
	 i	

Preface

The YAWL Symposium, taking place on the 7th of June 2013 in Sankt Augustin,
Germany, is an event dedicated to sharing experiences with the YAWL system.

YAWL is an open source Business Process Management environment. Based on
the Workflow Patterns Initiative that started in 1999, work on the YAWL
Workflow Management System began in 2003. Since then YAWL has become a
full-fledged Workflow Management System that has made its way out of the
purely academic world into real life applications.

The YAWL User Group, founded 2012 at Bonn-Rhein-Sieg University of Applied
Sciences, is the organizer of this symposium and has created the website
http://yaug.org as a platform for discussions about the ongoing development of the
YAWL system.

The YAWL Symposium 2013 attracted ten submissions which were each reviewed
by at least three members of the program committee and all of which were deemed
to be of sufficient quality to be accepted for presentation on the day and for
inclusion in the proceedings.

We are grateful to all who contributed to YAWL over the years and specifically to
those who contributed to this symposium.

St. Augustin, June 2013

The members of the Organizing Committee

Thomas Freytag
Andreas Hense
Arthur ter Hofstede
Jan Mendling

	 ii	

Program Committee Members

Michael Adams Queensland University of Technology
Carlo Combi Universita' degli Studi di Verona
Massimiliano de Leoni Eindhoven University of Technology
Patrick Delfmann Eur. Research Center for Information Systems
Remco Dijkman Eindhoven University of Technology
Marlon Dumas University of Tartu
Marie-Christine Fauvet Joseph Fourier University of Grenoble
Giancarlo Fortino Universita' della Calabria
Thomas Freytag Cooperative State University (DHBW) Karlsruhe
Chinab Hanachi Toulouse 1 University
Andreas Hense Bonn-Rhein-Sieg University of Applied Sciences
Manfred Jeusfeld Tilburg University
Marcello La Rosa Queensland University of Technology
Susanne Leist University of Regensburg
Irina A. Lomazova Russian Academy of Science
Jan Mendling Wirtschaftsuniversität Wien
Oliver Müller University of Liechtenstein
Chun Ouyang Queensland University of Technology
Henderik Proper Public Research Centre Henri Tudor
Pnina Soffer University of Haifa
Arthur ter Hofstede Queensland University of Technology
Wil van der Aalst Eindhoven University of Technology
Petia Wohed Stockholm University

Using YAWL in a Business Undergraduate Course on

Process Management: An Experience Report

Joerg Evermann, Mary Furey, Terry Hussey

Faculty of Business Administration, Memorial University of Newfoundland, St. John’s, Canada

jevermann@mun, mfurey@mun, thussey@mun.ca

Abstract. The paper reports on the use of the YAWL workflow management in

a core undergraduate course in a business school. We describe the design of the

course, and YAWL’s position within it, learning activities and learning out-

comes. The use of YAWL in an introductory, general business course, rather

than an upper-level information systems course, entails several challenges. We

report on these challenges and reflect on lessons learned and best practices.

Keywords. Workflow management, education, business, experience reports

1 Introduction and Background

Workflow management is an important aspect of business process management,

and the wider business and management discipline. Approximately 1400 students are

enrolled in three different undergraduate degree programs at the Faculty of Business

Administration (FBA) at Memorial University of Newfoundland. Of these, the Bache-

lor of Commerce (BCOM) and the Bachelor of Business Administration (BBA) make

up more then 95% of students. Approximately half of the students choose an account-

ing concentration, another third choose a marketing concentration, with the remainder

in organizational behavior, entrepreneurship, or strategy. Due to lack of student inter-

est and enrollment, the faculty does not offer electives in information systems (IS).

An academic program review in the mid 2000s recommended that a course on

business process management and modelling should be introduced instead. We began

development of this new course in 2009, with a first offering in the fall semester of

2011. The core course is required for the BCOM and BBA degrees, and is usually

taken in the second year. The course is taught in classes of 75 minutes, twice a week,

for 12 weeks per semester, with class sizes varying between 30 and 60 students.

The FBA is accredited by the AACSB and has, as part of the required assurance of

learning process, defined the following learning goal and objectives, which are to be

satisfied by and evaluated in this course:

 Students that successfully complete this course will understand business processes

and the role of technology in enabling and supporting them. (Goal)

─ Our students will be able to identify, model, and evaluate the efficiency of an

organization’s main business processes. (Objective 1)

1

mailto:thussey@mun.ca

─ Our students will be able to improve and redesign a business process using IT

and non- IT-based solutions. (Objective 2)

─ Our students will be able to identify points of a business process where IT sup-

port can improve the overall process, and be able to propose high-level require-

ments for suitable IT support. (Objective 3)

2 Course Design and the Choice of YAWL

The main challenge was to introduce the technical topic of workflow management

into a general business curriculum where students are not enthusiastic about IS related

topics. The approach to designing the course must take into account that it is not an IS

elective, but is required for all business students and is typically taken in the first or

second year of study. Students do not have a background in software technology,

programming, databases, conceptual modeling, and other foundational technologies.

Because no other courses in the curriculum include business process management, the

topic had to be covered from all perspectives: strategic, managerial, and operational.

Experience with a computer science course that was replaced by this course

showed that students did not enjoy learning about computer technology. Therefore,

we adopted a “gentle” introduction from the managerial perspective to give students a

foundation in the concepts of business processes and process-oriented enterprises

before introducing them to workflow management. The course has to demonstrate the

relevance of the topic and capture student interest as early as possible. Table 1 in the

Appendix provides an outline of the typical course topics and reading list.

Our first challenge in course development was a dearth of textbooks that provide a

balanced organizational and technical treatment of business processes and workflows.

For example, some books cover workflow modeling and workflow systems [1-3], but

do not provide a broader managerial perspective. These books are more suitable for IS

majors than for general business students. Other books [4-5] focus on specific ven-

dor’s products. We wanted to avoid these dependencies, and focus on vendor-

independent concepts instead. Further, we could not rely on the support of the faculty

to cover the cost of access, training, etc. Yet other books [6] include processes as part

of a general course on IS, which would overlap extensively with an existing introduc-

tory MIS course. We finally settled on a combination of management articles (see

third column of Table 1) and the YAWL book [7].

While the YAWL book is also targeted at IS majors rather than general business

students, the choice of YAWL was motivated by the following considerations:

 YAWL provides a vendor-independent perspective on the theoretical concepts of

processes and workflows. This allows us, in a university setting, to concentrate on

teaching theory rather than product-specific skills.

 YAWL was the only workflow system that is built on a sound theoretical founda-

tion (Petri nets and extensions). We felt this to be especially important in a univer-

sity setting that focuses on theoretical knowledge, not only on skills.

 The YAWL book and system are developed by leading researchers in workflow

management, and thus provides best available knowledge at the “cutting-edge”.

2

 YAWL provides a good integration of a system with a textbook. This combination

cannot be found for any other system or product.

 The YAWL system is open-source and (mostly) multi-platform capable. This pro-

vided use with free access for the greatest number of students. However, platform-

specific components of YAWL, such as the worklet designer, or platform-specific

related tools described in the YAWL book, such as CPNTools, meant that these

were in principle not suitable for use in the course.

 In contrast to other systems, YAWL allows the easy exchange of workflow and

resource models, convenient for homework and exam submissions.

3 Using the YAWL system in the Course

Experience has shown that an early demonstration of the use and benefits of workflow

management systems can considerably improve student interest and motivation. We

introduce YAWL in the second class of the course as a group activity, using the Gen-

ko Oil Case in Appendix A of the YAWL book that is provided as an example with

the YAWL system. Applying Kolb’s experiential leaning approach [8] where no ex-

planation of the system itself and only little information of the process is provided,

students role-play one of the process participants in the company. This allows stu-

dents to experiment with the system, observe its behavior, and notice the actions they

can take with respect to work items. The lecturer maintains an updated administrator

view of all cases and work items on the classroom projector. According to Kolb, this

type of learning can be defined as knowledge creation resulting from the combina-

tions of grasping and transforming experience. Students are generally impressed by

the capabilities of a WfMS and convinced of its usefulness and value. By engaging

students to consider the business value generated by WfMS the instructor can over-

come the innate technology resistance that is likely present.

After students receive an introduction to Petri nets and workflow nets using the

WoPeD tool, we introduce the three perspectives of YAWL, the flow, data, and re-

source perspective. For each of these, the first class discusses the workflow patterns,

and a useful exercise is for students to identify an example for each workflow pattern

from their own work experience. The second class on each perspective occurs in the

computer lab. Students are asked to form groups of between two and four members.

We have developed tutorial scripts that guide students step-by-step through the devel-

opment and execution of an example process. Students access a shared YAWL server

and are able to again experience the capabilities of a WfMS in a realistic environment.

Students also use YAWL in a major assignment. The assignment is based on a

Harvard Business School Case (“Pharmacy Improvements at CVS”, HBS number 9-

606-015). As part of the assignment, students model the described process in YAWL,

including all resource and data perspectives. This part of the assignment is assessed

using the following criteria:

 Is the model valid and sound?

 Is the process well-structured?

 Are there unnecessary OR splits or joins?

3

 Are the major exceptional paths handled?

 Are process loops and iterations correctly modeled?

 Is net-level and task-level data defined using appropriate data types?

 Are net-level and task-level data mappings defined?

 Is net-level data used for flow-control for all XOR-splits?

 Are appropriate resources defined and assigned to each task?

 Does the workflow model load and execute on the YAWL engine?

Only when these formal criteria have been satisfied, do we examine the “correctness”

of the model with respect to the case description.

4 Challenges

4.1 Student Preparedness and Motivation

The readings presented in the first five weeks focus on the genesis of the concept

of process-orientation from the early 1990s to the mid-2000s. However, students often

lack a basic understanding of fundamental concepts in organizational theory and or-

ganizational behavior. This requires instructors to delve relatively deeply into these

concepts to give students a sufficient basis to comprehend the course readings.

Workflow management could be seen as an abstract concept on its own but when

the potential business benefits are discussed the level of student interest rises. First-

and second-year students are unlikely to immediately relate an improved business

process to an increase in business value. However, the concept of a reduced wait in a

line-up is clear to them. Expanding on practical examples of business processes and

the impact of their improvements allows the instructors to slowly move towards the

technology portion of the course while maintaining student interest.

Another course element to maintain relevance to students are weekly reflections

(“journals”, “blog”) that focus on personal experiences with the material covered in

that week. They encourage students to make sense of the material through relation to

familiar situations, while at the same time demonstrating relevance.

4.2 Group Work

Because the benefits of workflow management can best be realized when multiple

process participants access a common workflow system, the YAWL assignment was

originally designed as a group assignment, so that each group can a process in a real-

istic shared environment. While this is beneficial to student understanding, it resulted

in most student groups developing a single “YAWL expert”. This defeated our goal of

all students having an understanding of the workflow management system. Thus,

assignments are now done individually, whereas the lab work focuses on the coopera-

tive group aspect. Another advantage of individual assignments is that they can now

be used to satisfy the assurance of learning assessment required to maintain AACSB

accreditation, which was not possible for group assignments.

4

4.3 The YAWL Data Perspective

Data management in YAWL is arguably the most difficult aspect of the system for

general business students with no prior knowledge in computer science or program-

ming. It is also the aspect that contributes least to the general understanding of busi-

ness process and workflow management. However, modeling data in YAWL is re-

quired for the workflow to be realistic, in the sense that students are able to view and

edit work items. Thus, omitting the data perspective is not a good option.

As a consequence, as seen in Table 1, we have to allocate significant time to teach-

ing even simple XML schema development, and XPath expressions. Due to many

hands-on exercises, the general feedback from students is relatively positive, despite

the level of difficulty. However, we have found that it is important to discuss the

YAWL data perspective with built-in data types before introducing XML schema, so

that students know the purpose of the XML schema they are developing.

As a future alternative, we are considering providing suitable XML schema to stu-

dents for their YAWL assignment, so that students can focus on the input/output

mappings from net-level to task-level variables and the flow-control for XOR splits

and less course time needs to be allocated to this topic.

4.4 Integrating YAWL with Process Mining

In earlier offerings of the course, we asked students to also execute their workflow

20 times for a follow-up assignment on process mining, to expose students to the full

lifecycle of business process management. Students exported their execution log data

using PromImport and mine the data using ProM. Technical and pedagogical issues

forced us to abandon this. First, we experienced too many support issues with Pro-

mImport, where students were unsure how to install and use the program. Moreover,

exporting data from YAWL with PromImport puts a considerable load on the YAWL

engine, leading to frustration among students. We also found that the range of stu-

dent’s solution to the workflow modelling assignment made it difficult to provide a

single relevant set of questions (and solutions) for the process mining assignment. We

now omit this assignment and provide students with a hands-on introduction using the

ProM tutorial developed by de Medeiros and Weijters [9].

4.5 Software Versions

When we developed the course in 2009 and 2010, the then current YAWL version

2.0.1 reflected the newly published YAWL book, making for an ideal combination.

As we also integrated process mining into the course, we “froze” YAWL at version

2.0.1, to work with PromImport (version 7.0), and ProM (version 5.2). While the later

decision to remove PromImport from the course provides flexibility in the use of dif-

ferent YAWL (and ProM) versions, the fit of 2.0.1 with the YAWL book is our main

reason for remaining with this version. We hope that the book may be updated at

some point in the future to again accurately reflect the latest system.

5

4.6 YAWL Hosting

The nature of WfMS means that the best learning experience is in groups of stu-

dents, each representing its own organization. Ideally, this requires a separate YAWL

system for each student group in the course. We explored the following options:

 Multiple servers host separate YAWL systems. As the YAWL system is not re-

source intensive for our application, this was not a preferred configuration.

 A single server runs multiple virtual machines, each with its own installation of the

stock YAWL system. While the configuration of YAWL in this scenario is simple,

the configuration of the VMs and dynamic provisioning of additional instances re-

quires more administration resources than the faculty can provide.

 A single server and servlet container hosts multiple YAWL engines, databases,

resource services, etc., each configured with its unique set of ports. While this is

technically the most efficient solution, it requires considerable administrative ex-

pertise, especially for automatic provisioning of additional YAWL instances.

 A single YAWL instance, with the use of naming conventions for the organiza-

tional model for different student groups. This is administratively the easiest solu-

tion, but requires some effort from students.

Resource constraints meant that it was impossible to internally host a single (or

multiple) YAWL systems and that we could not develop an experienced YAWL sys-

tem administrator. Hence, the task of hosting any system falls to the instructor. To

avoid configuration issues, a stock version of YAWL4Study is hosted on an Amazon

EC2 micro-instance, which is easily sufficient for dozens of concurrent users.

5 Conclusions and Recommendations

In conclusion, we have successfully introduced the YAWL system and textbook in-

to an undergraduate, required course for general business students. As this paper has

demonstrated, the approach taken is different from one for a IS majors that have a

technical understanding and interest in the topic. In light of the challenges we have

encountered, we offer the following recommendations:

 Early demonstration of business use and benefits to achieve student “buy-in” into

technology aspects of business process management.

 Demonstrate the importance and relevance of business processes by not focusing

on technological aspects, but through managerial considerations.

 Constant focus on business applicability and relevance, through

─ Case studies

─ Personal reflections

─ Appropriate process examples

In summary, developing the course proved to be more of a challenge than had the

course been offered as an IS elective to interested majors. The fact that the YAWL

book, as most other books, does not present the topic in the larger business context

6

requires a large amount of extra material. For this, we have mainly drawn on Harvard

Business Review articles and Harvard business cases. Thus, there is a need for future

pedagogical material on YAWL, and workflow management in general, to extend the

scope. The newly published book by Dumas et al. [18] takes some steps in this direc-

tion and may be considered for a future course revision.

We believe that we have achieved a successful balance of managerial and technical

issues that successfully introduces students to the area of business process and work-

flow management. All course materials, including slides, reading notes, lecture plans,

student handouts, exercises and assignments are available from the authors in the

hope that they may be useful to others.

6 References

1. Van der Aalst, W., van Hee, K.: Workflow Management. MIT Press (2004)

2. Van der Aalst, W., Stahl, C.: Modeling Business Processes. MIT Press (2011)

3. Weske, M.: Business Process Management. Springer, Heidelberg (2007).

4. Magal, S.R., Word, J.: Essentials of Business Processes and Information Systems. John

Wiley & Sons, Hoboken (2009)

5. Magal, S.R., Word, J.: Integrated Business Processes with ERP Systems. John Wiley &

Sons, Hoboken (2011)

6. Kroenke, D.M., McKinney, E.H.: Processes, Systems, and Information. Pearson, Boston,

MA (2011)

7. Ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russel, N.: Modern Business

Process Automation. Springer, Heidelberg (2010)

8. Kolb, D.: Experiential learning. Prentice-Hall, Englewood Cliffs, NJ (1984)

9. De Medeiros, A.K.A., Weijters, A.J.M.M.: ProM Framework Tutorial.

http://tmpmining.win.tue.nl/_media/tutorial/promtutorialv2.pdf

10. Hammer, M.: Reengineering work: don’t automate, obliterate. Harvard Business Review

68:4, 102-114 (1990)

11. Hammer, M., Stanton, S.: How process enterprises really work. Harvard Business Review

77:6, 108-118 (1999)

12. Champy, J.: People and Processes. ACM Queue 4:2, 34-38 (2006)

13. Hammer, M.: The process audit. Harvard Business Review 85:4, 111-123 (2007)

14. Miers, D.: Best practice BPMN. ACM Queue 4:2, 40-48 (2006)

15. Reisig, W., Rozenberg, G.: Information introduction to Petri nets. In: Reisig, W., Rozen-

berg, G. (eds.) Lectures on Petri Nets. LNCS, vol 1491. Springer, Heidelberg (1992)

16. Bratosin, C.: A brief guide to XML, XML Schema, XQuery for YAWL data perspective.

http://www.win.tue.nl/~cbratosi/yawl/YAWL-XML.pdf

17. Treese, W.: What’s all the noise about XML? ACM NetWorker 2:5, 27-29 (1998)

18. Dumas, M., La Rosa, M., Mendling, J. and Reijers, H.A.: Fundamentals of Business Pro-

cess Management. Springer, Heidelberg (2013)

7

http://en.wikipedia.org/wiki/David_A._Kolb
http://www.win.tue.nl/~cbratosi/yawl/YAWL-XML.pdf

7 Appendix

 Topic Readings / Materials

1
Introduction to business process and work-

flow management

2
Introduction to the YAWL workflow man-

agement system
YAWL book preface (pp. v-vii)

3
Business processes and process-oriented

organizations
Hammer (1990) [10]

4
Organizational change and change man-

agement for implementing business process

Hammer and Stanton (1999) [11]

Champy (2006) [12]

5 Process and Enterprise Maturity Model Hammer (2007) [13]

6 Process and Enterprise Maturity Model

Harvard Business School Case

“Siemens Rolm Communications”

(HBS# 195214-PDF-ENG)

7
Business process metrics, analysis and pro-

cess improvement
Harvard Business School Case

“Body Scans and Bottlenecks”

(HBS# KEL592-PDF-ENG) 8
Business process metrics, analysis and pro-

cess improvement

9 Business process management lifecycle Miers (2006) [14]

10
Workflow management - YAWL overview

and architecture

YAWL book chapter 1

YAWL book chapter 7

11 Petri nets Reisig and Rozenberg (1992) [15]

12 Workflow nets YAWL book section 2.3

13
YAWL Language and Design Environment

– Control flow perspective

YAWL book Section 2.1

YAWL book Section 2.2.1

YAWL book Section 2.4

YAWL book Chapter 3

YAWL book Section 8.1

YAWL book Section 8.2

YAWL book Section 8.5

14
YAWL Language and Design Environment

– Control flow perspective (computer lab)

15
YAWL Language and Design Environment

– The resource perspective

YAWL book Section 2.1

YAWL book Section 2.2.2

YAWL book Section 2.5

YAWL book Section 8.2

YAWL book Section 8.3
16

YAWL Language and Design Environment

– Resource perspective (computer lab)

17
YAWL Language and Design Environment

– Data perspective (computer lab)
YAWL book Section 2.1

YAWL book Section 2.2.3

YAWL book Section 2.6 18 Web services, XML, and XML Schema

8

 Topic Readings / Materials

19
YAWL Language and Design Environment

– Data perspective (computer lab)

YAWL book Chapter 10

YAWL book Section 8.4

Treese (1998) [16]

Bratosin (2009) [17]

20
Process Mining using ProM

(computer lab)
YAWL book Chapter 17

21 Other modelling languages – BPMN YAWL book Chapter 13

22 Other modelling languages – EPC YAWL book Chapter 14

23 Other modelling languages - BPEL YAWL book Chapter 15

24 Business process examples – Logistics YAWL book Appendix A

Table 1. Course schedule and reading list for the business process management course for the

Winter 2013 semester

9

Developing a Realistic Workflow Management

Environment for Teaching: An Interface from YAWL to

OpenERP

Joerg Evermann

Faculty of Business Administration, Memorial University of Newfoundland, Canada

jevermann@mun.ca

Abstract. The paper describes an interface from the YAWL workflow man-

agement system to the OpenERP enterprise system. The interface is implement-

ed as a codelet, and provides access to the full range of OpenERP information

and functions. The paper provides an overview of the design of the codelet, the

data types for its use, and an example application.

Keywords. YAWL, OpenERP, workflow management, enterprise system

1 Introduction

The YAWL (Yet Another Workflow Language) workflow management system is

developed for teaching and research. Together with the YAWL book [1] it provides a

state-of-the-art open-source environment for teaching business process management

and automation, in an affordable and easily accessible way. The YAWL system is

currently used in an introductory, core course on Business Process Management

(BPM) in the general business degree curriculum at Memorial University. While this

course covers all aspects of BPM, strategic, managerial, operational, and technical,

YAWL plays a prominent part in the course to illustrate the capabilities and benefits,

but also the complexities of process automation.

In the fall of 2011, Memorial University funded, through a $5000 Instructional De-

velopment Grant, a course improvement project aimed at introducing hands-on ERP

systems experience into the business undergraduate curriculum. The initial targets of

this initiative were three courses: Information Systems, Operations Management, and

Business Process Management course. From the BPM course perspective, integrating

the workflow management with „‟legacy‟‟ information systems provides for a more

realistic environment for students to experience and learn about workflow manage-

ment and process automation.

While the business benefits of integrating workflows and enterprise systems are

easy to describe, they are difficult for students, especially those at an early stage in the

degree program, to fully appreciate without hands-on experience. Experiential learn-

ing, defined as “the sense-making process of active engagement between the inner

world of the person and the outer world of the environment” [2, pg. 2], is a “more

10

mailto:jevermann@mun.ca

effective and long-lasting form of learning” that “involves the learner by creating a

meaningful learning experience,” [2, pg. 1] and “learning from experience is one of

the most fundamental and natural means of learning available,” [2, pg. 15].

The project‟s intended learning outcomes are an improved understanding and ap-

preciation of the capabilities and importance of integrated enterprise IT to business

operations.

Given the size of the development grant, and the inability of the faculty to provide

additional monetary or human resources to this project, the scale of the project was

quite limited. The chosen enterprise system was OpenERP
1
, an open-source system

that provides core modules such as sales, purchasing, accounting, production man-

agement, as well as extensions for point-of-sales, project management, etc. Among

open-source ERP systems, it is one of the most mature and feature complete systems.

OpenERP provides its own process model and workflow engine. However, the con-

figuration language is XML based and there is no recognizable formal underpinning

for the workflow description language.

This suggested the development of an interface from YAWL to OpenERP, so that

OpenERP functionality can be used in a YAWL workflow. The remainder of the pa-

per describes the implementation of this interface as a YAWL codelet. The next sec-

tion provides an introduction to the OpenERP system, followed by design choices for

the interface codelet. This is followed by a description of the codelet parameters and

data types, and an example workflow.

The codelet, associated XML Schema data type definitions, and YAWL example

workflow definitions are available under the GPL v2 license
2
.

2 The OpenERP System from the YAWL perspective

OpenERP is developed using the Python language and provides a business object

model that abstracts, through an object-relational mapping layer, from the underlying

physical data structures and functions. On top of this object model, OpenERP defines

a process model and workflow mechanism for many of the business objects. The

OpenERP workflow model is based on object states and transitions between them.

Each object state is associated with a method, whereas transitions are either triggered

by signals, or triggered by changes in attribute values.

OpenERP provides an XML-RPC based web-services interface to both its business

objects and its workflow mechanism. This interface provides the following generic

operations on all business objects:

 Create (returns the new business object ID)

 Search (returns a set of business object IDs that match a query)

 Read (returns a set of attribute values for a given list of business object IDs and a

given list of attribute names)

1 http://www.openerp.com
2 http://www.yawlfoundation.org/pages/resources/contributions.html

11

 Write (updates the provided attributes of business objects with a given list of IDs

with the provided new value)

 Delete (“Unlink”)

OpenERP also provides a means to call any method defined on the business ob-

jects. However, calling the methods directly (outside the built-in, intended workflow)

may lead to issues such as the (implicit) pre-conditions (as per the built-in workflow)

not being met, or the consequent actions (as per the built-in workflow) not being exe-

cuted. Thus, calling the business object methods directly is not recommended. In-

stead, OpenERP provides a mechanism to send “signals” to its workflows. These

signals can be used to advance the built-in workflow for a business object. For exam-

ple, a signal may be sent to confirm a draft sales quotation and transform it to a sales

order. The OpenERP workflow mechanism then calls the appropriate methods on the

business object.

While this is a “safe” mechanism to interact with the OpenERP system, the exter-

nally defined and controlled workflow (e.g. from YAWL) must be essentially isomor-

phic to the workflow configured in OpenERP and can only „mimic‟ that workflow.

Further, developing an external workflow requires a thorough understanding of the

built-in workflow and the states of the business objects. However, the codelet is not

limited to this “safe” way of interacting with OpenERP, and it can in principle be

used to call any method in any order. This, however, requires a thorough understand-

ing of the OpenERP pre-conditions and consequent actions.

3 Interface Design

YAWL provides different ways to integrate external systems, the three most prom-

inent being the web-services invoker service, the codelet mechanism, and the external

data gateway. Any of these can in principle be used to develop the interface.

As the YAWL web-service invoker service requires a valid WSDL file and uses

SOAP rather than XML-RPC, this would have required a translation server that ac-

cepts SOAP requests and issues XML-RPC requests in turn. Alternatively, a new

XML-RPC web-service invoker service could have been built as an alternative to the

existing SOAP based one. Either of these alternatives was considered to be too tech-

nically complex for the limited time-frame of the project.

An external data gateway could be constructed to access either the business object

information in OpenERP, or directly access the underlying relational data. Technical-

ly, one could also imagine that this might be used to access methods or send work-

flow signals, but this would be conceptually confusing, as the data gateway is intend-

ed primarily for data access.

Instead, a simple codelet was developed that accepts input and provides output us-

ing pre-specified data types. Two options were investigated:

 Offer access to specific OpenERP business objects, their data, methods, and work-

flow signals. In this scenario, XML data types would need to be developed that re-

flect the OpenERP business object model, e.g. a data type for the “sales order” ob-

12

ject, a data type for “sales order line” object, etc. This would remove the burden of

data type development from the YAWL process designer, but would at the same

time limit the flexibility of the codelet to a fixed set of business objects, their data

and methods as determined by the codelet design.

 Offer access to generic as well as specific OpenERP operations with no abstraction

from the OpenERP XML-RPC API. This requires the codelet user, i.e. the YAWL

process designer, to develop appropriate business object data types and deal with

the specifics of data transformation to the OpenERP API on the YAWL side, e.g.

as part of the input and output mappings for tasks. The benefit is that the codelet

does not prescribe specific data types, and it can access any OpenERP business ob-

ject or workflow. The codelet was developed based on this, second model.

The codelet itself is stateless and establishes a new connection to the OpenERP

system for every call, thus requiring the OpenERP connection information with every

call. While this may not be as efficient as returning a connection handle to the YAWL

workflow, the fact that the YAWL workflow may be long-running means that a con-

nection handle in the YAWL workflow data might expire. Further, as tasks in the

YAWL workflow may be assigned to different (human) resources, maintaining a

quasi-persistent connection handle would also force the same OpenERP user account

for the entire workflow, which may not be desirable in practice.

4 Use and Example

Table 1 lists the input parameters for the codelet. The content of the method

parameter is limited to the five generic methods for OpenERP business objects:

search, write, read, delete, create, and the additional action, which is

used for sending signals to OpenERP workflows. The results that the codelet returns

depend on the invoked method. Alternatively, the codelet returns an error, either

passed back from OpenERP, or an exception in the codelet, or an error encountered

by the codelet, e.g. when the input paramters do not match the invoked method type.

Parameter Type Description

URL xsd:String Hostname for OpenERP

Port xsd:Integer Network port for OpenERP

Database xsd:String OpenERP database to select

Username xsd:String Username for OpenERP

Password xsd:String Password for OpenERP

Object xsd:String Type of OpenERP business object on which

method or action is to be called

Method xsd:String OpenERP method name

Parameters ParameterType Parameters appropriate for the called method

Table 1. OpenERP codelet input parameters

13

Figure 2 below shows the YAWL workflow for creating and processing sales or-

der. That workflow is based on managing sales orders in OpenERP, shown in Figure

1 above. The codelet design decisions have an impact on the usage of the codelet in

two important ways. First, the direct representation of the basic OpenERP method

calls (search, read, etc.) leads to typical combinations of search-read sequences as two

automated tasks in the YAWL workflow. Second, the relatively low degree of ab-

straction of the codelet parameters suggests that the data transformations in the

YAWL task input-/output-mappings are not trivial. Thus, the use of the codelet re-

quires considerable XQuery expertise.

Fig. 2. Sales order process

5 Use in Teaching and Current Status

When the project was initiated, the intended use of the YAWL-OpenERP interface

was to allow students to create realistic workflow definitions for simple processes like

sales order processing, as part of an assignment or course project. It was hoped that by

using a realistic integration with business data in the ERP system, the usefulness of

workflow management could be demonstrated to students and lead to better apprecia-

tion and understanding of the business value of process automation. Specifically, the

experiential learning is argued to:

 increase student engagement,

 improve student skill development,

 increase student learning and understanding.

14

As the codelet implementation is now complete and an example process (Figure 2)

is implemented, we have found that the level of YAWL, OpenERP, and XML

knowledge required to develop integrated workflows is beyond what can be taught in

an introductory course that has no computer science or programming pre-requisites.

There are a number of possible responses to this situation. First, we are aiming to

have students interact with the process, rather than create their own workflows. For

the coming fall semester, we are working to make the defined workflow more robust

to user error and to provide a better user interface. At the same time we are develop-

ing computer lab exercises for students to use the pre-defined workflow. Finally, we

are developing workflows for processes other than sales order management.

A second possible response is to investigate the aggregation of lower-level tasks

that access the codelet into higher-level workflow fragments, whose use does not

require knowledge of OpenERP, XML, or the codelet design. One option for this is

the use of worklets which can then be assembled by students. However, the current

course design does not include worklets or declarative workflow design. Another

alternative is to provide students with a workflow specification that contains a number

of YAWL nets, which can either be copied-and-pasted into students‟ own work, or to

which composite tasks that students create as part of their own workflows can be

unfolded. The current example process (Figure 2) already contains many such ab-

stractions as composite tasks. Again, a set of computer lab exercises for students will

be developed around this idea in time for the fall semester.

5.1 Evaluation

The intended learning outcomes will be evaluated using questionnaires measuring

student engagement, adapted from [3, 4], perceived skill development, adapted from

[5]. Further, questions on student‟s understanding of workflow management princi-

ples and the role and capabilities of YAWL in process automation will be used:

 In your own words, describe what the YAWL system is. (Q1)

 In your own words, describe the place of the YAWL system in a company. (Q2)

 In your own words, describe how the YAWL system relates to other information

systems in a company.(Q3)

 In your own words, describe why and how the YAWL system can be useful to a

company. (Q4)

Additionally, Likert-type scales will be used for the following questions:

 I have a good understanding of workflow management (Q5a)

 I am able to explain workflow management to other students (Q5b)

 I am able to use workflow management systems (Q5c)

 I am able to make a business case for workflow management. (Q5d)

. These questionnaires will be administered using a pre- and post-test design before

and after a computer lab class that involves the OpenERP interface. This allows us to

measure the changes in students introduced by the realistic workflow environment.

Additionally, on the post-test questionnaire, students motivation was assessed, using

the following Likert-type scales:

 I would discuss related topics outside the class. (Q6a)

15

 I would do additional reading on related topics. (Q6b)

 I would do some thinking for myself about related issues. (Q6c)

5.2 Initial Results

To satisfy the requirements of the instructional development grant under which the

project was funded, a preliminary evaluation of benefits had to be assessed, even

though the OpenERP interface was not yet fully integrated into the pedagogics of the

course. To meet the deadline, the integration between WfMS and ERP was demon-

strated by the course instructor using the sales order management process in Figure 2.

Students were shown the workflow definition, the OpenERP data, and the running

workflow. As expected, a demonstration is not as engaging or interesting as experien-

tial learning, and the initial results reflected this.

From a total of 77 students, 57 responses were received, of which 53 provided in-

formation on both the before and after questionnaire.

The understanding questions (Q5a-Q5d) were averaged as they all represent under-

standing of WfMS. There was no significant difference between the means for the

before and after questionnaire (before = 3.80, after = 3.97, on a 7-point scale).

The motivation questions (Q6a-Q6c) were used only on the post-test questionnaire.

The results indicate moderate motivation levels (approx. scale mid-point) for Q6a and

Q6b, whereas Q6c shows good motivation levels. The difference is not surprising, as

the Q6a and Q6b asked students whether they would take some action, whereas Q6c

only asked whether they would “think about” the topic.

Finally, we examined the engagement [3, 4], perceived skill development [5] and

perceived usefulness (single item). The descriptive results are shown in Table 2.

 Mean SD

Perceived Engagement 3.33 1.39

Perceived Skill-Development 4.04 1.29

Perceived Usefulness 4.26 1.58

Table 2. Results for engagement and skill development, on 7-point Likert scales

The results indicate that the demonstration was not engaging to students (mean less

than scale mid-point, but not significant as per t-test). However, the demonstration

was perceived as improving skill development (mean significantly above scale mid-

point, p<0.01) and useful (mean significantly above scale mid-point, p<0.01). The

result with respect to engagement is not surprising as the demonstration required stu-

dents to watch for 15 minutes rather than interacting with the system themselves in a

true experiential way, as originally intended. The results with respect to skill devel-

opment and usefulness are encouraging, especially given the low level of student

engagement. We believe that this can be significantly increased once true experiential

interaction with the system is available.

16

Only 18 responses were received with answers for Q1-Q4 differing between the

before-demonstration and after-demonstration questionnaire. The answers were exam-

ined to identify improvements in understanding. Of the 18 respondents, only 12

showed improvements in understanding and even fewer showed a marked improve-

ment across all four questions. The low response rate is likely due to the low level of

engagement..

6 Discussion and Conclusion

This paper presented a YAWL codelet to access the OpenERP system. The codelet

exposes low-level access functionality, rather than business-level objects or methods.

This low level of abstraction requires the codelet user to have a thorough understand-

ing of the OpenERP data model, methods and workflows. At the same time, this de-

sign makes the codelet useful for the widest range of applications. Codelet users and

workflow designers may also use YAWL features to build additional layers of ab-

straction on top of this foundation. For example, YAWL worklets could be defined

that aggregate some of the codelet functions, e.g. the search-read combinations, into

assemblies that are meaningful at the business level.

Designed as part of a project to introduce experiential learning into an undergrad-

uate business degree, the codelet is essentially feature-complete and robust, but the

development of teaching material, example workflows, and associated documentation

is still in progress. An evaluation of the usefulness of the OpenERP interface for

teaching workflow management is planned, based on goals such as increased under-

standing, increased student engagement, and increased skill development. An evalua-

tion that was not based on experiential learning has only shown limited improvements

on these dimensions, but this is expected to improve once the interface is ready for its

intended use in the classroom and computer lab tutorials.

While this project focused on the OpenERP system, we believe that the challenges

we faced, and the design decisions we made, e.g. w.r.t. having to “mimic” the internal

workflow or the choice between providing abstraction or a direct interface, are not

unique to OpenERP and applicable to other open-source or commercial ERP systems.

7 Bibliography

1. Ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russel, N.: Modern Business

Process Automation. Springer, Heidelberg (2010)

2. Beard, C.M., Wilson, J.P. (2006) Experiential Learning: A Best Practice Handbook for

Educators and Trainers (2nd. Ed.). Kogan Page Limited, Philadelphia, PA.

3. Webster, J. and Ahuja, J.S. (2006) “Enhancing the design of web-navigation systems: The

influence of user disorientation on engagement and performance,” MIS Quarterly, (30:3),

pp. 661-678.

4. Webster, J. and Ho, H. (1997) “Audience Engagement in Multimedia Presentations,” The

DATABASE on Advances in Information Systems, (28:2), pp. 63-77.

5. Alavi, M. (1994) "Computer-Mediated Collaborative Learning: An Empirical Evaluation,"

MIS Quarterly, (June), pp. 159-174.

17

Adapting a Generic Data Synchronisation
Framework for YAWL to Access Clinical
Information Systems at the Task Level

Holger Meyer1, Sebastian Schick1, Jan-Christian Kuhr2, Andreas Heuer1

1 University of Rostock {hme,schick,ah}@informatik.uni-rostock.de,
2 GECKO mbH Rostock jan-christian.kuhr@gecko.de

Abstract. Based on a generic extensible data access framework (DAF)
[10], we devised a domain-specific extension to support interoperability
of Yawl workflow cases with hospital information systems (HIS). In the
scenario considered, the HIS is the principal system that keeps master
data and clinical data of the patient. Data transfer between HIS and the
Yawl runtime environment is facilitated via exchange of standardized
HL7 messages. The solution presented supports read and write task-
level synchronization of workflow variables using the patient’s case ID as
correlation parameter. A first proof-of-concept has been carried out in a
real clinical setting.

Keywords: Workflow, Data Access, Yawl, Healthcare, Perioperative Process

1 Introduction

Clinical value chains are in general well-structured and follow an a-priori known
execution path. Thus, such scenarios lend themselves to be supported by pro-
cess aware information systems in general and by business process management
systems (BPMS) in particular.

When a BPMS approach is adopted, particular challenges arise if the process
engine is external to existing hospital information systems. Patient’s master data
and visit-related clinical data such as diagnosis and scheduled treatments are
usually handled within a HIS, which is the principal system. However, a subset
of data is required to be known by the process execution engine to support
execution of patient’s workflow cases. Conversely, it may be necessary to map
process runtime data, such as the duration of activities, back to the HIS. These
scenarios call for a data synchronisation solution that integrates HIS with the
process execution environment.

In the Perikles project we have introduced an extendable generic data syn-
chronisation framework (DAF) [10] and then specifically adopted to the domain
of clinical healthcare. The framework helps to avoid inconsistencies within redun-
dantly maintained data and supports transactional aspects within the process
and data perspective. Therefore, a layered architecture is used with facilities

18

to access external data sources, to associate the control-flow perspective with
transactional properties like isolation, serializability and recovery.

A second extension to Yawl is the FlexY approach [11, 12], which extends the
control-flow perspective of Yawl with new concepts for handling process adapta-
tion at run-time. FlexY combines the method of late modeling with declarative
concepts and underspecification. The runtime adjustment of sub-processes is
triggered at certain points of the process according to external data provided by
the data access framework. Why flexibility is important and how it can deployed
profitably in healthcare is described elsewhere [9, 2].

In this paper we focus on the DAF approach to extend Yawl to handle
task-level read and write access to hospital information systems by exchang-
ing standardized messages. The extension described in this paper makes use of
Yawl concepts like workflow engine level extensibility (gateway mechanism),
automated tasks provided as services, tasks and sub-net variables and param-
eters based on an XML type system, flexible enactment of sub-processes and
exception handling.

2 A Generic Data Synchronisation Framework

The current version of the Yawl engine already provides a simple interface to
populate task and net variables using a data source called data gateway. In case
of using a data source some implementation effort is necessary, because Yawl
provides no standard gateways. To provide a configurable, policy based inte-
gration of external data sources, we presented a framework called Data Access
F ramework in [10]. First, we give a short overview of the main framework com-
ponents. Afterwards, we present the extensions of the framework which were
developed.

A2 A3A1 A4

var:=extVar

param

extVar:= x extVar:=var

r(x) w(x)

param

extParam extParam

A3

param

extVar:= xextVar:= var

param

A2

r(x)

extParam

w(x)

extParam

var:= f (var,...) var:=extVar var:= f (var,...)

Fig. 1. Data access on external data sources in Yawl

External Variables Access to data in external sources should be transparent
to the user who models and executes a Yawl process model. Therefor, we intro-

19

duce a new variable type external variable in Yawl [10]. An external variable
defines a view on a data source by specifying the data source and required config-
uration parameters. Additionally, each data source is encapsulated by a plug-in
implementation. The plug-in integration is outlined in the following section.

Figure 1 shows the main idea behind the external variable concept. Each
variable (c.f. Fig. 1: var) in a process model, can be bound to an external variable
(c.f. Fig. 1: extV ar), using a parameter mapping (c.f. Fig. 1: param). To bind
an external variable (c.f. Fig. 1: extV ar) to an plug-in, we use a new type of
parameter called external mapping (c.f. Fig. 1: extParam). For each net we
can define a set of external variables with the type Ext, a set of plug-in id’s
PlugInID and a set of external parameter mappings extParamID.

Definition 1 (External parameter mapping). A mapping is defined as
(pID; distKey;map; rp;wp), with:

• pID references a plug-in which should be used,
• distKey is the key attribute to identify a single XML fragment,
• map is an XQuery query which defines the transformation rule between an

external variable and the respective data source (with the ID pID),
• rp is a local read policy (consistent, read-only) for the external variable and
• wp is a local write policy (consistent, immediate) for the external variable.

In Def. 1 an external parameter mapping is defined, where pID is used to
identify a plug-in. The disKey and map parameters describe a data item in the
source and the rp and wp parameters are used to define the access policies.

Framework Architecture To support external variables within Yawl, we ex-
tend the existing Yawl data gateway implementation with our own data access
gateway [10]. However, in this scenario we use a simplified version which do
not use extended transactional services. We use a data gateway which encap-
sulates the data access framework and manages the access to different plug-in
implementations. A Data Source Manager configures further processing using
the variable mapping of the external variable and selects the plug-in which have
to be invoked.

3 Adaptation to Clinical Information Systems

In healthcare, interoperability between clinical information systems is generally
accomplished via exchange of standardized HL7 messages. HL7 messages are
made up of segments, fields and delimiters. The MSH segment in the example
(cf. Fig. 2) indicates that the message is of type ADT (admission, discharge,
transfer) and has been caused by an A01 (patient admission) trigger event.

3.1 HL7 Plug-in

Supporting clinical healthcare workflows by Yawl requires integration of given
hospital information systems with the process execution runtime. Following our

20

MSH|^~\&|SAP-ISH|ROD|ITB265||20101123025931|NP11I0|ADT^A01|0000688151|P|2.1
EVN|A01|20101123025000
PID|||265029061|265051944|Nachname001^Vorname001|Mädchenname001|19350128|F|||Musterstr1.
001^^Musterort001^^66976^DE||00000 SELBST||D|W|02
PV1|00001|I|26513.2^^^2651IA|NO||||||1A||||||||||||NO||||||||||||||||R|2651964931|||||20101123025000

Fig. 2. Example of an HL7 message

general approach, we have thus extended the existing DAF by an HL7-plug-in to
support read/write access of Yawl processes to HL7 enabled clinical systems.
The basic architecture of our approach is shown in Fig. 3.

Clinical

Data
Native XML

HL7-XML

Adapter
Data Access

Framework

HL7-XML

Plugin

YAWL

specification

HIS
YAWL Engine

2.3
HL7 message

files

HL7 Message Bus

Clinical Information

Systems

Process Execution Environment

Process

Data

Fig. 3. General architecture of the HIS - Yawl integration

Extending the Process Specification By utilizing extended attributes one
can specify at the task level data synchronization policies for individual variables.
These policies instruct the DAF about the mode of the data access (read or
write), the correlatable parameter to be used (e.g. the patient’s medical case id),
the plug-in that handles the request, and an XPath expression that extracts the
relevant data from the XML representation of the HL7 message. By calling the
plug-in the data synchronisation with HL7 sources is handled for all external
variables.

Listing 1 shows an example of a definition of an external variable. Besides
a plug-in ID (pluginID=XML_PostgreSQL_ADT_Extract), the source description is
defined by an SQL table name (xmlColumn=patientdata) together with key at-
tributes (mappingKey=medcaseid,msgtype,datetime) and the selection of an XML
fragment (mapping=//patientdata/pv1/patientclass). We also define some ini-
tial values for two of the key attributes (mappingKeyVal=,A01,[max]) and a table
for write access (writeProcess=createHl7[public.hl7out;m1]).

21

To identify HL7 messages in the database, a number of different attributes are
necessary, which are used as key attributes. Some of the key attributes are known
at design time, like message type or aggregate functions over an attribute. Other
attributes are only known at runtime, like medical case ID. These compound
primary keys are described by the mappingKey attribute.

Listing 1. External variable definition

extVar pluginID=XML PostgreSQL ADT Extract
extVar readPo l i cy=readOnly
extVar xmlColumn=pat i entdata
extVar mapping=//pat i entdata /pv1/ p a t i e n t c l a s s
extVar mappingKey=medcaseid , msgtype , datet ime
extVar mappingKeyVal=,A01 , [max]
extVar wr i t eProce s s=createHl7 [pub l i c . h l7out ;m1]

In most cases HIS assume the role of a data source. Upon the occurrence of
predefined events the HIS emits HL7 messages that travel along a message bus
or may be exported to the file system. In order to validate our approach in a real
clinical setting without running the risk of interfering with production systems,
we have used the latter method (cf. Fig. 3).

Since Yawl handles task and case variables as XML data types, every incom-
ing HL7 message needs to be transformed into an XML representation that is
compliant to the XML schema of the Yawl process specification. Conversely, all
outgoing messages must be converted from XML to a proper HL7 representation.
Therefore, depending on whether variables are specified for read or write access,
we use different tables for read and write access. We therefore extend the source
definition of an external variable, such that a second source for write access
can be defined (cf. Lst. 1: extVar_writeProcess). These bi-directional message
transformations are accomplished by an HL7-XML adapter (cf. Fig. 3). In read
mode, the adapter polls the HL7 export file for new messages and transforms
any of these into an XML representation. In order to avoid excessive transforma-
tions each time a message is accessed, all XML-formatted messages are stored
persistently in a database (cf. Fig. 3: Database HL7Messages).

3.2 Proof of Concept

The validity of our approach for real clinical settings has been demonstrated by
a single-day proof of concept (PoC) deployment in a German hospital. Figure 4
shows the principal design. While the PoC has been restricted to read-only syn-
chronization, the figure shows also write-mode use cases that may be relevant for
future evaluations. The underlying clinical scenario is a perioperative careflow,
which, for the sake of clarity, has been greatly simplified.

From the perspective of the treatment layer, each patient follows a sequence
of events, beginning with the admission to the hospital end ending with the
post-operative transport to the intensive care unit (ICU). While this sequence
is strongly aligned with the process layer, there are also important interactions
with the hospital information system.

22

The HIS layer may be viewed as consisting of two distinct components:
The patient management system (PMS) keeps the patient’s master data such as
name, address, gender, and date of birth as well as the visit-related administrative
case data. For every visit a patient may make to the hospital, the PMS assigns a
medical case ID to this visit. On the other hand, the clinical information system
(CIS) is responsible for recording and managing the medical visit-related data,
such as diagnosis, lab test results, and the planned treatment. Both subsystems
are capable of emitting and receiving HL7 messages in order to communicate
business events to other information systems or to process such events that
have been emitted by other systems. HL7 messages may contain administrative
data only (e.g. in case of an admission or transfer event) or primarily medical
information (e.g. in case of communicating lab results).

The process layer has been implemented by the Yawl runtime environment
and is thus external to the hospital information systems. The use case evaluated
in the PoC required a read-mode synchronization of the workflow instance with
the patient’s master data as well as the visit-related administrative data, both
of which are kept inside the PMS. Upon start of a workflow case, the patient’s
medical case ID is passed to the process as a parameter. The medical case ID,
which is to be distinguished from the workflow engine’s case ID, serves as the
principal correlation link between the process layer and the clinical information
systems. Once the task Supply Master Data and Case Admin Data becomes
enabled, synchronization with the HIS layer takes place in read mode such that
the required administrative data are extracted from an appropriate HL7 message
that has been emitted by the PMS. This information may then be reviewed
by the clinician that is executing the task before continuing with Do Surgical
Assessment. In this way, synchronization relieves the stakeholders of re-entering
the same data twice.

Possible Future Use Cases Data synchronization between process and HIS
layer is by no means restricted to the read-only mode. Our approach is also
capable of supporting write-mode scenarios that may be interesting from the
clinical point of view and that lend themselves for future evaluation. In the
figure, we give two motivating examples. In both of which, the workflow case
acts as information source and a hospital information system as recipient of that
information. Compared with the former scenario, the situation is thus reversed.

The workflow tasks Transfer To OR and Transfer To ICU correspond to
events that are relevant from an administrative point of view. So rather than
capturing this information twice, it may be desirable to run a write-mode syn-
chronization on completion of these tasks, respectively, to communicate the time
stamp of the event to the PMS. In terms of the HL7 messaging concept, this
would also amount to automatically executing a transfer patient request inside
the patient management system.

The task Do Surgical Procedure may have captured clinical data such as
duration and description of the surgical procedure. However, this information
may also be required by the CIS. Hence, one could think of enabling the workflow

23

system to write this information back to a HIS layer by sending an appropriate
HL7 message to be consumed by the clinical information system.

Clinical

Information

System

HIS Layer

Patient

Management

System

Read

(admin data)

master data &

admin case data

medical case data

Process

Layer

Treatment

Layer admitted to

hospital

transfered

to OR

surgical

procedure

indication for surgical

procedure given

transfered

to ICU

Do

Procedure

Do Surgical

Assessment
Register

Procedure

Do Diagnostic

Tests

Transfer

To ICU

Do Anesthes.

Assessment

Do Induction Do Surgery

Supply Master

Data & Admin

Case Data

Transfer To

OR

Write(admin data)

possible future

use cases

Write(medical data)

medical case

ID known

start YAWL case with medical

case ID as parameter

M
e

s
s
a

g
e

 B
u

s

Message

Files

Fig. 4. Simplified clinical scenario of the proof of concept. The figure shows a use case
that has been evaluated as in a real clinical setting (solid red line) as well as possible
future uses cases (dashed red and green lines).

4 Related Work

Yawl is used and extended by several research initiatives including but not lim-
ited to clinical workflows. The framework supports the data patterns defined by
Russel et al. [8]. The Proclet approach [5] extends Yawl to use process fragments,
which can communicating via channels and ports. The support of different types
of flexibility was demonstrated in several frameworks. The Worklet approach
[1] extends Yawl with a concept of late-binding process fragments. In [3] an
extension to Yawl implementing configurable process models is presented.

In the context of data-driven processes, different approaches for data integra-
tion exist. SIMPLE [7] describes strategies for accessing external data sources,
by providing an abstraction layer for data management. Frameworks like PHIL-
harmonicFlows [4] or Corepro [6] provide an extensive integration of object be-
havior, object interactions and process execution within the process model.

24

5 Conclusion

In this paper, we present an adaptation to a data synchronisation framework for
Yawl and its application to a clinical information system. We showed that an
efficient way to access data from different clinical information systems during
runtime is necessary. We then adapted an existing data synchronisation frame-
work to support accessing these data at the task level. In future, we intend to
use Yawl in different scenarios supporting also flexibility.

Acknowledgments Part of this work has been funded by the German Fed-
eral Ministry of Education and Research (BMBF) under grant 01IS099009. We
thank Markus Bandt and Viktor Baidinger for their contribution to the imple-
mentation. Validation of the key concepts has been done in cooperation with
the Hetzelstift hospital in Neustadt/Weinstraße, Germany. The authors wish to
thank especially Dierk Vagts and Bernd Wössner for supporting the proof-of-
concept in a real clinical setting.

References

1. M. Adams, A. ter Hofstede, D. Edmond, and W. van der Aalst. Worklets: A service-
oriented implementation of dynamic flexibility in workflows. In OTM Conferences,
pages 291–308, 2006.

2. M. Bandt, R. Kühn, S. Schick, and H. Meyer. Beyond flexibility — workflows in
the perioperative sector of the healthcare domain. Electronic Communications of
the EASST, 37:146–157, 2011.

3. F. Gottschalk, W. van der Aalst, M. Jansen-Vullers, and M. La Rosa. Configurable
workflow models. Int. J. Cooperative Inf. Syst., 17(2):177–221, 2008.

4. V. Künzle and M. Reichert. Philharmonicflows: towards a framework for object-
aware process management. Journal of Software Maintenance, 23(4):205–244, 2011.

5. R. S. Mans, N. Russell, W. van der Aalst, P. Bakker, A. Moleman, and M. Jaspers.
Proclets in healthcare. Journal of Biomedical Informatics, 43(4):632–649, 2010.

6. D. Müller, M. Reichert, and J. Herbst. A new paradigm for the enactment and
dynamic adaptation of data-driven process structures. In CAISE, pages 48–63,
2008.

7. P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, and F. Leymann. Simpl -
a framework for accessing external data in simulation workflows. In BTW, pages
534–553, 2011.

8. N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst. Workflow data
patterns: Identification, representation and tool support. In ER 2005, volume 3716
of LNCS, pages 353–368. Springer Berlin / Heidelberg, 2005.

9. S. Schick, H. Meyer, M. Bandt, and A. Heuer. Enabling yawl to handle dynamic
operating room management. In BPM Workshops (2), pages 249–260, 2011.

10. S. Schick, H. Meyer, and A. Heuer. Enhancing workflow data interaction patterns
by a transaction model. In ADBIS, pages 33–44, 2011.

11. S. Schick, H. Meyer, and A. Heuer. Flexible publication workflows using dynamic
dispatch. In ICADL, pages 257–266, 2011.

12. S. Schick, H. Meyer, and A. Heuer. FlexY: Flexible, datengetriebene Prozessmod-
elle mit YAWL. In BTW, pages 503–506, 2013.

25

YAWL4Industry: Reflections on using YAWL for
Industry Projects

M. T. Wynn, C. Ouyang, and M. Adams

Queensland University of Technology, Brisbane, Australia.
{m.wynn,c.ouyang,mj.adams}@qut.edu.au

Abstract. The Yet Another Workflow Language (YAWL) language and
environment has been used to prototype, verify, execute and analyse
business processes in a wide variety of industrial domains, such as tele-
phony, construction, supply chain, insurance services, medical environ-
ments, personnel management and the creative arts. These engagements
offer the YAWL researcher community a great opportunity to validate
our research findings within an industry setting, as well as discovery of
possible enhancements from the end user perspective. This paper de-
scribes three such industry projects, discusses why YAWL was chosen
and how it was used in each, and reflects on the insights gained along
the way.

Keywords: YAWL, Case Studies, Industry Experience, Deployment,
Uptake

1 Introduction

The YAWL language and environment is well-known in the areas of research, for
topics such as verification, configuration, exception handling, visualisation, risk-
awareness and cost-awareness, and teaching, having been taught in the courses
of at least 36 universities across 20 countries. Originally intended as a reference
implementation of workflow patterns, the open-source YAWL environment pro-
vides an ideal testbed for novel research ideas. In the decade since the YAWL
language was first developed, we, as YAWL researchers, have modelled numerous
YAWL processes that reflect various scenarios in different application domains
– ranging from structured transactional processes (e.g., insurance claim, travel
booking, conference paper review processes) to manual and flexible processes
(e.g., scheduling of medical operations). In most cases, our main focus is on
evaluating a specific research artefact. Hence, we abstract from things that are
less relevant to our purpose, for example, in a particular research project we
might not spend much time on the development of intuitive user interfaces or we
might not fully integrate a YAWL process with external systems. In addition,
there may be limited stakeholder involvement in terms of user acceptance testing
of the results of particular projects.

In recent years, a number of organisations have initiated YAWL deployments
to prototype, verify and execute their business processes. This paper summaries

26

the insights gained from our involvement in such projects in three different do-
mains: construction, the creative arts, and telephony, whereby we demonstrated
how YAWL can be used to model and automate processes within a particular do-
main in collaboration with domain experts who were actively involved in require-
ments analysis and design, process modelling, implementation and acceptance
testing of the resulting system.

2 Case Studies

Each of the selected case studies was undertaken in close collaboration with
domain experts, and each case delivered a YAWL environment tailored to or-
ganisational needs. The prototype process for construction is used for demon-
stration purposes, the YAWL4Film system was trialled and deployed in the real
film production setting, and the system developed by first:utility was for ongoing
production. A brief overview of the three case studies is given below.

2.1 Construction

Construction processes are complex, involving planning of activities from de-
sign to build, coordination between various teams (e.g. designers, contractors,
builders, engineers, inspectors), and intensive use of building materials, equip-
ment, and tools. In recent years, off-site manufacture (OSM) has been recognized
as an effective way to reduce cost at the procurement stage of construction.
Currently, construction management practices are predominantly manual and
founded on the project manager’s experience. This case study aimed to demon-
strate how business process automation techniques can assist in capturing OSM
requirements within a construction project.

A collection of process models (using BPMN notation) that represent the
generic construction value chain was developed [2]. Based on the input from
the domain experts from the Australian construction industry, key activities, re-
sources, data and stakeholders involved in each activity within the construction
value chain were identified. A prototype YAWL application was then developed
to showcase the ability of workflow systems to support and coordinate OSM-
related process activities [7] and demonstrated to stakeholders. The YAWL en-
vironment was chosen due to its ability to coordinate multiple parties involved in
a construction project as well as its comprehensive support for rapid prototyping.

2.2 YAWL4Film

Processes in the field of screen business are characterised with high demands for
creativity and flexibility. A typical process is one that supports film production,
an important phase that encompasses when the majority of cast and crew are
contracted and the majority of the equipment and resources are utilised. A film
production is a highly manual process that requires handling large amounts
of heterogeneous data on a daily basis and coordinating many geographically

27

distributed stakeholders. The benefits offered by applying automation to such a
process are twofold: it may ultimately reduce the production costs by minimising
errors and delays; and by saving time otherwise spent in costly and tedious
procedural tasks, the production team can focus more on creative activities thus
increasing the quality of the final product [4].

The development of a prototype system, namely YAWL4Film demonstrated
that the benefits stated above can be brought to the field of screen business
through the application of workflow technologies [3]. The process model captures
the control flow (see Figure 1), data and resource perspectives of a standard film
production process. An important feature of YAWL4Film lies in the modelling of
intensive data associated with the process, which had led to the development of
customised user forms to support templates used in professional film making, and
implemented using JSP, XSLT, and related Web technologies. A trial application
of the system was conducted during two student productions at the Australian
Film, Television and Radio School in 2007, which was followed in 2008 by real
deployment of the system in the production of a medium-budget feature film by
Porchlight, an independent film production company.

2.3 first:utility

First Utility Ltd (first:utility) is an independent utilities group based in the
United Kingdom. Amongst other interests, it provides a variety of competitive
telephony services to its customers, through the leasing of wholesale telephony
lines from British Telecom (BT), which it on-sells to customers at competi-
tive rates [1]. BT provides a Service Providers Gateway (SPG) through which
providers can access BT’s internal systems. The gateway may be accessed via a
browser based session, which is slow and open to input and transaction errors, or
via an API, which is suitable for high volumes of order processing. Of particular
interest is the use of the SPG to place an order to have a customer’s telephone
line transferred from BT to the provider. However, processing an order can in-
volve a number of potential errors, or exceptions, which require suitable recovery
and retry processing to ensure an order can be successfully completed.

An implementation of the YAWL environment was chosen by first:utility
to provide workflow support for both back-office automation and the human-
controlled work activities of their Customer Relationship Management (CRM)
systems. For back-end automation such as the line transfer order process, YAWL
provided a number of advantages. One was the ease with which a custom ser-
vice could be developed to interface with the SPG. Another was the various
mechanisms available to build-in exception detection and recovery into long-
lived processes by design. For CRM workflows, first:utility developed their own
worklist extension that generates web-based forms using runtime attributes and
XSLT transformations.

28

3 Insights

3.1 The YAWL Language

For all three case studies, the YAWL language was found to be capable of sup-
porting all the required control flow behaviours for the processes, making use
of various complex control flow constructs including multiple instances, cancel-
lation, advanced synchronisation, composite and timer tasks [6]. For example,
Figure 1 shows the YAWL model of the film production process. Using an OR-
join together with loop constructs, we were able to specify precisely the process
logic in a less ‘crowded’ way. The graphical notation of YAWL was found to
be easily understood by designers, domain experts and stakeholders. For the
resource perspective, most tasks were modelled using the role-based allocation
mechanism with additional constraints making use of separation of duties, retain
familiar and pile execution resource patterns where appropriate. For the data
perspective, the support for user-defined complex XML datatypes made the task
of defining the data requirements straightforward.

Fig. 1. The YAWL model of a film production process [3].

3.2 The YAWL Framework

Because the YAWL environment is built on a Service Oriented Architecture, it
allows the central workflow engine to be readily extended through the devel-
opment of value-added services [5]. A number of services are included in each
YAWL core deployment, including those that extend the environment to include

29

the resource perspective, flexibility and exception handling, inter-process inter-
operability, resource and activity scheduling, cost-awareness, document sharing,
email services and simulation. The environment can be further extended by or-
ganisations developing their own custom services to perform specific activities,
such as the first:utility SPG interfacing service described earlier. In addition, by
introducing a small number of extensions to the environment, first:utility was
able to suspend and resume cases and manually raise compensation processes to
manage exceptions.

Another advantage of the YAWL environment that made it attractive to
first:utility was its scalability. With many thousands of concurrent process in-
stances, first:utility was able to scale the environment across a number of servers,
running several engine instances in parallel. They also created a ‘quarantine’
server, where processes that had experienced a failure could be ported and closely
examined to determine the root cause of the problem. Once rectified, the process
could be moved out of quarantine and back into the production environment.

Fig. 2. An example dynamic form (with extended attributes) created for the construc-
tion workflow case study.

3.3 User Customisations

Although the auto-generated web forms provided by the YAWL environment
are very useful for rapid prototyping purposes, we found that most end users
prefer customised web forms in the final product. The YAWL environment sup-
ports this customisation requirement in two ways. First, by using the extended
attributes feature, the colour, font and label names of auto-generated forms can
be customised at design time. This enables a YAWL consultant to quickly change
the look-and-feel of auto-generated forms.

30

Fig. 3. An example custom form created for the construction workflow case study.

Figure 2 illustrates a screen shot of a dynamic form created for the con-
struction workflow case study where the colour theme of the SBEnrc centre was
utilised. Second, by allowing a custom web form to be associated with a YAWL
task, a YAWL consultant is free to create custom forms from scratch and also
add new functionalities to the form. In Figure 3, the user interface for the “Ap-
point Project Manager” task for the construction process is shown (where three
additional functionalities were added - “Edit Score”, “Appoint” and “Print”). A
significant amount of time was spent to develop intuitive and easy-to-use user
interfaces in all three case studies. This customisation capability is found to be
an essential feature in improving usability and user acceptance of the YAWL
environment within an industry setting.

4 Conclusion

Based on our experience in applying YAWL within industry settings, the key
strengths of the YAWL environment can be summarised as follows.

– The YAWL language is expressive and supports all necessary constructs for
industry projects.

– The YAWL environment is an excellent tool for rapid prototyping.
– The extensibility of the open-source YAWL environment makes it possible

for organisations to develop their own customised services.
– The YAWL environment enables the development of customised user inter-

faces allowing organisations to ensure consistent look and feel across their
applications.

Some of the key lessons learned from our experience to develop and deploy
a YAWL system are as follows. First, although it is quick to develop a working

31

YAWL prototype, a significant amount of project time is spent on developing cus-
tomised user interfaces and custom services in most cases. Secondly, to develop
a YAWL system that makes appropriate use of complex control flow constructs
supported by the YAWL environment, a YAWL consultant should be well versed
in the semantics of the YAWL language. The same is true for the data and the
resource perspectives supported by the YAWL environment. Finally, a YAWL
consultant should take into account the fact that the YAWL environment is
an open-source research environment with functionalities being added by many
participants over time and that some of these functionalities may not have been
extensively tested before their release.

Work currently in progress, including a redesign of the YAWL Editor and
an automated system update facility, may encourage more widespread adoption
of the YAWL language and environment in industry. More extensive training
materials have also been identified by designers and domain experts as desirable.

References

1. Michael James Adams. Facilitating dynamic flexibility and exception handling for
workflows. PhD thesis, Queensland University of Technology Brisbane, Australia,
2007.

2. Russell Kenley, Sittimont Kanjanabootra, Chun Ouyang, and Moe Wynn. Procuring
osm: Base-line models of off-site manufacture business processes in australia. In
Proceedings of the 16th Pacific Association of Quantity Surveyors Congress, Brunei,
Darussalam, Jul 7-10 2012.

3. Chun Ouyang, Marcello La Rosa, Arthur HM ter Hofstede, Marlon Dumas, and
Kathrine Shortland. Toward web-scale workflows for film production. Internet
Computing, IEEE, 12(5):53–61, 2008.

4. Chun Ouyang, Kenneth Wang, Arthur ter Hofstede, Marcello La Rosa, Michael
Rosemann, Katherine Shortland, and David Court. Camera, set, action: Process
innovation for film and tv production. Cultural Science, 1(2), 2008.

5. Arthur HM ter Hofstede, Wil MP van der Aalst, Michael Adams, and Nick Rus-
sell. Modern Business Process Automation: YAWL and its support environment.
Springer, 2010.

6. Wil MP van der Aalst and Arthur HM ter Hofstede. YAWL: yet another workflow
language. Information Systems, 30(4):245–275, 2005.

7. Moe Wynn, Chun Ouyang, Wei Zhe Low, Sittimont Kanjanabootra, Toby Harfield,
and Russell Kenley. A process-oriented approach to supporting off-site manufacture
in construction projects. In Proceedings of CIB World Building Congress, Brisbane,
Australia, 5-9 May 2013.

32

Supporting the Workflow Management System
Development Process with YAWL

R.S. Mans1, W.M.P. van der Aalst1

Department of Mathematics and Computer Science, Eindhoven University of
Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{r.s.mans,w.m.p.v.d.aalst}@tue.nl

Abstract. In order to address particular needs from the healthcare do-
main, the open-source YAWL Workflow Management System (WfMS)
has been extended with features for scheduling support and inter-workflow
support, the YAWL4Healthcare WfMS. As part of this undertaking, a
WfMS development approach has been followed in which the same con-
ceptual model is used for specifying, developing, testing, and validating
the operational performance of a new system. In this paper, we elaborate
on the features of YAWL that were essential for realizing our develop-
ment approach.

1 Introduction

Nowadays, hospitals are investigating the introduction of a Workflow Manage-
ment System (WfMS) in order to support their care processes. However, due to
the complex nature of healthcare processes, these systems need to be enriched
with additional functionality. Furthermore, the introduction of new technology
requires a seamless integration with running operational processes and no unex-
pected break-downs may occur.

For ensuring above mentioned aspects, as shown at the bottom of Figure 1,
we propose a WfMS development approach consisting of five phases. First, in
the requirements phase, the required functionalities are identified. Second, during
the design phase, a conceptual model is developed which is a formal, complete,
and executable specification of the WfMS to be developed. Subsequently, the
WfMS is developed in the implementation phase. Finally, during the testing and
simulation phase, the conceptual model and the operational WfMS are used to
both test and validate the operational performance of the WfMS.

The conceptual model has been defined in terms of a Colored Petri Net
(CPN) [3]. CPNs provide a well-established and well-proven formal language
suitable for describing the behavior of systems exhibiting characteristics such
as concurrency, resource sharing, and synchronization. Moreover, we can use
CPN Tools for specification, verification, and simulation. As concrete WfMS,
the open-source YAWL WfMS [2] has been used. In this paper, we focus on the
role of YAWL in the WfMS development approach. That is, we elaborate on the
specific features of YAWL that were essential for realizing our approach.

33

Requirements
phase

Design
phase

Implementation
phase

Testing
phase

Simulation
phase (operational

performance)

AS-IS TO-BE
Problem Solution

Application
of workflow
technology

WfMS
development

process

Current
functionality

Current +
additional functionality

Conceptual model: Colored Petri Nets

YAWL
Workflow
Engine

A B X

Resource
Service

A B

Worklet
Service

A B

X

YAWL
Workflow
Engine

A B X

Resource
Service

A B

Worklet
Service

A B

X

B

YAWL
custom
service

Java
application

Inter-Workflow Service

Interaction
Definition

Editor

Interaction
Service

Workflow
Client

Application

B

1A

3

Outlook
2003

clients

Microsoft
Exchange

Server 2007

4

2

1B

Axis 2 service
Adaptor
(Axis 2
service)

B

Java interface

4

Scheduling
service

Calendars

WfMS: YAWL

Fig. 1. Workflow Management System development approach using YAWL and the
CPN conceptual model.

When applying the development approach, in the requirements phase it has
been identified that for optimally supporting healthcare processes, WfMSs need
to be extended with facilities for both scheduling support and inter-workflow
support [4]. Based on the conceptual CPN model defined in the design phase,
YAWL has been extended with the aforementioned two facilities resulting in the
YAWL4Healthcare system and which is discussed in Section 2. Next, in Section 3
we elaborate on the testing and simulation phase in which YAWL4Healthcare is
both tested and validated. Finally, we conclude in Section 4.

2 Scheduling Support and Inter-Workflow Support

YAWL4Healthcare offers both scheduling support and inter-workflow support.
In this section, both facilities are discussed in detail and it is indicated which
features of YAWL were essential for realizing them.

With regard to scheduling support, instead of only offering a workitem to
a user via a worklist, it also needs to be possible to make an appointment for
a workitem. This appointment has a specific duration and only appears in the
calendars of these users that are involved in the execution of the workitem. The
main scheduling features will be illustrated using a small scenario. The process
definition specified in the YAWL editor can be seen in Figure 2a. The “physical
examination” and “consultation” tasks are annotated with a calendar icon as for
both an appointment is needed. Moreover, they are called schedule tasks. Via the
“extended attributes” feature of the editor, additional attributes are defined for
them. These attributes are also illustrated in Figure 2a in which for the “physical
examination” it is defined that the presence of the patient is required during

2

34

a) Defining a model in the YAWL editor. For tasks annotated with a calendar icon an appointment is needed whereas for
tasks annotated with a single person icon this is not needed.

c) State of the calendars after scheduling. The calendars of assistant ‘Jane’, assistant ‘Fred’, doctor ‘Marc’, doctor ‘Nick’,
and patient ‘John’ are shown respectively. When scheduling the availability of resources is taken into account.

b) The details for the ‘physical examination’ task are defined via the extended attributes feature of the editor.

Fig. 2. Scheduling of appointments within the YAWL4Healthcare system.

the appointment (caseResource), the average duration of the appointment is 30
minutes (duration), an assistant and a nurse are required during the appointment
(roles), and the task is a schedule task (type). The tasks for which workitems
need to be offered via a worktray are called flow tasks and are indicated by a
person icon. Also, for this kind of task, additional information is defined via the
“extended attributes” feature of the editor (e.g. the average duration).

Once an instance of a process is started, appointments are automatically
booked in the calendars of these persons that are involved in the execution of
a schedule task. This is shown in Figure 2b in which an appointment is booked
for the “consultation” task which appears in the calendars of doctor “Nick” and
patient “John”. Also, an appointment is booked for the “physical examination”.
Note that the system ensures that the final scheduling of tasks occurs in the
same order as the sequence of schedule tasks in the accompanying process defi-
nition for the case. Moreover, sufficient time is reserved between two scheduled
tasks. In case it is found out that too little time is left for performing preced-

3

35

ing work-items for a scheduled schedule task, the corresponding appointment is
automatically rescheduled. Also, users are able to express their dissatisfaction
with the nominated scheduling by requesting: (1) the rescheduling of the ap-
pointment, (2) the rescheduling of the appointment to a specified date and time,
or (3) the reassignment of the appointment to another employee.

In order to offer scheduling facilities (see Figure 1), YAWL has been ex-
tended with three components. The Calendars component provides a view on
the calendars of users and allows for manipulating them. Based on the calen-
dars, the Scheduling Service component provides the scheduling facilities to the
WfMS. The workitems and any appointments for them can be seen via the Work-
flow Client Application. The “Calendars”, “Scheduling Service”, and “Workflow
Client Application” components have respectively been realized by developing
a java service, using Microsoft Exchange Server 2007, and using Outlook 2003
clients. Via a specific adaptor, communication takes place between the YAWL
workflow engine and the “Scheduling Service” and the “Workflow Client Ap-
plication”. Moreover, in this way, only Interface B is needed for communication
with the engine, i.e. starting and canceling instances, and the checking in and out
of workitems. Note that the scheduling algorithm used by the Scheduling Ser-
vice can easily be replaced by another algorithm, i.e., it is pluggable. Currently,
a “naive” algorithm is implemented which searches for the first opportunity in
which one of the resources of a role can be booked for the respective work-item.

The need for inter-workflow support emerged from the fact that the pro-
cess of treating a patient typically consists of many smaller interacting workflow
fragments that run in conjunction with each other. These fragments may also op-
erate at different levels of granularity. The main inter-workflow support features
will be illustrated using a small scenario. Note that these features are based on
the Proclets framework [1] which allows for modeling and executing lightweight
workflows that may interact with each other and reside at different levels of
granularity. At the top of Figure 3a, the process definition of a workflow frag-
ment, describing a visit to the hospital, is defined in the YAWL editor. At the
bottom, the associated definition in the Interaction Definition Editor is shown.
Via this editor it is possible to define for a workflow fragment which interac-
tions with other fragments are necessary. That is, for tasks and input conditions
for which interactions with other fragments are necessary, a so-called interaction
point (visualized by a black dot) is defined. Via ports (visualized by a white dot),
interaction points are connected with interaction points of other fragments. For
example, for the “decide” task it is possible to instantiate a workflow fragment
in order to perform a lab test or to instantiate a fragment arranging the next
visit of the patient. Moreover, the patient can be registered for a multidisci-
plinary meeting in which the status of multiple patients is discussed. Note that
at run-time for a certain entity (e.g. a patient or a lab test) an interaction graph
is kept. This graph stores for an entity (e.g. a patient) all the interactions that
need to take place between (future) fragments. As part of this, for a task for
which interactions are needed, in the YAWL editor it is indicated that its exe-

4

36

a) Defining a workflow fragment and the corresponding interactions in the YAWL
editor (top) and the Interaction Definition Editor (bottom). Via dotted arcs, the
tasks and the interactions with other fragments that are defined for them are
indicated.

b) For the ‘decide’ task it is indicated in the ‘Task Decomposition’ details that its
execution is delegated to the Inter-Workflow Service. Also, the ‘entities’ variable
allows for indicating at run-time the names of the entities for which the process
is executed.

Fig. 3. Definition of interactions between workflow fragments.

cution is delegated to the Inter-Workflow service (see Figure 3b). Additionally,
information about the involved entities is exchanged via the “entities” variable.

In order to offer inter-workflow support (see Figure 1), YAWL has been ex-
tended with the Inter-Workflow Service. The “Interaction Service” is responsi-
ble for the interactions between fragments at run-time and has been set-up as
a YAWL custom service. As such, it communicates with the YAWL engine via
Interface B. The “Interaction Definition Editor” offers tools for defining interac-
tions between fragments at both design-time and run-time.

So, it can be concluded that the service oriented architecture of YAWL was of
great help for realizing the desired extensions. That is, via the extended attributes
feature of the editor, additional attributes of a task that need to be filled in,
could easily be defined. Furthermore, due to the fact that the YAWL engine is
agnostic to its external services, it was possible via a single interface (Interface

5

37

B) to focus only on implementing the functionalities that were needed for the
desired scheduling support and inter-workflow support. So, we did not need to
bother about basic workflow management functionalities as they were already
provided by YAWL itself (e.g. a workflow engine and process editor).

3 Replacement of Functionalities

As illustrated in Figure 1, the conceptual model developed using CPN Tools has
been used for both testing and validating the operational performance of the im-
plemented YAWL4Healthcare WfMS in respectively the testing and simulation
phase. In Figure 4 it is schematically depicted how this has been realized.

The CPN conceptual model provides a complete, formal description of the
functionality of the system. As this model is executable, it also serves as a
prototype implementation of the system. So, in the testing phase, one or more
parts of the CPN model can be replaced by the concrete implementation of these
parts. So, in the figure, the light grey-colored rectangle represents the parts of the
actual system that are tested. This is done by establishing connections between
the CPN model and parts of the actual YAWL4Healthcare WfMS which need
to be tested. During the testing, parts of the system, which are not tested, may
be simulated using CPN Tools (the dark grey-colored rectangle). This allows for
the testing of numerous scenarios facilitating the discovery of potential flaws in
both the architecture and the corresponding implementation.

In the simulation phase, our focus is on investigating the operational per-
formance of processes that are supported by both the designed and realized
system. Here we can benefit from the fact that CPN models can also be used for
simulation-based performance analysis in order to evaluate systems and to com-
pare alternative configurations of a system [3]. So, for processes supported by our
system, it can be investigated whether they are negatively impacted or not (e.g.
introduction of bottlenecks into the process). By setting up a reference environ-
ment, the operational performance can be investigated in a structured manner.
Moreover, parts of the realized YAWL4Healthcare WfMS can be included in the
CPN simulation model in order to analyze the implemented system.

At the time the above mentioned approach was applied, the “Inter-Workflow
Service” was not developed yet. So, in the conceptual model, we only had com-

Testing phase Simulation phase

YAWL4Healthcare

CP Net model

YAWL4Healthcare

replaced parts

CP Net model
simulation for the part of the system

that is not tested

part of the system that is not tested part of the system that is not used for
simulation-based performance analysis

simulation model + reference environment

Fig. 4. The role of the CPN conceptual model and the YAWL WfMS in the testing
and simulation phase.

6

38

ponents for the “Workflow Engine”, “Workflow Client Application”, “Calen-
dars”, and “Scheduling Service”. In the testing phase, we could easily replace
the scheduling service and both the workflow engine and scheduling service by
their implemented YAWL4Healthcare counterparts. Furthermore, the engine was
provided with a simple process definition. Also, four users where created in the
“Workflow Client Application” together with the associated empty calendars in
the “Calendars”. Amongst others, 6 errors were identified in the “Scheduling
Service” component and 6 errors were identified in the adaptor component. In
the simulation phase, also both the “Workflow Engine” and “Scheduling Service”
were replaced by their implemented counterparts. Furthermore, the engine was
provided with a gynecological healthcare process such that a series of simulation
experiments could be carried out in which 143 patients followed the process. For
the schedule tasks, the corresponding appointments were made by our system.
Therefore, the calendars of the simulated system were filled with appointments,
etc. to mimic the true availability of the medical staff. As a result it was possible
to explore different scenarios. For example, in one of the experiments we simu-
lated the situation that the appointments for a CT, MRI, and pre-assessment are
scheduled on the same day. This resulted in a considerably increased waiting time
for both the pre-assessment and examination under anesthetic appointments.

Similarly, as in Section 2, also here we benefited from the service-oriented
architecture of the YAWL WfMS. Due to Interface B, components in the con-
ceptual model could easily be replaced by their implemented counterparts.

4 Conclusion

In this paper, we focussed on the role of YAWL in a development approach in
which the same conceptual model is used during the design, implementation,
testing, and simulation phase. By applying this approach, YAWL has been ex-
tended with facilities for scheduling support and inter-workflow support.

As part of this undertaking, we greatly benefited from the service oriented
architecture of YAWL. As it turned out, this provided a powerful point of ex-
tensibility, allowing for the extension of the engine with additional desired func-
tionalities. Moreover, it allowed for the applicability of our development ap-
proach in which there is a tight coupling between the conceptual model and
the YAWL4Healthcare WfMS. While testing and validating, parts of the system
may be simulated while connected to the actual system components.

References

1. W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Proclets: A
Framework for Lightweight Interacting Workflow Processes. International Journal
of Cooperative Information Systems, 10(4):443–482, 2001.

2. A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell, edi-
tors. Modern Business Process Automation: YAWL and its Support Environment.
Springer-Verlag, 2010.

7

39

3. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software
Tools for Technology Transfer, 9(3-4):213–254, 2007.

4. R.S. Mans. Workflow Support for the Healthcare Domain. PhD thesis, Eindhoven
University of Technology, June 2011. See http://www.processmining.org/blogs/
pub2011/workflow support for the healthcare domain.

8

40

YAWL in the Cloud

D.M.M. Schunselaar?, T.F. van der Avoort, H.M.W. Verbeek?, and W.M.P.
van der Aalst?

Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{d.m.m.schunselaar, h.m.w.verbeek, w.m.p.v.d.aalst}@tue.nl

Abstract. In the context of the CoSeLoG project (which involves 10
Dutch municipalities), we realised a proof-of-concept implementation
based on YAWL. The municipalities want to share a common IT infras-
tructure and learn from one another, but also allow for local differences.
Therefore, we extended YAWL to run in a cloud-based environment lever-
aging on existing configuration possibilities. To support “YAWL in the
Cloud” we developed load-balancing capabilities that allow for the dis-
tribution of work over multiple YAWL engines. Moreover, we extended
YAWL with multi-tenancy capabilities: one municipality may effectively
use multiple engines without knowing it and one engine may safely run
the processes of multiple municipalities.

1 Introduction

Within the Netherlands, more and more municipalities seek cooperation to cut
costs. One of the directions to cut costs is to share infrastructures supporting
the processes of municipalities. Every municipality has a server/ business process
management system (BPM system)/ case handling system/ etc. to support them.
However, these systems are not used to their fullest capacity, and also capacity
might change, e.g., decrease, during the year. Municipalities can cut costs by
sharing infrastructure and have an adaptive system to handle the peaks. Within
the CoSeLoG project, we are cooperating with 10 municipalities who want to
cooperate with each other and learn from each other1 [1]. One of the elements of
the project is a shared infrastructure where the municipalities share IT-solutions
and processes.

In recent years, we created many (configurable) YAWL models [2–4] for the
processes of the municipalities. Therefore, we want to use YAWL to create a
proof-of-concept implementation, showing that municipalities can share a com-
mon infrastructure and still allow for the necessary “colour locale”. Unfortu-
nately, YAWL has been designed to be used on a single machine. If we are using
a single machine, this requires the owner of this machine to share (part of) her
infrastructure which might not always be desirable. Furthermore, we are dealing

? This research has been carried out as part of the Configurable Services for Local
Governments (CoSeLoG) project (http://www.win.tue.nl/coselog/).

1 http://www.win.tue.nl/coselog/

41

Fig. 1: The positioning of YAWL in the cloud.

with different organisations which do not want to expose some or all of their
information to the other parties involved. Finally, by combining different or-
ganisations onto a single machine, this machine might become overloaded by a
shared peak caused by the organisations.

In order to overcome the mentioned problems, we propose YAWL in the
cloud . The cloud is tailored towards scalable resources to increase the comput-
ing power when necessary and to decrease the computing power when possible.
Since the cloud can be maintained by a third party, there is no need to em-
ploy a person to maintain the systems. However, in order to make YAWL run
in the cloud, we have to extend the standard YAWL architecture to deal with
problems introduced by having multiple YAWL engines running simultaneous
(e.g., non-unique case numbers amongst different engines). Therefore, we first
introduce the general framework built around YAWL. Afterwards, we present
the implementation and show some innovative features of YAWL in the cloud.
Finally, we discuss the limitations and future work.

2 Architecture

An early design decision was to not change the YAWL system itself. By not
changing YAWL itself, we are not bound to a specific (modified) version of
YAWL. Moreover, to avert having to learn a new system, the end-user should
not notice that she is working in the cloud. Finally, there has to be an additional
component to control and observe the current state of YAWL in the cloud. This
resulted in the high level architecture as depicted in Fig. 1, note that A, B, E,
X are the interfaces of a YAWL engine. For each of the constraints, we list part
of the effect it had on the architecture. Please note (as Fig. 1 shows), we are
running multiple YAWL engines on multiple machines.

Instead of running a single YAWL server on a single machine, we assume that
we are running multiple YAWL servers on multiple machines. The combination
of these servers/machines is YAWL in the cloud.

No change to YAWL: By having multiple YAWL engines, it is no longer apparent
to which engine to connect. Therefore, we introduce a router component. This
router component routes the requests to the correct YAWL engine.

2

42

By not changing YAWL, each YAWL engine is unaware of the other YAWL
engines. Therefore, it can no longer be guaranteed that every case identifier is
unique. In order to overcome this, we introduce unique global cloud identifiers
and maintain a mapping between global (cloud assigned) identifiers and local
(engine specific) identifiers. This mapping is stored in a central database, and
the transformations of the global/local identifiers to local/global identifiers (and
vice versa) is done by the router.

We can now receive a request and route it to the correct engine(s). However,
when multiple engines have to be consulted, we also obtain multiple responses.
Therefore, we need to merge these responses in a single response before sending
it back to the requestor. The merging of the responses is handled by the router.

Finally, it might be the case that not all the information in a response is
intended for the requestor. This can be the case when an engine is running
multiple cases for different tenants. Since the YAWL engine does not know the
notion of multiple tenants, it sends information about all the tenants back as a
response. Therefore, we also include filtering functionality in the router.

Invisible cloud infrastructure: YAWL is decomposed into components, e.g., en-
gine, resource service, process designer. This decomposition yields that we only
have to take care that the resource service is directed to YAWL in the cloud
instead of an actual engine. This change is only a configuration of the resource
service. By using the resource service as is, we do not change the front-end view
of the end-user.

Management component: For the management component, we require a number
of views on the cloud. One of these views is a functional view denoting per
tenant which specifications and cases are loaded. Apart from a functional view,
we also want a software view denoting the hierarchy of servers, engines, tenants,
specifications, and cases. Furthermore, this management view should be usable
to create new tenants, and bring new engines into the cloud.

Complete architecture: Taking all the constraints into account, we obtain the
more detailed architecture depicted in Fig. 2. At the back, the communication
with the different engines is situated. At the front we have a single point of
entry for the resource services. Inside of the architecture, we have the routers
for routing, translating, merging and filtering of requests and responses. These
routers use the central database (DB) for the lookups of identifiers. There is a
management component at the centre communicating with the engines and the
central database. Finally, we have included a load balancer for both the incoming
and outgoing requests. This load balancer is cloud-based and offers the option
to enable/disable routers if necessarily. Furthermore, if a router cannot handle
the requests, then the load balancer can initiate an extra router.

Within cloud computing there are different deployment models: public, pri-
vate, community, and hybrid. In our architecture, we do not pose any restrictions
on the used deployment model, i.e., our architecture is applicable to all of these

3

43

Fig. 2: The architecture for YAWL in the cloud

deployment models. Apart from different deployment models, there exist differ-
ent service models, i.e., abstraction levels from the underlying hardware. These
service models come in 4 different flavours (in ascending abstraction level): In-
frastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a
Service (SaaS), and Business Process as a Service (BPaaS). Our architecture
has been designed to be used in a PaaS service model. For a more extensive
discussion on service models and deployment models, see [5].

Having presented our architecture, we now present the YAWL in the cloud
implementation. For each of the newly introduced components, we show some
of the implementation details.

3 Implementation

Using the architecture shown in Fig. 2, we implemented the various components
connecting to standard YAWL. Due to space restriction, not all implementation
details can be covered. See [5], for a complete overview of the implementation of
YAWL in the cloud.

The router: As mentioned, we had to introduce a routing component for routing,
translating, merging and filtering of requests and responses before sending them
to the requestor. In Fig. 3, the communication between the different components
is depicted. First a request is sent to the router, then the router consults the
database for (amongst others) translating global identifiers to engine specific
identifiers. Afterwards, the router contacts the engines of interest for this request.
After the engines have sent their responses, these responses are merged, filtered,
and the database is consulted for translation of engine specific identifiers to
global identifiers. Finally, the created response is forwarded to the client.

4

44

YAWL Engine YAWL Engine YAWL Engine

Router Database

Client

1

2, 6

3, 7

44 5
5

8

Fig. 3: The communication between the different components when a request is
made.

Based on the type of request, different types of merges had to be introduced
and rules for forwarding the request to specific engines. For instance, for the
action getAllRunningCases, which gives all the running cases for a particular
tenant, we have to merge the results per specification (i.e., multiple engines can
have the same specification and we do not want to duplicate the specification to
the user). Furthermore, this request has to be forwarded to all engines running
specifications for this tenant. Finally, the cases for specifications not owned by
the tenant have to be filtered out.

If we consider the action getCasesForSpecification, which gives all the run-
ning cases for a particular specification, we only need to forward this request
to the engines running this specification. The engines return all the cases for
that specification, the cases in the responses have to be merged into a single
response. However, the filtering step is not required as this specification belongs
exclusively to a specific tenant. Other tenants may use the same specification,
but the identifier of this specification is different for different tenants.

The database: In the central database, we store the different local YAWL identi-
fiers and the global cloud identifiers. We have local YAWL identifiers for specifi-
cations, cases, and work-items. Apart from storing the identifiers, we also main-
tain the different tenants and which specification a tenant has at her disposal.
Finally, the database stores the settings for YAWL in the cloud, e.g., which con-
straints are present within YAWL in the cloud. A constraint can be that a tenant
can have at most 5 cases per specification.

The management component: The management component is a view on the
database and on the engines. In Fig. 4a and Fig. 4b two different views are
presented on the systems. The first shows a separation of specifications and cases
per tenant. The second shows a hierarchical view of servers, engines, tenants,
specifications, and cases.

5

45

(a) Functional view, showing which cases
and specifications are loaded per tenant.

(b) Software view, showing the servers,
engines, tenants, specifications, and
cases, and the hierarchy of them.

Fig. 4: Two different views on the cloud in the management component; per
tenant, and hierarchical per server.

Apart from providing a view on the engines and database, the management
component also allows to add/remove engines, and to add/remove tenants. Note
that this functionality is currently semi-automated as the configuration of the
different components still requires human involvement.

The front-end: Figure 4 shows the administrator view on two tenants. The views
the different tenants have are depicted in Fig. 5 and Fig. 6. We have changed the
name and colour of the YAWL admin view in order to stress that both tenants
have indeed different views. Figures 5 and 6 also show the filtering step of the
routers as a tenant only sees her cases, and not the cases of the other tenants.

4 Limitations and Future Work

We have presented our architecture for bringing YAWL in the cloud using the
following design decisions: no changes to YAWL, and the end-user should be
unaware to the cloud back-end. Furthermore, there had to be a management
component to control the cloud. Along with our architecture, we also have shown
some of our implementation details.

The implementation of bringing YAWL in the cloud is not complete. For every
action on every interface, specific transformations had to be made. Therefore,
we have focussed on the main interfaces: interface A inbound, and interface B
in- and outbound. In future implementations, we want to extend the support to
also include interface E and interface X.

YAWL in the cloud now mainly works in a semi-automated fashion, i.e., some
actions require human involvement. In the ideal implementation, we want to have

6

46

Fig. 5: The management view of tenant 4.

full automated support for all the features. Using this full automated support,
it also allows for automated increases and decreases in computing power. In our
current implementation, we have added functionality to optimise the computing
power. Unfortunately, the added overhead of YAWL in the cloud is not compen-
sated by the scalability. In the future, we want to profile our implementation
and solve the bottlenecks currently in the implementation.

With bringing YAWL in the cloud, we mainly focussed on the engine. The
next step would be to also bring the resource service in the cloud. By bringing
the resource service in the cloud, we allow for an extra layer of flexibility and a
clearer separation between organisations. Thanks to the decomposition of YAWL
into different components, one can employ a similar approach to bringing the
resource service in the cloud as we have done for bringing the engine in the cloud.

Finally, this research was started with collaboration and knowledge sharing
amongst municipalities in mind. In the next step, we plan to use configurable
YAWL as the base for the different process models in use by the municipalities.
With configurable YAWL, the best practises are captured in a single model,

7

47

Fig. 6: The management view of tenant 5.

allowing the municipalities to cherry-pick the practises best fit for their organi-
sation.

References

1. van der Aalst, W.M.P.: Business process configuration in the cloud: How to support
and analyze multi-tenant processes? In Zavattaro, G., Schreier, U., Pautasso, C.,
eds.: ECOWS, IEEE (2011) 3–10

2. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N., eds.: Modern
Business Process Automation: YAWL and its Support Environment. Springer (2010)

3. La Rosa, M.: Managing variability in process-aware information systems. PhD
thesis, Queensland University of Technology (2009)

4. Gottschalk, F.: Configurable Process Models. PhD thesis, Eindhoven University of
Technology, The Netherlands (December 2009)

5. Avoort, T.F.v.d.: BPM in the Cloud. Master’s thesis, Eindhoven University of
Technology, The Netherlands (2013)

8

48

Process Monitoring Using Sensors in YAWL

Raffaele Conforti1, Marcello La Rosa1,2, and Giancarlo Fortino3

1 Queensland University of Technology, Australia
{raffaele.conforti,m.larosa}@qut.edu.au

2 NICTA Queensland Lab, Australia
3 Università della Calabria, Italy

g.fortino@unical.it

Abstract. This article describes the architecture of a monitoring com-
ponent for the YAWL system. The architecture proposed is based on
sensors and it is realized as a YAWL service to have perfect integration
with the YAWL systems. The architecture proposed is generic and ap-
plicable in different contextes of business process monitoring. Finally, it
was tested and evaluated in the context of risk monitoring for business
processes.

1 Introduction

The growing number of cases in which workflow management systems are utilized
to execute business processes, created the need for companies to monitor the
execution of their process instances [4]. Being able to monitor a process instance
is a basic requirements for companies that want to prevent the eventuation of
risks, be aware of the processing cost of process instances, or simply verify if a
process instance is being delayed.

Several commercial workflow management systems already provide monitor-
ing functionality for their systems, e.g. WebSphere4, Oracle BAM5, Sybase6.
This type of functionality is not yet available in open-source workflow manage-
ment systems, such as the YAWL workflow management system.7

In this article we will illustrate how to realize a multi-purpose monitoring
component for the YAWL system. The component will be realized as a service
for the YAWL system, to guarantee a perfect integration with the system.

This article is structured as follows. Section 2 provides a briefly description of
the YAWL systems. Section 3 shows how to realize the monitoring component,
which is evaluated in Section 4. Section 5 discusses related work and finally
Section 6 concludes the article.

4 http://www-142.ibm.com/software/products/au/en/subcategory/SW920
5 http://www.oracle.com/technetwork/middleware/bam/overview/index.html
6 http://www.sybase.com.au/products/financialservicessolutions/complex-event-

processing
7 http://www.yawlfoundation.org/

49

2 Requirements and Preliminaries

In order to monitor a business process, being able to have a complete overview
of process instances is a requirements. The status of a process instance is fully
provided by information about instances of tasks (work items) and subprocesses
(nets) belonging to such a process instance.

When we consider a work item, to properly describe its status is essential to
know: i) if the work item was performed or not (status in the life-cycle of a work
item); ii) who (resource) performed the work item; iii) when the work item was
performed (time stamp); and iv) how it was performed (data). A similar set of
information is required for an instance of a net, except for the resource.

Interface A

Resource Service Web Service
Invoker

Worklet Service Generic
YAWL Service

Interface B Interface E Interface X

YAWL Engine

Fig. 1. YAWL Architecture [8]

A clear understanding of the YAWL environment [8] is required if we want
to be able to access the status of work items and nets. The YAWL system is
a service-oriented architecture built using Java. Figure 1 provides a simplified
overview of the architecture of the YAWL system. The core element of this
architecture is the YAWL engine, it is in charge of managing the instantiation of
process instances and work items. The engine provides four interfaces to allow
services to interact with the engine, for example allowing the resource service,
which manages resources, to perform a work item instantiated.

These four interfaces are: i) interface A, which provides connection capa-
bilities and allows process models to be uploaded and unloaded, and external
services to be registered and unregistered; ii) interface B, which allows process
instances to be lunched, work items to be checked-out for their execution, and
process information to be retrieved; iii) interface E, which allows process logs to
be retrieved; and iv) interface X, which provides a terminal for detecting and
handling exceptions.

50

3 Monitoring Component

We can now describe how to create a monitoring component for the YAWL
system, as the one realized for [1]. The best way to realize a new component for
the YAWL system is to realize it as a YAWL service. Our service will use the
interfaces provided by the system, described in section 2, to receive notifications
from the engine about the initialization of the system and the starting of new
instances.

Two are the interfaces that will provide information that may be relevant for
us, they are interface B and interface X. The first interface will notify us with
events related with the life-cycle of a process instance and the initialization of
the YAWL system. Interface X will notify us when a process instance is canceled,
and a case is enabled or completed.

Fig. 2. Monitor Component: Class Diagram

In order to receive the notifications sent by these two interfaces, our monitor-
ing component must extend the java class InterfaceBWebsideController and im-
plements the java interface InterfaceX Service. We are only interested in a subset
of all notifications that interface B and X will send, for this reason we only need
to implements these four methods: i) handleCancelledWorkItemEvent ; ii) han-
dleCaseCancellationEvent ; iii) handleEngineInitialisationCompletedEvent ; and
iv) handleCheckCaseConstraintEvent. Figure 2 shows the UML [5] class dia-
gram of how our monitoring component is built. In the diagram are only shown
the classes required for the realization of the monitoring component and the
methods that are relevant for us.

51

Our monitoring component works through the use of sensors (YSensor). Each
sensor monitors a specific condition, composed of variables that are the result of
functions and actions, and is managed by the sensor manager (YSensorManager-
ImplLayer). The sensor manager manages the creation of sensors and notifies
them when changes occur in a process instance. The sensor manager creates new
sensors each time a new process instances is started. Information about the ini-
tialization of the system and the starting, completion and cancellation of process
instances are retrieved by the sensor manager using the YAWL EngineInterface.

Fig. 3. DatabaseInteface Package Class Diagram

Changes in the process instance are discovered using the classes provided by
the package databaseInterface (see Figure 3). This package provides an abstrac-
tion layer on top of the database which allows queries to be executed through
the invocation of java methods. Executing queries gives to the system the pos-
sibility of retrieving information from different cases, and then have monitoring
conditions defined across cases. In order to know which changes are relevant for
a sensor, the sensors manager retrieves from it the list of LogVariables. Each
of this logVariable is associated with an action that using the ActionIdentifier
and the ActionExecutor is identified and executed, retrieving from the log the
information of interest. Each action captures a specific aspect of a work item or
a net, the list of all possible actions is shown in figure 4.

Changes in a process instance are then notified to a sensor using messages
(YSensorMessageUpdate). Every time a sensor receives a message, it checks its
monitoring condition using the updated information. The condition is checked
using a specific interpreter (ForInterpreter) which interprets the languages de-
fined in [1] and verifies if the condition is violated or not. In case the condition

52

is violated the sensor will notify the administrator by sending a notification
through the YAWL MonitorInterface. The condition that a sensor can monitor
is a boolean expression which may contain nested loops, if-then-else constructs,
and algebraic operators.

Fig. 4. Actions Package Class Diagram

4 Evaluation and Possible Uses

The architecture here proposed was evaluated in [1]. In the experiment we mea-
sured the time required to retrieve the result of the execution of an action. In
table 1 we show the result grouped for type of action, e.g. NetStartTime and
NetCompleteTime are grouped under the name NetXTime.

The results show that in general a result is produced in few milliseconds
(ca. 20ms). Retrieving a net or an activity variable and retrieving information
about the distribution set and the initiator of an activity require more time, this
because they require the parsing of XML strings since the data are not directly
stored in the database.

53

Actions Description
time
[ms]

NetIsX
functions checking if a net status

18.9
has been reached

NetXTime functions returning the time when
18.8

NetXTimeInMillis a net status has been reached
NetVariable returns the value of a net variable 432.6

ActivityCount
number of times a task has been

19.8
completed

XResource
functions that return the resources

20.9
associated with a task

ActivityIsX
functions checking if a task status

30.5
has been reached

ActivityXTime functions returning the time when
22.3

ActivityXTimeInMillis a task status has been reached
ActivityVariable returns the value of a task variable 96.7

XDistribution
functions returning the resources

243
associated with a task by default

XInitiator
functions returning the allocation

249.6
strategy for a resource association

Table 1. Performance of basic functions.

Risk monitoring is not the only context in which our component can be
used. It is a multi-purpose monitoring component that provides the possibility
of adding new actions in order to make it usable in other context such as for
example cost monitoring, resource monitoring, or time monitoring.

5 Related Work

The idea of monitoring business processes is not new in the area of business pro-
cess management. Academics explored the possibility of monitoring business pro-
cesses using Complex Event Processing (CEP) systems [2, 3]. Commercial work-
flow management systems in general provide integrated monitoring features, e.g.
Oracle Business Activity Monitoring (BAM) [6], webMethods Business Events8,
and SAP Sybase [7].

The monitoring component here discussed was used in the approach proposed
in [1] for risk monitoring. In this approach business processes are integrated with
aspects of risk management, specifically risk monitoring. Risk conditions are
composed of two elements, a risk likelihood which monitors the likelihood of a
risk to occur and a risk threshold which defined level of risk which the company
is willing to accept before detecting the eventuation of a risk.

Gay et al. [2] propose the use of complex event processing for workflow moni-
toring on Petri nets. They identify six events that can represent the basic activi-
ties that a workflow can perform (i.e. Transition activation, Resource allocation,
Resource liberation, Advance token, Start workflow, and End workflow). Using
these simple events they have created six complex events that represent un-
wanted situations: i) Lack of resource; ii) Activity delay; iii) Lack of resource
delay; iv) Transition delay; v) Workflow delay; vi) Interruption warning. This

8 http://www.softwareag.com/au/products/wm/events/overview

54

approach, compare to our approach, does not take in consideration the data
prospective. This limitation produces as consequence the possibility of defining
conditions that are mainly related to the performance of a process instance.

Finally, Hermosillo et al. [3] propose a framework for dynamic business pro-
cess adaptation in the context of BPEL processes. In this approach they use the
monitoring functionality obtained using a CEP engine to detect conditions that
will then trigger an adaptation, i.e. the add or change of a service.

6 Conclusion

In this article we showed how to realize a monitoring component for the YAWL
system using the interfaces provided by the system itself. The monitoring is done
using sensors, which monitor conditions that can be defined using information
across cases.

The main contribution of this work is the identification and documentation
of a minimal set of classes required for the realization of a monitoring component
for the YAWL system.

The component is realized as a custom YAWL service, in order to guarantee
a perfect integration with the YAWL system. The structure of the component
also results to be independent from a specific monitoring purpose, consenting its
application in different contexts could they be risk monitoring, or cost monitor-
ing.

Finally, the architecture was implemented and tested. The results of the test
show that the retrieving of information can be computed efficiently and without
requiring additional work engine side.

References

1. R. Conforti, G. Fortino, M. La Rosa, and A. H. M. ter Hofstede. History-aware,
real-time risk detection in business processes. In Proc. of CoopIS, volume 7044 of
LNCS. Springer, 2011.

2. P. Gay, A. Pla, B. López, J. Meléndez, and R. Meunier. Service workflow monitoring
through complex event processing. In Proc. of ETFA, pages 1–4. IEEE, 2010.

3. G. Hermosillo, L. Seinturier, and L. Duchien. Using complex event processing for
dynamic business process adaptation. In Proc. of IEEE SCC, pages 466–473. IEEE
Computer Society, 2010.

4. A. Kronz. Managing of process key performance indicators as part of the aris
methodology. In Corporate Performance Management, pages 31–44. Springer, 2006.

5. Object Management Group (OMG). OMG Unified Modeling LanguageTM (OMG
UML), Superstructure version 2.4. Object Management Group (OMG), Jan. 2011.

6. Oracle. BPEL Process Manager Developer’s Guide, http://download.oracle.com/
docs/cd/E15523 01/integration.1111/e10224/bp sensors.htm. Accessed: Jun. 2011.

7. Sybase. Sybase CEP Implementation Methodology for Continuous Intelligence,
http://www.sybase.com.au/files/White Papers/Sybase CEP Implementation
Methodology wp.pdf. Accessed: Jun. 2011.

8. A. H. M. ter Hofstede, W. M. P. van der Aalst, M. Adams, and N. Russell. Modern
Business Process Automation: YAWL and its Support Environment. Springer, 2010.

55

Editor 3.0: Redesigning the YAWL User
Interface

Michael Adams

Queensland University of Technology, Brisbane, Australia.
mj.adams@qut.edu.au

Abstract. It has long been a concern that the wider uptake of the
YAWL environment may have been hindered by the usability issues iden-
tified in the current Process Editor. As a consequence, it was decided that
the Editor be completely rewritten to address those usability limitations.
The result has been the implementation of a new YAWL Process Editor
architecture that creates a clear separation between the User Interface
component layer and the core processing back end, facilitating the re-
design of the default user interface. This new architecture also supports
the development of multiple User Interface front ends for specific contexts
that take advantage of the core capabilities the new Editor architecture
has to offer.

Keywords: YAWL, Editor, Workflow, User Interface

1 Introduction

For any software, user acceptance must be of primary concern, and for most
users the design and accessibility of the user interface (UI) has a much greater
bearing on uptake and continued use than any functionality the software pro-
vides. For existing products, redesign of a user interface can lead to substantial
improvements in learning time, performance speed, error rates and overall user
satisfaction [1].

The first version of the YAWL Editor appeared almost a decade ago as a
prototype, with the objective of demonstrating that it was possible to graphi-
cally design a process model in the YAWL language and have it transformed into
a format that could be interpreted and executed by the YAWL Engine. Orig-
inally supporting only the control-flow perspective, many versions have since
been released to include support for the data perspective and later the resource
perspective, then timers, configuration, extended attributes and many other fea-
tures. In each case, new functionality was ‘grafted’ onto the core prototypical
architecture. Over time the result was a code base that had become difficult
to maintain and extend, and a user interface that revealed both its age and its
usability limitations.

To address these shortcomings, the YAWL Editor has been completely re-
designed and is being rewritten from the ground up. The overriding driver of the
project has been to make the Editor easier to use, and therefore more accessible
to a wider audience. This paper outlines the main features of the new Editor.

56

2 Code Redesign

The original Editor architecture has a flattened package structure that mixes
the user interface components with the underlying data manipulation and trans-
portation. This meant that the user interface components were very tightly cou-
pled to their data, which made it difficult to introduce changes to either aspect
without disturbing the other as a side-effect. In addition, on opening a specifica-
tion file, the Editor would first use Engine classes to parse the XML description
contained in the file, then use those objects to populate its own ‘mirror’ classes
(the Engine classes contain the code to (un)marshal to and from XML). When
saving a model to file, that process was reversed. This policy introduced a large
degree of redundant and error prone code, an artefact of its prototypical heritage.

Fig. 1. An Overview of the New Editor User Interface

In the redesigned Editor there is complete separation of the UI from the
underlying framework. The main advantages are twofold:

1. The completely separated core framework can now be deployed in its own
jar file. This allows external developers to create new and multiple user
interfaces that interact directly with the core framework through a concise
API, and frees them from concerns regarding how to store and manipulate
specification control flow, data and resourcing descriptors, and file handling
techniques.

57

2. The core framework interacts with the YAWL Engine classes only. The
negates that need for transformations when opening and saving specifica-
tion files, which results in much faster file reading and writing times, and
removes the scope for introducing errors into the ‘backend’ code when de-
veloping user interfaces.

3 Interface Redesign

Fig. 2. The Properties Window
(detail)

A large factor in the usability of a software
product, and particularly an graphical editor,
is the ease with which the properties of an
object can be set, updated and maintained.
The original Editor used a number of different
methods to update properties, found in vari-
ous places within the interface. For example,
specification properties were set via a dialog
accessed from the File menu, and net proper-
ties from the Net menu, while task properties
were generally accessed via a right-clicked con-
text menu on the task itself. Adding a split or
join to a task was accomplished via a box un-
der the palette. Selecting an icon for the task
was done in a different location again. Having
various locations for these similar capabilities
necessarily reduces usability and control.

The new Editor interface places all of the
properties, for all aspects of the active pro-
cess model, within a single expandable Prop-
erties window to the left of the graphical can-
vas (Figure 1). The relevant set of properties
and their values for the currently selected ob-
ject or objects are displayed in their appropri-
ate form. Such properties windows are com-
mon in today’s editors, and knowing that all
properties can be set in one location greatly
aids ease of use.

The detailed view of the Properties win-
dow in Figure 2 shows that the currently se-
lected object is a task with a decomposition,
which therefore allows all properties of the
Specification, Net, Task and Decomposition to
be viewed simultaneously and easily selected for editing. Values are displayed in
a format dependent on their data type. For example, simple values (e.g. Name,
Version, Label) are shown as is, boolean types (e.g. Root Net, Sync, Automated)

58

as check boxes. More complex values, such as Fill Colour, Font and Data Vari-
ables, are shown in a summary form appropriate to their type.

Values for properties such as Data Gateway, Icon, Split and Join Types and
Positions, and Decomposition are selectable via a dropdown list. Any property
modification that represents a visual change is instantly updated on the canvas,
and vice versa. For example, the current location coordinates for the selected
task can be changed manually in the Properties window, which will immediately
move the selected task to its new location on the canvas. A description of the
currently selected property is displayed at the bottom of the window.

Data Perspective Arguably the most significant impediment to usability for
the casual user in the original Editor was the requirement of a knowledge of
XQuery for all but the most trivial of process designs. Typically, net-level vari-
ables were added via the Net menu, task-level variables via the Decomposition
Update dialog (accessed from the right-click context menu) and then mapping
input and outputs with XQuery parameters was achieved via the Update Param-
eter Mappings dialog (again form the context menu). Thus, a greater learning
curve was needed, with each step providing more scope for error.

Fig. 3. The New Data Variables Dialog

In the new Editor, great care was taken to simplify this process as much
as possible, through the introduction of a consolidated Data Variables dialog

59

(Figure 3). This dialog, invoked from the Task section of the Properties window,
provides for the definition of net-level and task-level input and output variables
all within the same simplified dialog. Each of the three areas in the dialog pro-
vides columns for name, type, scope and initial or default value, as appropriate,
and each contains it own mini-toolbar, for adding, removing, editing and re-
ordering variables. The confusing notion of Input&Output scoped variables has
been dropped; it is now clear that a task may have a set of inputs and a set of
outputs, aligning the Editor’s data perspective with that of the Engine.

Notably, a net-level variable can be mapped to a task variable simply by drag
and drop, and the required XQuery mappings are automatically created and
applied. If a mapping other than the default is needed, it is able to be edited at
any time with the XQuery dialog (Figure 4), invoked by the mapping button on
the mini-toolbar. This dialog has also been completely redesigned to remove the
unnecessary complexity of the original Editor’s dialog.

Fig. 4. The XQuery Mapping Dialog

An even more complicated data
design exercise in the original Editor
was in the definition of XQuery pa-
rameters for multiple-instance tasks,
which served to inhibit the use of
multiple-instance tasks for all but the
most determined designers. In the
new Editor, the XQuery parameters
for multiple-instance tasks are also
automatically generated and applied
via drag and drop in the same dia-
log as single-instance tasks, making
the capabilities offered by multiple-
instance tasks available to expert and
novice user alike.

The definition of complex data
types using XML Schema can also
prove problematic for novice design-
ers. The new Editor will introduce a new, simplified data definition language,
loosely based on Pascal syntax, allowing for more easily expressed data type
definitions that will automatically be transformed to/from XML Schema, thus
providing two discrete, user-switchable views of the same type definitions (List-
ings 1.1 & 1.2).

Resource Perspective The ‘Wizard’ metaphor used by the original Editor
to capture resourcing requirements has proven less than effective in terms of
user interface design. In addition to being dated in terms of UI constructs, the
metaphor as deployed suffered from three main issues:

1. It was necessary to always begin at the first page and work your way through,
even if you wanted only to make a small change on the final page.

2. There was no facility to undo or cancel a change.

60

3. There is too much information displayed on each screen. While potentially
useful for novice users, the information becomes unwanted ‘noise’ as ex-
perience is gained. A better approach is to have the information available
separately through a ‘Help’ dialog that can be invoked via a button.

Listing 1.1. Type Definition Expressed as XML Schema (example)

<xs : schema xm ln s : x s=” h t t p : //www.w3 . org /2001/XMLSchema”>
<xs :complexType name=”BookOrder ”>

<x s : s e q u e n c e>
<x s : e l emen t name=” t i t l e ” type=” x s : s t r i n g ”/>
<x s : e l emen t name=” p r i c e ” type=” x s : d o u b l e ”/>
<x s : e l emen t name=” inS tock ” type=” x s : b o o l e a n ”/>

</ x s : s e q u en c e>
</ xs :complexType>
<xs :complexType name=”BookL i s t ”>

<x s : s e q u e n c e>
<x s : e l emen t maxOccurs=”unbounded” name=” o rd e r ” type=”BookOrder”/>

</ x s : s e q u en c e>
</ xs :complexType>

</ xs : schema>

Listing 1.2. The Same Type Definition expressed in Simplified DTD Syntax

type BookOrder = r eco rd {
t i t l e : s t r i n g ;
p r i c e : doub l e ;
i nS to ck : boo l ean ;

}
type BookL i s t = o rd e r (1 . . n) of BookOrder ;

All three concerns have been addressed in the new Editor through the use of
a tabbed dialog that shows the various resourcing properties, any of which can
be navigated to directly, with verbose help information removed to separately
invoked dialogs. Also, the new Editor will support the swim-lane metaphor,
allowing resources to be assigned to tasks graphically via their placement in the
appropriate lanes, which will aid in the readability of models by all stakeholders.

4 Conclusion

This paper briefly outlines a few of the main features of the new YAWL Editor,
however almost every aspect has been updated and improved. It is hoped that
the reward for the redesign will be realised through increased deployment of the
YAWL environment, and a positive affect on the teachability of YAWL, since
novice users will no longer face such a steep learning curve in the use of the
Editor before positive results can be achieved.

An alpha version is currently scheduled for limited release in August 2013.

References

1. B. Shneiderman, C. Plaisant, M. Cohen, and S. Jacobs. Designing the User Interface:
Strategies for Effective Human-Computer Interaction. Addison-Wesley, 5th edition,
2009.

61

Web-based Editor for YAWL

Felix Mannhardt

Bonn-Rhein-Sieg University of Applied Sciences, Germany?

felix.mannhardt@smail.wir.h-brs.de

Abstract. This paper presents a web-based editor that offers YAWL
editing capabilities and comprehensive support for the XML format of
YAWL. The open-source project Signavio Core Components is extended
with a graphical user interface (GUI) for parts of the YAWL Language,
and an import-/export component that converts between YAWL and the
internal format of Signavio Core Components. This conversion, between
the web-based editor and the official YAWL Editor, is lossless so both
tools may be used together. Compared to the official YAWL Editor, the
web-based editor is missing some features, but could still facilitate the
usage of the YAWL system in use cases that are not supported by a
desktop application.

1 Introduction

Software that is available only as a traditional desktop application is unlikely
to receive substantial adoption nowadays, in a time when these applications are
more and more replaced by web applications, and mobile apps. Major companies
from the industry even work on operating systems solely based on a web browser
(e.g. Google Inc. with Chrome OS and Mozilla Corp. with Firefox OS). The
YAWL System provides a complete tool-chain for Workflow Management: the
YAWL Editor for process design, the YAWL Control Center for configuration
and management of organizational resource, and the YAWL Engine for process
execution. Excluding the YAWL Editor all components of the YAWL system
are web applications designed with a service-oriented architecture. The YAWL
Editor, instead, is only available as a rather monolithic desktop application,
which is built with Java using Swing and the JGraph library. Additionally, new
features cannot be added to the YAWL Editor in a pluggable way, due to the
software architecture. However, it is possible to create a new YAWL editor that
mitigates these shortcomings and retains compatibility to the official YAWL
Editor by using the well-defined YAWL XML format.

This new editor for YAWL is based on Signavio Core Components (SCC)
and called web-based YAWL Editor hereafter. SCC is an open-source project
started by Signavio GmbH that is based on the discontinued Oryx project [2]
and the commercial, web-based process modeling tool Signavio Editor. The SCC
editor provides basic process modeling functionality, a file-based repository and is

? Parts of the work done while visiting Queensland University of Technology, Australia

62

extensible with new process modeling languages through plug-ins. Unfortunately,
also the SCC project was discontinued in 2011, shortly after the first release.
Nevertheless, the source-code is still available1, and efforts are made to continue
the development as part of the Apromore2 project [7]. The Apromore project also
includes the YAWL editing capabilities that are presented in this paper. Most
of the SCC editor is implemented with JavaScript that manipulates Scalable
Vector Graphics (SVG) to show and edit process models in the browser window.
For each supported process modeling language of SCC a so called Stencil Set [2]
needs to be defined.

The new web-based YAWL Editor consists of SCC together with three added
components: the YAWL Stencil Set, a client-side component and a server-side
component. The YAWL Stencil Set includes SVG graphics of all YAWL elements
(e.g. Tasks, Conditions, Edges), all their properties (e.g. description, routing
conditions, task variables) and basic rules regarding their interconnection. Ad-
ditional rules that cannot be expressed within the Stencil Set are added through
the client-side component with JavaScript. The server-side component, which is
realized with Java, is responsible to convert between the YAWL XML format and
the JSON format of SCC. This conversion is lossless, therefore workflows created
with the original YAWL Editor can be imported, modified with the web-based
YAWL Editor and exported back to the original YAWL Editor.

In Section 2 the functionality of the new web-based YAWL Editor is pre-
sented, then limitations of the current implementations are discussed in Sec-
tion 3, and before concluding this paper related work is described in Section 4.

2 Web-based YAWL Editor

Figure 1 shows the web-based YAWL Editor displaying the top level net of
the Orderfulfilment process [5] that was imported using the XML file that is
distributed as an example together with YAWL. On the left side of the browser
window, there is the Shape Repository containing all available tasks (Atomic,
Composite, Atomic Multiple Task, Composite Multiple Task) and conditions
(Normal, Input, Output) of YAWL. A new instance of a shape can be added to
the diagram area in the middle either by using drag and drop from the Shape
Repository or by clicking on one of the context menu icons showing the follow-up
element. The context menu is visible in Figure 1 next to the focussed Ordering
task. The web-based YAWL Editor enforces the connection rules of YAWL, for
example that tasks without attached split gateway must not have more than one
outgoing edges or that an Input Condition must not have an incoming edge. As
a result without the XOR-split on the Ordering task, there would no follow-up
task or follow-up condition be displayed in the context menu.

On the right side of the browser window, all properties of the currently se-
lected node can be edited. Please note that the original identifier of the YAWL
element is preserved in the property Internal YAWL ID, and will be re-used upon

1 http://code.google.com/p/signavio-core-components/
2 Apromore is a process model repository, available at: http://apromore.qut.edu.au/

63

http://code.google.com/p/signavio-core-components/
http://apromore.qut.edu.au/

export of the workflow back to the YAWL XML format. The properties Split and
Join determine whether a task has split or join routing behavior. These prop-
erties provide selectable options for all combinations of routing behavior (AND,
XOR, OR) and placement of the visible counterpart on the task node (Top, Left,
Right, Bottom).

Fig. 1. Web-based YAWL Editor showing the Orderfulfilment example process

In contrast to the original YAWL Editor, which stores subnets of a work-
flow embedded in the workflow specification, upon import of the Orderfulfilment
process all subnets have been stored separately in the repository. All composite
tasks, like the task Ordering in Figure 1, just store a reference to the target
subnet, as visible in the property Unfolds to net (link). The reference is stored
in form of an URI that points to the subnet in the SCC repository. When us-
ing another repository (e.g. Apromore), then this reference will be an URI that
points to the process model in the external repository. This way, the same sub-
net can be used in multiple YAWL workflow specifications that are stored in
the web-based YAWL Editor. A subnet that is created in the web-based YAWL
Editor may also be exported as the rootnet of a YAWL workflow specification.
This allows for more flexibility in the creation of workflows, for example the
Payment subnet could be exported as a stand-alone workflow. Of course, during
generation of the YAWL XML format all referenced subnets are embedded again
in order to generate valid YAWL XML.

The features Highlight Cancellation Region and Unfold to Subnet have been
implemented to show that the web-based YAWL Editor can be extended with
more advanced features of the official YAWL Editor. Highlight Cancellation Re-
gion emphasizes the nodes and edges that are in the Cancellation Region of a

64

selected task. YAWL specific features, like Highlight Cancellation Region, can be
activated under the YAWL symbol in the menu as indicated by the arrow shown
in Figure 1. The second feature, Unfold to Subnet, supports the user with the
handling of subnets. Upon selecting a Composite Task a context menu appears,
as shown next to the task pay in Figure 2. The user can either open the already
linked subnet, create a new subnet, link the task to an existing subnet that was
created before, or unlink the currently assigned subnet. The selection of an ex-
isting subnet is supported by showing a list of all available YAWL workflows in
the repository of the web-based YAWL Editor.

Fig. 2. Handling of YAWL subnets within SCC

The source code of the web-based YAWL Editor is currently available as part
of the Apromore Editor: http://code.google.com/p/apromore/. Additionally,
more information about future development and a demo version is available on
the website: http://www.yaug.org/WebYAWLEditor.

3 Limitations

The current implementation of the web-based YAWL Editor provides fewer fea-
tures than the official YAWL Editor. The most significant limitations are in the
area of the resource and data perspective of YAWL. At this stage of the develop-
ment, the web-based YAWL Editor does not connect to the Resource Service of
YAWL to look up organizational resources (e.g. Roles, Participants, Secondary
Resources), but the information about the resource perspective of an imported
YAWL workflow is preserved using fragments of the original YAWL XML format.
In a future version, the web-based YAWL Editor could connect to the Interface

65

http://code.google.com/p/apromore/
http://www.yaug.org/WebYAWLEditor

R of YAWL to look up organizational resources and manipulate the stored XML
fragment according to the selection. Regarding the data perspective, there is
some support through structured editors, but the web-based YAWL Editor is
missing look up and validation features. Figure 3 shows the structured editor
for the routing predicates. New routing predicates can be added in a structured
way, but the editor in Figure 3 still provides no means of automatically picking
the target task, or checking the XSD expression for validity. The editor for task
variables has similar limitations.

Fig. 3. Property editor for the routing predicates

Furthermore, there are still some minor limitations regarding the visual ap-
pearance of the YAWL workflows in the web-based Editor. SCC does not support
bended edges with bezier curves or splines and it is missing support for exact
positioning of labels. As a result, in the web-based YAWL Editor all labels are
positioned directly under the corresponding YAWL elements and edges using
bezier curves or splines are shown as straight lines.

4 Related Work

There have already been a few attempts bringing support for new process model-
ing languages to the Oryx Editor (predecessor of SCC) similar to this approach.
For example, support for Coloured Petri Nets and UML class diagrams3. The
web-based jBPM Designer4, which is based on the Oryx Editor, is developed
as part of the jBPM project. As it is solely dedicated to BPMN 2.0 it was not
considered as starting point for the development of the web-based YAWL Editor.
Regarding to YAWL and SCC/Oryx the implementation of an automatic export
of BPMN models to YAWL in the Oryx Editor5 using the approach described

3 http://bpt.hpi.uni-potsdam.de/Oryx/OryxScreencasts
4 http://www.jboss.org/jbpm/components/designer
5 http://bpt.hpi.uni-potsdam.de/Oryx/BpmnToYawl

66

http://bpt.hpi.uni-potsdam.de/Oryx/OryxScreencasts
http://www.jboss.org/jbpm/components/designer
http://bpt.hpi.uni-potsdam.de/Oryx/BpmnToYawl

in [1] could be seen as related. The approach is limited to a subset of BPMN
1.2 and can not be used to edit existing YAWL workflows on the web. There is
a YAWL Android Client6 that supports the execution of a YAWL workflow on
mobile devices, but this project does not provide support for the design time of
a workflow. To the best of my knowledge there is currently no other web-based
YAWL Editor available.

5 Conclusion

With the web-based YAWL Editor, it is possible to create new, and modify ex-
isting YAWL workflow specifications using solely a web browser. The web-based
YAWL Editor is fully compatible with the official YAWL Editor. It has been
tested with the publicly available workflow specifications, which are distributed
together with YAWL. The web-based YAWL Editor can be offered as a service
without the need of a local installation, and it can be integrated in existing web
applications. In comparison to the original YAWL Editor some use cases are
simplified, like the usage of YAWL in a classroom during an exercise, and new
use cases are made possible, like the interactive presentation of YAWL workflow
specifications on a web site.

The web-based YAWL Editor is, furthermore, already integrated into the
process model repository Apromore. In the future, using Apromore and the web-
based YAWL Editor features like, for example, version control [4] and process
merging [6] may be available to the YAWL community. Still, there are some
shortcomings with the current implementation of the web-based YAWL Editor
that need to be mitigated. Most of all, better support for the resource and data
perspective of YAWL is needed. Overall with some additional development effort,
the web-based YAWL Editor could evolve to a beneficial addition to the YAWL
ecosystem.

References

1. Gero Decker, Remco M. Dijkman, Marlon Dumas, and Luciano Garćıa-Bañuelos.
Transforming bpmn diagrams into yawl nets. In Dumas et al. [3], pages 386–389.

2. Gero Decker, Hagen Overdick, and Mathias Weske. Oryx - an open modeling plat-
form for the bpm community. In Dumas et al. [3], pages 382–385.

3. Marlon Dumas, Manfred Reichert, and Ming-Chien Shan, editors. Business Process
Management, 6th International Conference, BPM 2008, Milan, Italy, September 2-
4, 2008. Proceedings, volume 5240 of Lecture Notes in Computer Science. Springer,
2008.

4. Chathura C. Ekanayake, Marcello La Rosa, Arthur H. M. ter Hofstede, and Marie-
Christine Fauvet. Fragment-based version management for repositories of business
process models. In Robert Meersman, Tharam S. Dillon, Pilar Herrero, Akhil Ku-
mar, Manfred Reichert, Li Qing, Beng Chin Ooi, Ernesto Damiani, Douglas C.

6 http://www.yaug.org/tryOutYAWLAndroidClient

67

http://www.yaug.org/tryOutYAWLAndroidClient

Schmidt, Jules White, Manfred Hauswirth, Pascal Hitzler, and Mukesh K. Mo-
hania, editors, OTM Conferences (1), volume 7044 of Lecture Notes in Computer
Science, pages 20–37. Springer, 2011.

5. Marcello La Rosa, Stephan Clemens, Arthur Hofstede, and Nick Russell. Appendix
A The Order Fulfillment Process Model. In Arthur H M ter Hofstede, Wil M P
van der Aalst, Michael Adams, and Nick Russell, editors, Modern Business Process
Automation, pages 599–616. Springer Berlin Heidelberg, 2010.

6. Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco M. Dijkman. Merging
business process models. In Robert Meersman, Tharam S. Dillon, and Pilar Herrero,
editors, OTM Conferences (1), volume 6426 of Lecture Notes in Computer Science,
pages 96–113. Springer, 2010.

7. Marcello La Rosa, Hajo A. Reijers, Wil M.P. van der Aalst, Remco M. Dijkman,
Jan Mendling, Marlon Dumas, and Luciano Garca-Bauelos. Apromore: An advanced
process model repository. Expert Systems with Applications, 38(6):7029 – 7040, 2011.

68

Usability Extensions for the Worklet Service

Michael Adams

Queensland University of Technology, Brisbane, Australia.
mj.adams@qut.edu.au

Abstract. The YAWL Worklet Service is an effective approach to fa-
cilitating dynamic flexibility and exception handling in workflow pro-
cesses. Recent additions to the Service extend its capabilities through a
programming interface that provides easier access to rules storage and
evaluation, and an event server that notifies listening servers and appli-
cations when exceptions are detected, which together serve enhance the
functionality and accessibility of the Service’s features and expand its
usability to new potential domains.

Keywords: YAWL, Worklet, Exception Handling, Flexibility

1 Introduction

Since its introduction, the YAWL Worklet Service has proven to be an effective
approach to facilitating dynamic flexibility and exception handling in otherwise
static process instances [2, 3]. The Service provides an extensible repertoire of
self-contained selection and exception-handling processes, coupled with an exten-
sible ripple-down rules set. At runtime, the Service provides functionality that
allows for the substitution of a task with a sub-process, dynamically selected
from its repertoire, depending on the rules set and the context of the particular
work instance. In addition, exception-handling functionality dynamically detects
and mitigates exceptions as they occur, using the same repertoire and rule set
framework1.

Now, recent additions to the service provide new methods of interaction that
extend its capabilities through the introduction of an application programming
interface (API) that allows external custom services and applications to interact
with it directly, and an event server that allows listener services to be notified
when a worklet is selected or an exception raised during a process execution.
Of particular interest are the ways in which the service can now be more easily
introduced into learning situations.

2 The Worklet Gateway Client API

The WorkletGatewayClient is a client side class that can be used by custom
services [5] to interact with the Worklet Service via an API. It provides two main
functionalities:
1 See [1] for more details on the design and implementation of the Worklet Service

69

– creating, accessing, updating and evaluating Ripple Down Rules (RDR) di-
rectly, circumventing the need to work with the Windows-based Rules Editor
application (see Section 3); and

– adding and removing worklet event listeners (see Section 4).

An instance of WorkletGatewayClient can be used by custom services and
applications to first create a session with the Worklet Service, then use the
returned session handle in subsequent API method calls. Any service or appli-
cation registered with the YAWL Engine is trusted by the Worklet Service, and
so the same credentials can used to establish the connection (see Listing 1.4 for
an example of how to connect and use the API).

3 Working with Ripple Down Rules

Since the primary aim of the Worklet Service is to support processes enacted
by the YAWL engine, each rule set is typically uniquely identified for a particu-
lar specification by its YSpecificationID object. However, to generalise RDR
support for other custom services and applications, rule sets can now also be
uniquely identified by any unique string value. Thus, for each client method
there are variations to support the fact that either a specification identifier or a
generalised name may be used to identify rules.

Listing 1.1. Examples of using the Worklet Gateway Client ‘get’ methods

1 pub l i c vo id example throws IOExcept i on {
2 YSp e c i f i c a t i o n ID spec ID = new YSp e c i f i c a t i o n ID (nu l l , ” 0 . 1 ” ,
3 ” s omeSp e c i f i c a t i o n ”) ;
4 S t r i n g processName = ” someProcess ” ;
5 RdrMarsha l marsha l = new RdrMarsha l () ;
6 Work l e tGatewayC l i en t c l i e n t = new Work l e tGatewayC l i en t () ;
7 S t r i n g hand l e = c l i e n t . connect (”admin” , ”YAWL”) ;
8
9 // get a Rule Set

10 S t r i n g ruleSetXML = c l i e n t . ge tRdrSet (specID , hand l e) ;
11 i f (! s u c c e s s f u l (ruleSetXML)) throw new IOExcept i on (ruleSetXML) ;
12 RdrSet r u l e S e t = marsha l . unmarsha lSet (ruleSetXML) ;
13
14 // get a Rule Tree
15 S t r i n g ruleTreeXML = c l i e n t . getRdrTree (processName , nu l l ,
16 RuleType . Ca s eP r e con s t r a i n t , hand l e) ;
17 i f (! s u c c e s s f u l (ruleTreeXML)) throw new IOExcept i on (ruleTreeXML) ;
18 RdrTree r u l eT r e e 1 = marsha l . unmarsha lTree (ruleTreeXML) ;
19 ruleTreeXML = c l i e n t . getRdrTree (specID , ”Treat ” , RuleType . I t emSe l e c t i o n ,
20 hand l e) ;
21 i f (! s u c c e s s f u l (ruleTreeXML)) throw new IOExcept i on (ruleTreeXML) ;
22 RdrTree r u l eT r e e 2 = marsha l . unmarsha lTree (ruleTreeXML) ;
23
24 // get a Rule Node
25 S t r i n g ruleNodeXML = c l i e n t . getNode (specID , nu l l ,
26 RuleType . Ca s eP r e con s t r a i n t , 1 , hand l e) ;
27 i f (! s u c c e s s f u l (ruleNodeXML)) throw new IOExcept i on (ruleNodeXML) ;
28 RdrNode node1 = marsha l . unmarshalNode (ruleNodeXML) ;
29 ruleNodeXML = c l i e n t . getNode (processName , ” A r ch i v e ” ,
30 RuleType . I t emSe l e c t i o n , 4 , hand l e) ;
31 i f (! s u c c e s s f u l (ruleNodeXML)) throw new IOExcept i on (ruleNodeXML) ;
32 RdrNode node2 = marsha l . unmarshalNode (ruleNodeXML) ;
33 }

70

Get Methods Firstly, there are a number of get methods, which can be used
to retrieve an individual rule node, a rule tree (a set of connected nodes for a
particular rule type and task id), or an entire rule set (the set of rule trees for
a particular specification or process). Each of the get methods, and in fact all
of the client methods, return a String value representing a successful result or
an appropriate error message. A successful result for a get method contains an
XML String representation of the object retrieved, which can be unmarshalled
into the appropriate object using the RdrMarshal class, as shown in the examples
in Listing 1.1.

Evaluation Methods The rule sets maintained by the Worklet Service can be
evaluated against a given data set via the client API at any time. Like the get
methods, there are variations that accept a specification identifier or a gener-
alised name, and if evaluating an item-level rule tree, a task id. There are three
possible results when a rule set is evaluated:

1. No rule tree exists for the given specification id or process name, and/or task
id, and rule type (as required). An error message to that effect is returned.

2. A rule tree exists for the given parameters, but none of its nodes’ conditions
were satisfied. An error message to that effect is returned.

3. A rule tree exists for the given parameters, and the conditions of at least
one its nodes were satisfied. An RdrConclusion object is returned.

For a rule set associated with a YAWL specification, an RdrConclusion

object represents a set of primitives, each comprising an action and a target,
and provides methods for iterating through the primitives set. Of course, if the
Worklet Service is being used merely as an RDR store/evaluator, and thus there
is no intention to have the rules evaluated by the Worklet Service in relation to a
YAWL process instance, then the conclusion of a rule node may contain any data
of relevance to an external service or application. For example, the conclusion of
an ItemSelection rule node contains one primitive, with an action of ‘select’ and
a target naming the worklet to select. The conclusion of an exception rule type
may contain any number of primitives (see the Worklet Service chapter of the
YAWL User Manual for more information). An example of an evaluate method
call is shown in Listing 1.2.

Listing 1.2. Example using the Worklet Gateway Client ‘evaluate’ method

1 pub l i c vo id example throws IOExcept i on {
2 YSp e c i f i c a t i o n ID spec ID = new YSp e c i f i c a t i o n ID (nu l l , ” 0 . 1 ” ,
3 ” s omeSp e c i f i c a t i o n ”) ;
4 RdrMarsha l marsha l = new RdrMarsha l () ;
5 Work l e tGatewayC l i en t c l i e n t = new Work l e tGatewayC l i en t () ;
6 S t r i n g hand l e = c l i e n t . connect (”admin” , ”YAWL”) ;
7
8 // e v a l u a t e a Rule Type a g a i n s t a data s e t
9 S t r i n g da t aS t r = ”<data><Age>40</Age><Frac tu r e>t rue</Frac tu r e></data>” ;

10 Element data = JDOMUtil . s t r i ngToE l ement (da t aS t r) ;
11 S t r i n g conclus ionXML = c l i e n t . e v a l u a t e (specID , ”Treat ” , data ,
12 RuleType . I t emSe l e c t i o n , hand l e) ;
13 i f (! s u c c e s s f u l (conclus ionXML)) throw new IOExcept i on (conclus ionXML) ;
14 RdrConc lu s i on c o n c l u s i o n = marsha l . unmar sha lConc l u s i on (conclus ionXML) ;
15 }

71

Adding a Rule Node RDR are structured in such a way that rule nodes can
be added at any time, but never deleted, since deleting a node would ‘break’
the tree’s internal structure. The client API provides a method to add a rule
node to a rule set for a specification or process, with similar variations to those
mentioned above for the different rule types. An example of adding a node is
shown in Listing 1.3.

Listing 1.3. Example using the Worklet Gateway Client to add a new Rule Node

1 pub l i c vo id example throws IOExcept i on {
2 YSp e c i f i c a t i o n ID spec ID = new YSp e c i f i c a t i o n ID (nu l l , ” 0 . 1 ” ,
3 ” s omeSp e c i f i c a t i o n ”) ;
4 RdrMarsha l marsha l = new RdrMarsha l () ;
5 Work l e tGatewayC l i en t c l i e n t = new Work l e tGatewayC l i en t () ;
6 S t r i n g hand l e = c l i e n t . connect (”admin” , ”YAWL”) ;
7
8 // add a Rule Node
9 S t r i n g c o r n e r S t r = ”<data><Age>40</Age><Frac tu r e>t rue</Frac tu r e></data>” ;

10 Element eCo rne r s t one = JDOMUtil . s t r i ngToE l ement (c o r n e r S t r) ;
11 RdrConc lu s i on c o n c l u s i o n = new RdrConc lu s i on () ;
12 c o n c l u s i o n . a ddP r im i t i v e (E x l e tA c t i o n . Suspend , Ex l e tTa r g e t . Case) ;
13 c o n c l u s i o n . addCompensa t i onPr im i t i v e (”myWorklet ”) ;
14 c o n c l u s i o n . a ddP r im i t i v e (E x l e tA c t i o n . Cont inue , Ex l e tTa r g e t . Case) ;
15 RdrNode node = new RdrNode (”Age=>75” , c on c l u s i o n , eCo rne r s t one) ;
16 S t r i n g newNodeXML = c l i e n t . addNode (specID , ”Treat ” ,
17 RuleType . I t emPreCons t r a i n t , node , hand l e) ;
18 i f (! s u c c e s s f u l (newNodeXML)) throw new IOExcept i on (newNodeXML) ;
19 node = marsha l . unmarshalNode (newNodeXML) ;
20 }

When adding a rule node, values for condition, conclusion and cornerstone
are all that is required, as shown in line 15 of Listing 1.3. The Worklet Service
will determine the appropriate location in its rule tree for the new node2. The
cornerstone data is particularly important when adding a node to an existing
tree, as it is used to determine the proper location of the node. If no rule set
currently exists for the specification id or process name given, then one is created.
Further, if no rule tree currently exists for the specification id or process name,
and rule type (and task id if required) given, then one is created, and the node
is added as the first node in the tree (after the root node).

User-defined Functions The condition defined for each rule node is an ex-
pression that must evaluate to a final boolean (true/false) value. Expressions
can be formed using the usual numeric, comparison and logical operators, and
operands consisting of literal values, and/or the values referenced by the name
of case and/or workitem data variables. Alternately, an XQuery expression may
be used, which is useful if you need to query case or workitem data stored as a
complex data type.

In addition, conditional expressions support the use of user-defined functions
that are defined to evaluate the available data in a particular way, and in turn
may be inserted into complex, conjunctive expressions. These functions can pass
arguments consisting of literal values, and case or workitem data variable names,

2 Interested readers can find details of how the Service determines the location of a
new rule within the tree on pages 59–60 of [1]

72

which will be substituted with their actual runtime values before being passed
to the function3.

For work item level rules, a special data structure, called this, can be passed
as an argument to a user-defined function (e.g. myFunc(this)). The structure
is assigned an XML string representing the complete work item record, so that
specification and task descriptors, and state and timing values may be accessed
within the user-defined function.

4 Worklet Event Listeners

Each time the Worklet Service selects a worklet for a work item, or raises an ex-
ception for a work item or case, details of the event are announced to registered
listener classes. Listeners can use these event announcements to perform addi-
tional processing as required, and make it possible to create exception handling
service chains.

An abstract class called WorkletEventListener is the base class for all
worklet listeners. This class is a HttpServlet that handles all of the mechanics
involved in receiving notifications from the Worklet Service and transforming
them into five abstract method calls that are to be implemented by extending
classes:

– caseLevelExceptionEvent is called each time a case level exception is
raised, and passes descriptors for case-level data, the type of exception raised,
and the RdrNode that evaluated to true and so triggered the raising of the
exception.

– itemLevelExceptionEvent is called each time a item level exception is
raised, and passes descriptors as above in addition to the work item record
that was the ‘subject’ of the exception being raised.

– selectionEvent is called each time a worklet selection occurs, i.e. when
a worklet is substituted for a work item, passing descriptors for case-level
data, the work item that the worklet was selected for, and the rule node that
evaluated to true and so triggered the selection.

– constraintSuccessEvent is called each time a case or work item that has
pre- or post-constraint rules defined has had those rules evaluated and the
case or work item passes the constraints (i.e. no rules were satisfied and so
no exception was raised).

– shutdown is called when the Worklet Service is shutting down, and allows
implementers to take any necessary action.

Once the listener class implementation is complete, the extra servlet defini-
tion section needs to be added to the web.xml of the implementing (listener)
service, and then at runtime the listener is to be registered with the Worklet
Service, as shown in Listing 1.4.

3 See the YAWL User and Technical Manuals for details on the definition of user-
defined functions

73

Listing 1.4. Registering a listener with the Worklet Service

1 pub l i c boo lean r e g i s t e rWo r k l e t L i s t e n e r () {
2 Work l e tGatewayC l i en t c l i e n t = new Work l e tGatewayC l i en t () ;
3 t r y {
4 S t r i n g u r l = ” ht tp : // l o c a l h o s t :8080/ myServ i ce / w o r k l e t l i s t e n e r ” ;
5 S t r i n g hand l e = c l i e n t . connect (”admin” , ”YAWL”) ;
6 r e t u r n s u c c e s s f u l (c l i e n t . a d dL i s t e n e r (u r l , hand l e)) ;
7 }
8 catch (IOExcept i on i o e) {
9 l o g . e r r o r (” F a i l e d to r e g i s t e r l i s t e n e r : ” + i o e . getMessage ()) ;

10 }
11 r e t u r n f a l s e ;
12 }

5 Conclusion

The additions to the Worklet Service outlined above allow it to be more easily
integrated into new and existing projects. Since rules can now be easily added
and evaluated directly via the API, there is no longer the requirement to use
the Windows-based Rules Editor for that purpose, and therefore it is no longer
necessary to undertake the learning curve associated with using the Rules Editor
before the benefits provided by the Service can be realised. In addition, the ability
to define and evaluate rules sets for environments external to YAWL process
executions broadens the application of the Service’s functionality to much wider
domains. Finally, the ability for external applications and services to be notified
when an exception or worklet selection has occurred during a process execution,
and when a case or work item has passed a constraint evaluation, opens the
Service up to new areas of functional support, particularly to the facilitation of
exception handling service chains.

An example of a novel use of these extensions can be seen in the development
of blended workflow, which integrates two specifications for the same workflow
process, one structured (YAWL) and one ad-hoc (goal-based), allowing users to
switch between two views of the same process instance [4].

References

1. M. Adams. Facilitating Dynamic Flexibility and Exception Handling for Workflows.
PhD thesis, Queensland University of Technology, Brisbane, Australia, 2007.

2. M. Adams, A.H.M. ter Hofstede, W.M.P. van der Aalst, and D. Edmond. Dynamic,
extensible and context-aware exception handling for workflows. In R. Meersman
and Z. Tari, editors, Proceedings of the 15th International Conference on Coopera-
tive Information Systems (CoopIS’07), volume 4803 of Lecture Notes in Computer
Science, pages 95–112, Vilamoura, Portugal, November 2007. Springer.

3. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Worklets:
A service-oriented implementation of dynamic flexibility in workflows. In R. Meers-
man and Z. Tari et al., editors, Proceedings of the 14th International Conference
on Cooperative Information Systems (CoopIS’06), volume 4275 of Lecture Notes in
Computer Science, pages 291–308, Montpellier, France, November 2006. Springer.

74

4. D. Passinhas, M. Adams, B. O. Pinto, R. Costa, A. Rito Silva, and A.H.M. ter
Hofstedet. Supporting blended workflows. In N. Lohmann and S. Moser, editors,
Proceedings of the Demonstration Track of the 10th International Conference on
Business Process Management (BPM 2012), volume 940 of CEUR Workshop Pro-
ceedings, pages 23–28, Tallinn, Estonia, September 2012. CEUR-WS.org.

5. A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell. Modern
Business Process Automation: YAWL and its Support Environment. Springer, 2010.

75

	Web-based Editor for YAWL

