Usability Extensions for the Worklet Service

Michael Adams

Queensland University of Technology, Brisbane, Australia.
mj.adams@qut.edu.au

Abstract. The YAWL Worklet Service is an effective approach to fa-
cilitating dynamic flexibility and exception handling in workflow pro-
cesses. Recent additions to the Service extend its capabilities through a
programming interface that provides easier access to rules storage and
evaluation, and an event server that notifies listening servers and appli-
cations when exceptions are detected, which together serve enhance the
functionality and accessibility of the Service’s features and expand its
usability to new potential domains.

Keywords: YAWL, Worklet, Exception Handling, Flexibility

1 Introduction

Since its introduction, the YAWL Worklet Service has proven to be an effective
approach to facilitating dynamic flexibility and exception handling in otherwise
static process instances [2,3]. The Service provides an extensible repertoire of
self-contained selection and exception-handling processes, coupled with an exten-
sible ripple-down rules set. At runtime, the Service provides functionality that
allows for the substitution of a task with a sub-process, dynamically selected
from its repertoire, depending on the rules set and the context of the particular
work instance. In addition, exception-handling functionality dynamically detects
and mitigates exceptions as they occur, using the same repertoire and rule set
framework!.

Now, recent additions to the service provide new methods of interaction that
extend its capabilities through the introduction of an application programming
interface (API) that allows external custom services and applications to interact
with it directly, and an event server that allows listener services to be notified
when a worklet is selected or an exception raised during a process execution.
Of particular interest are the ways in which the service can now be more easily
introduced into learning situations.

2 The Worklet Gateway Client API

The WorkletGatewayClient is a client side class that can be used by custom
services [5] to interact with the Worklet Service via an API. It provides two main
functionalities:

! See [1] for more details on the design and implementation of the Worklet Service

69



OO~ Uk WN -

— creating, accessing, updating and evaluating Ripple Down Rules (RDR) di-
rectly, circumventing the need to work with the Windows-based Rules Editor
application (see Section 3); and

— adding and removing worklet event listeners (see Section 4).

An instance of WorkletGatewayClient can be used by custom services and
applications to first create a session with the Worklet Service, then use the
returned session handle in subsequent API method calls. Any service or appli-
cation registered with the YAWL Engine is trusted by the Worklet Service, and
so the same credentials can used to establish the connection (see Listing 1.4 for
an example of how to connect and use the API).

3 Working with Ripple Down Rules

Since the primary aim of the Worklet Service is to support processes enacted
by the YAWL engine, each rule set is typically uniquely identified for a particu-
lar specification by its YSpecificationID object. However, to generalise RDR
support for other custom services and applications, rule sets can now also be
uniquely identified by any unique string value. Thus, for each client method
there are variations to support the fact that either a specification identifier or a
generalised name may be used to identify rules.

Listing 1.1. Examples of using the Worklet Gateway Client ‘get’ methods

public void example throws |IOException {

YSpecificationlD specIlD = new YSpecificationID (null, "0.1"
"someSpecification”);
String processName = "someProcess”;

RdrMarshal marshal = new RdrMarshal ();
WorkletGatewayClient client = new WorkletGatewayClient ();
String handle = client.connect(”admin”, "YAWL" );

// get a Rule Set

String ruleSetXML = client.getRdrSet(speclD, handle);

if (! successful(ruleSetXML)) throw new |OException(ruleSetXML);
RdrSet ruleSet = marshal.unmarshalSet(ruleSetXML);

// get a Rule Tree

String ruleTreeXML = client.getRdrTree(processName, null,
RuleType. CasePreconstraint , handle);

if (! successful(ruleTreeXML)) throw new IOException(ruleTreeXML);

RdrTree ruleTreel = marshal.unmarshalTree(ruleTreeXML);

ruleTreeXML = client.getRdrTree(speclD, "Treat”, RuleType.ltemSelection,
handle);

if (! successful(ruleTreeXML)) throw new IOException(ruleTreeXML);

RdrTree ruleTree2 = marshal.unmarshalTree(ruleTreeXML);

// get a Rule Node
String ruleNodeXML = client.getNode(speclD, null,
RuleType. CasePreconstraint, 1, handle);
if (! successful(ruleNodeXML)) throw new IOException (ruleNodeXML);
RdrNode nodel = marshal.unmarshalNode (ruleNodeXML);
ruleNodeXML = client .getNode(processName, " Archive”,
RuleType.ltemSelection, 4, handle);
if (! successful(ruleNodeXML)) throw new IOException (ruleNodeXML);
RdrNode node2 = marshal.unmarshalNode (ruleNodeXML);

70




OO~ U= W~

Get Methods Firstly, there are a number of get methods, which can be used
to retrieve an individual rule node, a rule tree (a set of connected nodes for a
particular rule type and task id), or an entire rule set (the set of rule trees for
a particular specification or process). Each of the get methods, and in fact all
of the client methods, return a String value representing a successful result or
an appropriate error message. A successful result for a get method contains an
XML String representation of the object retrieved, which can be unmarshalled
into the appropriate object using the RdrMarshal class, as shown in the examples
in Listing 1.1.

Evaluation Methods The rule sets maintained by the Worklet Service can be
evaluated against a given data set via the client API at any time. Like the get
methods, there are variations that accept a specification identifier or a gener-
alised name, and if evaluating an item-level rule tree, a task id. There are three
possible results when a rule set is evaluated:

1. No rule tree exists for the given specification id or process name, and/or task
id, and rule type (as required). An error message to that effect is returned.

2. A rule tree exists for the given parameters, but none of its nodes’ conditions
were satisfied. An error message to that effect is returned.

3. A rule tree exists for the given parameters, and the conditions of at least
one its nodes were satisfied. An RdrConclusion object is returned.

For a rule set associated with a YAWL specification, an RdrConclusion
object represents a set of primitives, each comprising an action and a target,
and provides methods for iterating through the primitives set. Of course, if the
Worklet Service is being used merely as an RDR store/evaluator, and thus there
is no intention to have the rules evaluated by the Worklet Service in relation to a
YAWL process instance, then the conclusion of a rule node may contain any data
of relevance to an external service or application. For example, the conclusion of
an ItemSelection rule node contains one primitive, with an action of ‘select’ and
a target naming the worklet to select. The conclusion of an exception rule type
may contain any number of primitives (see the Worklet Service chapter of the
YAWL User Manual for more information). An example of an evaluate method
call is shown in Listing 1.2.

Listing 1.2. Example using the Worklet Gateway Client ‘evaluate’ method

public void example throws IOException {
YSpecificationID speclD = new YSpecificationID(null, "0.1"
"someSpecification”);
RdrMarshal marshal = new RdrMarshal ();
WorkletGatewayClient client = new WorkletGatewayClient ();

String handle = client.connect(”admin”, "YAWL" );

// evaluate a Rule Type against a data set

String dataStr = "<data><Age>40</Age><Fracture>true </Fracture ></data>";
Element data = JDOMUtil.stringToElement(dataStr);

String conclusionXML = client.evaluate(speclD, " Treat”, data,

RuleType.ltemSelection , handle);
if (! successful(conclusionXML)) throw new IOException(conclusionXML);
RdrConclusion conclusion = marshal.unmarshalConclusion (conclusionXML );

71




OO~k W~

Adding a Rule Node RDR are structured in such a way that rule nodes can
be added at any time, but never deleted, since deleting a node would ‘break’
the tree’s internal structure. The client API provides a method to add a rule
node to a rule set for a specification or process, with similar variations to those
mentioned above for the different rule types. An example of adding a node is
shown in Listing 1.3.

Listing 1.3. Example using the Worklet Gateway Client to add a new Rule Node

public void example throws |IOException {
YSpecificationID speclD = new YSpecification|D (null, "0.1",
"someSpecification”);
RdrMarshal marshal = new RdrMarshal ();
WorkletGatewayClient client = new WorkletGatewayClient ();
String handle = client.connect(”admin”, "YAWL");

// add a Rule Node
String cornerStr = "<data><Age>40</Age><Fracture>true </Fracture ></data>";
Element eCornerstone = JDOMULtil.stringToElement(cornerStr);
RdrConclusion conclusion = new RdrConclusion ();
conclusion.addPrimitive (ExletAction.Suspend, ExletTarget.Case);
conclusion.addCompensationPrimitive (" myWorklet” );
conclusion.addPrimitive (ExletAction.Continue, ExletTarget.Case);
RdrNode node = new RdrNode(”Age=>75", conclusion, eCornerstone);
String newNodeXML = client.addNode(speclD, " Treat”,
RuleType.ltemPreConstraint , node, handle);
if (! successful (newNodeXML)) throw new |OException (newNodeXML);
node = marshal.unmarshalNode (newNodeXML);

When adding a rule node, values for condition, conclusion and cornerstone
are all that is required, as shown in line 15 of Listing 1.3. The Worklet Service
will determine the appropriate location in its rule tree for the new node?. The
cornerstone data is particularly important when adding a node to an existing
tree, as it is used to determine the proper location of the node. If no rule set
currently exists for the specification id or process name given, then one is created.
Further, if no rule tree currently exists for the specification id or process name,
and rule type (and task id if required) given, then one is created, and the node
is added as the first node in the tree (after the root node).

User-defined Functions The condition defined for each rule node is an ex-
pression that must evaluate to a final boolean (true/false) value. Expressions
can be formed using the usual numeric, comparison and logical operators, and
operands consisting of literal values, and/or the values referenced by the name
of case and/or workitem data variables. Alternately, an XQuery expression may
be used, which is useful if you need to query case or workitem data stored as a
complex data type.

In addition, conditional expressions support the use of user-defined functions
that are defined to evaluate the available data in a particular way, and in turn
may be inserted into complex, conjunctive expressions. These functions can pass
arguments consisting of literal values, and case or workitem data variable names,

2 Interested readers can find details of how the Service determines the location of a
new rule within the tree on pages 59-60 of [1]

72




which will be substituted with their actual runtime values before being passed
to the function?.

For work item level rules, a special data structure, called this, can be passed
as an argument to a user-defined function (e.g. myFunc(this)). The structure
is assigned an XML string representing the complete work item record, so that
specification and task descriptors, and state and timing values may be accessed
within the user-defined function.

4 Worklet Event Listeners

Each time the Worklet Service selects a worklet for a work item, or raises an ex-
ception for a work item or case, details of the event are announced to registered
listener classes. Listeners can use these event announcements to perform addi-
tional processing as required, and make it possible to create exception handling
service chains.

An abstract class called WorkletEventListener is the base class for all
worklet listeners. This class is a HttpServlet that handles all of the mechanics
involved in receiving notifications from the Worklet Service and transforming
them into five abstract method calls that are to be implemented by extending
classes:

— caseLevelExceptionEvent is called each time a case level exception is
raised, and passes descriptors for case-level data, the type of exception raised,
and the RdrNode that evaluated to true and so triggered the raising of the
exception.

— itemLevelExceptionEvent is called each time a item level exception is
raised, and passes descriptors as above in addition to the work item record
that was the ‘subject’ of the exception being raised.

— selectionEvent is called each time a worklet selection occurs, i.e. when
a worklet is substituted for a work item, passing descriptors for case-level
data, the work item that the worklet was selected for, and the rule node that
evaluated to true and so triggered the selection.

— constraintSuccessEvent is called each time a case or work item that has
pre- or post-constraint rules defined has had those rules evaluated and the
case or work item passes the constraints (i.e. no rules were satisfied and so
no exception was raised).

— shutdown is called when the Worklet Service is shutting down, and allows
implementers to take any necessary action.

Once the listener class implementation is complete, the extra servlet defini-
tion section needs to be added to the web.xml of the implementing (listener)
service, and then at runtime the listener is to be registered with the Worklet
Service, as shown in Listing 1.4.

3 See the YAWL User and Technical Manuals for details on the definition of user-
defined functions

73



O~ U ke WN -

Listing 1.4. Registering a listener with the Worklet Service

public boolean registerWorkletListener () {
WorkletGatewayClient client = new WorkletGatewayClient ();
try {
String url = "http://localhost:8080/ myService/workletlistener”;
String handle = client.connect(”admin”, "YAWL" );
return successful(client.addListener(url, handle));

}
catch (IOException ioe) {

log.error (" Failed_to__register_listener:.” + ioe.getMessage());
}

return false;

5 Conclusion

The additions to the Worklet Service outlined above allow it to be more easily
integrated into new and existing projects. Since rules can now be easily added
and evaluated directly via the API, there is no longer the requirement to use
the Windows-based Rules Editor for that purpose, and therefore it is no longer
necessary to undertake the learning curve associated with using the Rules Editor
before the benefits provided by the Service can be realised. In addition, the ability
to define and evaluate rules sets for environments external to YAWL process
executions broadens the application of the Service’s functionality to much wider
domains. Finally, the ability for external applications and services to be notified
when an exception or worklet selection has occurred during a process execution,
and when a case or work item has passed a constraint evaluation, opens the
Service up to new areas of functional support, particularly to the facilitation of
exception handling service chains.

An example of a novel use of these extensions can be seen in the development
of blended workflow, which integrates two specifications for the same workflow
process, one structured (YAWL) and one ad-hoc (goal-based), allowing users to
switch between two views of the same process instance [4].

References

1. M. Adams. Facilitating Dynamic Flezibility and Exception Handling for Workflows.
PhD thesis, Queensland University of Technology, Brisbane, Australia, 2007.

2. M. Adams, A.H.M. ter Hofstede, W.M.P. van der Aalst, and D. Edmond. Dynamic,
extensible and context-aware exception handling for workflows. In R. Meersman
and Z. Tari, editors, Proceedings of the 15th International Conference on Coopera-
tive Information Systems (CoopIS’07), volume 4803 of Lecture Notes in Computer
Science, pages 95-112, Vilamoura, Portugal, November 2007. Springer.

3. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Worklets:
A service-oriented implementation of dynamic flexibility in workflows. In R. Meers-
man and Z. Tari et al., editors, Proceedings of the 14th International Conference
on Cooperative Information Systems (CoopIS’06), volume 4275 of Lecture Notes in
Computer Science, pages 291-308, Montpellier, France, November 2006. Springer.

74




4. D. Passinhas, M. Adams, B. O. Pinto, R. Costa, A. Rito Silva, and A.H.M. ter
Hofstedet. Supporting blended workflows. In N. Lohmann and S. Moser, editors,
Proceedings of the Demonstration Track of the 10th International Conference on
Business Process Management (BPM 2012), volume 940 of CEUR Workshop Pro-
ceedings, pages 23—-28, Tallinn, Estonia, September 2012. CEUR-WS.org.

5. A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell. Modern
Business Process Automation: YAWL and its Support Environment. Springer, 2010.

75



