrative
data only (e.g. in case of an admission or transfer event) or primarily medical
information (e.g. in case of communicating lab results).

The process layer has been implemented by the Yawl runtime environment
and is thus external to the hospital information systems. The use case evaluated
in the PoC required a read-mode synchronization of the workflow instance with
the patient’s master data as well as the visit-related administrative data, both
of which are kept inside the PMS. Upon start of a workflow case, the patient’s
medical case ID is passed to the process as a parameter. The medical case ID,
which is to be distinguished from the workflow engine’s case ID, serves as the
principal correlation link between the process layer and the clinical information
systems. Once the task Supply Master Data and Case Admin Data becomes
enabled, synchronization with the HIS layer takes place in read mode such that
the required administrative data are extracted from an appropriate HL7 message
that has been emitted by the PMS. This information may then be reviewed
by the clinician that is executing the task before continuing with Do Surgical
Assessment. In this way, synchronization relieves the stakeholders of re-entering
the same data twice.

Possible Future Use Cases Data synchronization between process and HIS
layer is by no means restricted to the read-only mode. Our approach is also
capable of supporting write-mode scenarios that may be interesting from the
clinical point of view and that lend themselves for future evaluation. In the
figure, we give two motivating examples. In both of which, the workflow case
acts as information source and a hospital information system as recipient of that
information. Compared with the former scenario, the situation is thus reversed.

The workflow tasks Transfer To OR and Transfer To ICU correspond to
events that are relevant from an administrative point of view. So rather than
capturing this information twice, it may be desirable to run a write-mode syn-
chronization on completion of these tasks, respectively, to communicate the time
stamp of the event to the PMS. In terms of the HL7 messaging concept, this
would also amount to automatically executing a transfer patient request inside
the patient management system.

The task Do Surgical Procedure may have captured clinical data such as
duration and description of the surgical procedure. However, this information
may also be required by the CIS. Hence, one could think of enabling the workflow

23

system to write this information back to a HIS layer by sending an appropriate
HL7 message to be consumed by the clinical information system.

Clinical

Information

System

HIS Layer

Patient

Management

System

Read

(admin data)

master data &

admin case data

medical case data

Process

Layer

Treatment

Layer admitted to

hospital

transfered

to OR

surgical

procedure

indication for surgical

procedure given

transfered

to ICU

Do

Procedure

Do Surgical

Assessment
Register

Procedure

Do Diagnostic

Tests

Transfer

To ICU

Do Anesthes.

Assessment

Do Induction Do Surgery

Supply Master

Data & Admin

Case Data

Transfer To

OR

Write(admin data)

possible future

use cases

Write(medical data)

medical case

ID known

start YAWL case with medical

case ID as parameter

M
e

s
s
a

g
e

 B
u

s

Message

Files

Fig. 4. Simplified clinical scenario of the proof of concept. The figure shows a use case
that has been evaluated as in a real clinical setting (solid red line) as well as possible
future uses cases (dashed red and green lines).

4 Related Work

Yawl is used and extended by several research initiatives including but not lim-
ited to clinical workflows. The framework supports the data patterns defined by
Russel et al. [8]. The Proclet approach [5] extends Yawl to use process fragments,
which can communicating via channels and ports. The support of different types
of flexibility was demonstrated in several frameworks. The Worklet approach
[1] extends Yawl with a concept of late-binding process fragments. In [3] an
extension to Yawl implementing configurable process models is presented.

In the context of data-driven processes, different approaches for data integra-
tion exist. SIMPLE [7] describes strategies for accessing external data sources,
by providing an abstraction layer for data management. Frameworks like PHIL-
harmonicFlows [4] or Corepro [6] provide an extensive integration of object be-
havior, object interactions and process execution within the process model.

24

5 Conclusion

In this paper, we present an adaptation to a data synchronisation framework for
Yawl and its application to a clinical information system. We showed that an
efficient way to access data from different clinical information systems during
runtime is necessary. We then adapted an existing data synchronisation frame-
work to support accessing these data at the task level. In future, we intend to
use Yawl in different scenarios supporting also flexibility.

Acknowledgments Part of this work has been funded by the German Fed-
eral Ministry of Education and Research (BMBF) under grant 01IS099009. We
thank Markus Bandt and Viktor Baidinger for their contribution to the imple-
mentation. Validation of the key concepts has been done in cooperation with
the Hetzelstift hospital in Neustadt/Weinstraße, Germany. The authors wish to
thank especially Dierk Vagts and Bernd Wössner for supporting the proof-of-
concept in a real clinical setting.

References

1. M. Adams, A. ter Hofstede, D. Edmond, and W. van der Aalst. Worklets: A service-
oriented implementation of dynamic flexibility in workflows. In OTM Conferences,
pages 291–308, 2006.

2. M. Bandt, R. Kühn, S. Schick, and H. Meyer. Beyond flexibility — workflows in
the perioperative sector of the healthcare domain. Electronic Communications of
the EASST, 37:146–157, 2011.

3. F. Gottschalk, W. van der Aalst, M. Jansen-Vullers, and M. La Rosa. Configurable
workflow models. Int. J. Cooperative Inf. Syst., 17(2):177–221, 2008.

4. V. Künzle and M. Reichert. Philharmonicflows: towards a framework for object-
aware process management. Journal of Software Maintenance, 23(4):205–244, 2011.

5. R. S. Mans, N. Russell, W. van der Aalst, P. Bakker, A. Moleman, and M. Jaspers.
Proclets in healthcare. Journal of Biomedical Informatics, 43(4):632–649, 2010.

6. D. Müller, M. Reichert, and J. Herbst. A new paradigm for the enactment and
dynamic adaptation of data-driven process structures. In CAISE, pages 48–63,
2008.

7. P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, and F. Leymann. Simpl -
a framework for accessing external data in simulation workflows. In BTW, pages
534–553, 2011.

8. N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst. Workflow data
patterns: Identification, representation and tool support. In ER 2005, volume 3716
of LNCS, pages 353–368. Springer Berlin / Heidelberg, 2005.

9. S. Schick, H. Meyer, M. Bandt, and A. Heuer. Enabling yawl to handle dynamic
operating room management. In BPM Workshops (2), pages 249–260, 2011.

10. S. Schick, H. Meyer, and A. Heuer. Enhancing workflow data interaction patterns
by a transaction model. In ADBIS, pages 33–44, 2011.

11. S. Schick, H. Meyer, and A. Heuer. Flexible publication workflows using dynamic
dispatch. In ICADL, pages 257–266, 2011.

12. S. Schick, H. Meyer, and A. Heuer. FlexY: Flexible, datengetriebene Prozessmod-
elle mit YAWL. In BTW, pages 503–506, 2013.

25

