
Towards the Analysis of Software Projects
Dependencies: An Exploratory Visual Study of

Software Ecosystems

Francisco W. Santana and Cláudia M. L. Werner

PESC - COPPE/UFRJ,
Universidade Federal do Rio de Janeiro (UFRJ),

Caixa Postal 68511 – CEP 21945-970 – Rio de Janeiro, RJ
{fwsantana,werner}@cos.ufrj.br

Abstract. Software systems are rarely developed in isolation. The de-
velopment of current complex software systems often makes extensive use
of components previously developed or acquired from external suppliers.
Nevertheless, research on software systems has traditionally considered
each system as an isolated and self-contained project. Such character-
istic limits the quality of observations on studies as they do not con-
sider the software ecosystem in which the project is inserted. In this
paper we present an ongoing work that aims to enable the analysis of
software ecosystems from both technical and sociotechnical perspectives.
The novelty of our approach lies in the usage of interactive visualizations
to facilitate uncovering relationships among software projects within an
ecosystem.

Key words: Software Engineering, Software Dependencies, Software
Ecosystems, Software Visualization, Mining Software Repositories

1 Introduction

Software systems are increasingly dependent on other software systems. The
need to cope with an increasingly competitive market and demanding customers
leaves no room for each new complex software system to be completely developed
from scratch. Software industry has therefore recurred to software reuse in order
to achieve its goals, making extensive use of solutions previously developed or
acquired from external suppliers and incorporating them within its products.
Although the usage of software components can offer several advantages to the
development of software projects, such as reduced development time, higher pro-
ductivity and reliability, a poor choice of components can undermine the quality
of the developed product [1]. However, most of the studies regarding effects and
impacts related to software components and general dependencies consider each
project as an isolated and self-contained product [2][3]. This perspective ignores
the relationships between a software project and its dependencies, and also the
relationships among software communities involved in the development of these
projects, i.e., the software ecosystem in which the project is inserted.

{fwsantana, werner}@cos.ufrj.br


2 Francisco Santana & Cláudia Werner

Software ecosystems (SECOs) have become a subject of great interest for both
industry and academic communities, motivated by this holistic view of software
development that goes beyond exploring a single project and its own entities.
We define software ecosystems as a set of projects that are interdependent from
both technical and sociotechnical perspectives, that is, project artifacts, devel-
opers and supporting communities, linked to other projects by either reuse de-
pendencies or common contributors of development communities. As suggested
by related work [4], we believe that this view is important to better comprehend
software projects’ development characteristics, e.g., uncover details about the
impacts of the chosen reused components in a specific software project.
This paper aims to explore software component dependencies from an ecosystem
point of view, under the hypothesis that characteristics of reused components
impact on the developed system that reuses them. The novelty of our approach
resides on the employment of visualizations to observe and explore software de-
pendencies, uncovering relationships and patterns among interrelated projects.
Our motivation is grounded on our perception that few works [4][5] on litera-
ture tries to comprehend the impacts of components within different software
projects from both technical and sociotechnical perspectives, constituting a new
scenario for studies on software engineering.
The rest of this paper is organized as follows. In Section 2, we introduce concepts
of Software Ecosystems, detailing our definitions and comparing them to those of
other works. Section 3 presents an overview of existing work involving visualiza-
tion of software ecosystems. Section 4 describes our approach, including notions
that comprise its foundations and visualization techniques. Section 5 presents
a proof of concept conducted to demonstrate the feasibility of our approach.
Finally, Section 6 presents our final remarks and plans for future work.

2 Software Ecosystems

As stated by Lungu et al. “no software project is an island” [6]. The devel-
opment of current software systems are rarely conducted in isolation, with so-
lutions being redesigned and redeveloped. In this sense, the development of a
software system by the composition of reusable components establishes relation-
ships among various software projects and development communities, forming
a genuine ecosystem that guides and constraints the development of a software
system. Software ecosystems have become an increasingly popular subject, with
several research works being conducted to explore and understand relationships
among the various entities involved in software systems development. Neverthe-
less, the study of SECOs is still a novel area and there is no consensus on the
definition of what constitutes a software ecosystem. Based on a recent system-
atic mapping study [7], the term was coined in 2003 as a collection of software
products that have some given degree of symbiotic relationships [8]. More recent
work however tends to identify as a remarkable feature of a SECO the idea of
a common market or platform, inserting the projects in relationships of interest
that are somehow business-oriented. For example, Boucharas et al. [9] define



Towards the Analysis of Software Projects Dependencies 3

SECOs as a set of actors functioning as a unit and interacting with a shared
market for software and services, while Bosch [10] sees SECOs as a set of soft-
ware systems that enables, supports and automates activities and transactions
in the associated social or business ecosystems.
Albeit the aspiration to reach a bigger share on a particular market segment can
be observed in software industry and therefore on many software products, inter-
projects relationships may appear for other reasons than business-oriented, rang-
ing from convenience to reuse a previously developed solution to simple interest
in adopting a particular technology. These relationships also establish connec-
tions between projects, forming bonds that, when viewed in a broad perspective,
can be seen as a software ecosystem. Based on this reasoning, we adopted a broad
definition for SECOs, independent of business features and also aligned to other
recent works [11][12].
There are many challenges and unanswered questions regarding SECOs, partic-
ularly from perspectives such as software maintenance and evolution. One such
challenge involves the risks that a software project faces while entering a SECO.
Even though reusing software components with assured quality can provide ben-
efits to software projects, a software ecosystem can also impose obstacles to the
development of a software project when the project is made upon components
with low technical quality. Also, these challenges cannot be seen from a strictly
technical point of view, as both technical and social factors play an important
role on the process of software development [2] [3] [13].

3 Existing Work

Though recent studies have explored characteristics and behaviors of SECOs,
few approaches have been concerned with ways to visualize and analyze SECOs
relationships. Among the studies on this topic, Pérez et al. [4] developed a tool
for visualization and analysis of ecosystems named SECONDA, a tool that col-
lects data from GIT repositories, computes software metrics from source code
artifacts and presents visualizations of the processed data from several projects
simultaneously, allowing the exploration of SECOs. Another important work
presents the Small Project Observatory (SPO) [6], which also collects data and
presents visualizations from multiple projects in an integrated manner, offering
users two different perspectives to explore SECOs, with focus on either ecosys-
tems’ projects or developers’ communities.
Both SECONDA and SPO offer mechanisms for data extracting, metrics evalu-
ation and visualization of projects within SECOs for visual analysis. However,
these tools have limitations related to data collection, being able to only process
a so-called ”super-repository” that contains all projects of a SECO, regardless
of the fact that the data of all SECOs’ projects are not necessarily stored in
one common repository, limiting the analysis that can be done with these tools
and posing as a threat to validity for these works. Furthermore, while these
tools offer mechanisms for researchers to explore SECOs from both technical
and sociotechnical perspectives, they do not provide means to explore how the



4 Francisco Santana & Cláudia Werner

relationships evolved over time.
Finally, there are other important but less related works that show charts and
indicators of ecosystems and relate to our proposal by providing results that can
assist us in formulating hypotheses, choosing metrics and constructing visual-
izations that are applicable to analyze SECOs. Among this category of studies,
stands out the one described in [13] that analyzed the Evince document viewer
and presented a serie of views that could also be applied to software ecosystems,
and the one detailed in [14] that found closer relationships between develop-
ers’ communities of KDE and Gnome than Apache’s due to technical proximity
between the former projects.

4 Our Approach

Our approach consists on the usage of information visualization techniques to
depict a SECO, applied over software projects repositories’ data extracted using
mining software repositories (MSR) methods. Our proposal features three main
steps: data extracting, data processing, and SECO visualization. On the follow-
ing subsections we describe each step and introduce key concepts to enable a
better comprehension of our proposal.

4.1 Data Extracting

The first step of our proposal consists of obtaining data from version control
systems and issue trackers of software projects that share technical dependen-
cies, and are therefore members of a common ecosystem under our definition.
Software repositories such as VCS and issue tracking systems are widely used
by software developers on both commercial and open source environments, and
contain a plethora of available data about the underlying software projects and
associated development process that can be mined to explore and investigate
evidences about software development. Access to these software repositories is
made using native Subversion protocol for VCS connection, while issue trackers
data are collected using webcrawlers. Our proposal’s data extraction is not lim-
ited to analyzing only one repository, being able to collect data from projects
stored in different repositories to compose an ecosystem.
Following the data collection of a software project, we automatically identify a
list of software dependencies from build managers and dependency managers’
artifacts, such as Maven’s pom.xml or Ivy’s ivy.xml. These tools are also exten-
sively used by software development communities and assist the development
process, offering features such as dependencies browsing and managing conflicts.
The identification of software dependencies may lead to data extraction of other
software projects, and despite the fact that dependencies identification can be
performed automatically, data extraction needs to be conducted manually be-
cause repositories addresses and their access credentials are not specified in the



Towards the Analysis of Software Projects Dependencies 5

build managers’ artifacts. Source code analysis was discarded as a way to estab-
lish links between projects since artifacts path or contents is not reliable to infer
which project the artifact belongs to.

4.2 Data Processing

The Data processing phase has two distinct objectives, beginning with the identi-
fication of dependencies between the collected ecosystems entities, these entities
being developers, actors on issue tracker communities, and software projects’
artifacts and metrics computation. The dependencies among the SECOs enti-
ties are processed using three different techniques, namely logical dependencies,
static dependencies and coordination requirements. Static dependencies arise
from procedures and methods calls between projects’ classes or compilation
units, while in contrast logical dependencies [15] are computed between arti-
facts that have evolved and been modified many times together, even though
these artifacts have no explicit connection. Finally, as software development is a
typical example of collaborative work, the notion of coordination requirements
proposed by Cataldo and colleagues [16] appears as a way to obtain the set of
individuals a developer should coordinate his/her work with (or at least be aware
of) based on their tasks level of interdependency, measured based on which arti-
facts each developer modified and the logical dependencies these artifacts shared.
Building upon the identification of dependencies, the metrics evaluation phase
has the objective to calculate SECOs software metrics to build indicators of a
SECO feature (e.g., its health). Despite our intentions to evaluate metrics and
construct indicators for SECOs features, there is a lack of formal definition for
metrics on SECOs given the novelty of the discipline, and thus in our initial ex-
ploratory context we have employed but visual means to infer projects cohesion
and coupling.

4.3 SECO Visualizations

Information visualization techniques have been successfully employed by re-
searchers trying to understand software system features, especially those related
to software evolution, maintenance and monitoring [17]. As many SECOs fea-
tures remain unknown, we believe that visualizations offer a sound starting point
to explore the relationships of related software projects, and developed two vi-
sualizations to observe different characteristics of SECOs, namely communities
and technical views.
Higher resolution images of the visualizations presented on next subsections are
available at http://lab3d.coppe.ufrj.br/index.php/projetos/visecos.

Communities View This view (Figure 1) focuses on the analysis of how the
different communities of a SECO interact, i.e., how each project member of the
SECO contributes to other projects from a sociotechnical point of view. The
main usage scenario of this visualization is to identify the degree of participa-
tion and contributions between different projects of the same SECO, naively

http://lab3d.coppe.ufrj.br/index.php/projetos/visecos


6 Francisco Santana & Cláudia Werner

suggesting the health of the whole SECO community.
To represent these interactions within SECOs’ communities we chose to use
graphs, since it is regarded as an intuitive way to display dependencies. Based on
data from both VCS repositories and issue trackers, we constructed two graphs
at different levels of granularity. On the coarse grained graph, each project is rep-
resented by a vertex with a unique color and has two child vertices, representing
the VCS developers’ communities and issue trackers contributors. Each of these
communities’ vertices can then be linked by edges to vertices of other projects,
meaning that there are collaborators that act on both communities. The fine
grained graph in turn depicts interaction between the communities actors more
explicitly based on both Coordination Requirements network and discussions on
the same issue by different contributors.

Fig. 1: Communities View, featuring Apache Sling (green), Apache Jackrabbit
(red) and Apache Felix (blue) projects.

The user can interact with the visualization by applying various filters, enabling
to focus on the relationships that are of interest to his/her analysis. The filters
currently implemented allow: i) hiding nodes from a specific project or archive
(VCS or issue tracker), enabling to focus on a selected set of projects of the
SECO; ii) coloring the nodes based on how many different projects a contrib-
utor participates; iii) change the graphs granularity; iv) and select a specific
time-span to focus on, considering only contributions made within this period.

Technical View This view focus on the analysis of how technically interde-
pendent of each other the different projects within a SECO are, i.e., how the
various artifacts/modules of one project make use of methods and/or objects
declared on other projects’ artifacts/modules. This visualization is employed to
observe the most important artifacts of the ecosystems from a reuse perspective,
enabling the visual identification of various characteristics such as the assets that
are more central to the SECO (i.e., that various other artifacts depend upon) or
those that depend upon artifacts supplied by several other projects.
The technical view also makes use of graphs to evidence the links between arti-
facts (Figure 2), displaying the processed static dependencies. Technical view’s



Towards the Analysis of Software Projects Dependencies 7

graph also offers filters to conduct analysis over fine or coarse grains, since the
amount of dependencies between the various projects can prove to be too dense
to interpret. In the fine-grained analysis all vertices are artifacts identified by the
project’s color, and edges represent dependencies between the artifacts, whilst
on coarse-grain the vertices represent the projects modules obtained from the
artifacts’ package declaration, naively hinting at the components of each project.

Fig. 2: Technical View presenting dependencies between Apache Slings artifacts
(green) and Apache Felix (blue) and Apache Jackrabbit (red) projects.

To adequately observe the SECO technical dependencies, users can interact
with the visualization likewise the communities view, being able to change the
granularity of dependencies and show/hide artifacts of specified projects.

5 Proof of Concept

To demonstrate the feasibility of our approach, we conducted an exploration of
the relationships of a SECO in the form of a proof of concept. The main objective
was to highlight the usage of the visualizations we proposed in a real case, using
open source projects. Our expectations were that the visualizations would help
to identify how dense the technical and sociotechnical relationships between a
software project and other projects that it depended upon were.

5.1 Project Description

In order to observe the relationships of a SECO, we required a software project
that satisfied three requirements: i) was hosted on Subversion (SVN) repository
that we had read access; ii) reported issues on either JIRA or Bugzilla issue
tracking system; and iii) listed its dependencies in structured artifacts (e.g.,
Apache Maven’s pom.xml or Apache Ivy’s ivy.xml). The first two requirements
are due to limitations of our supporting tools, which can only collect data from
the specified repositories. The latter is given due to the technique we used to in-
fer software project dependencies, using the specified artifacts to automatically



8 Francisco Santana & Cláudia Werner

gather this information.
Given our intentions and limitations, we chose to observe Apache Sling’s ecosys-
tem. Apache Sling is a large open source web framework designed to store and
manage content over a Java Content Repository (JCR) specification developed
by Apache Software Foundation (ASF), being one of its top-level projects since
2009. Apache Sling also matches all our established requirements: it is hosted
on a public SVN repository, uses JIRA as issue tracking system and Maven as
dependency manager. Furthermore, the project was handily picked due to our
previous knowledge of its dependencies with other large ASF’s top-level projects
Jackrabbit and Felix.

5.2 Supporting Tools

Extracting relevant data depicting how software systems were developed is a
complex task. The sheer amount of data can easily overwhelm researchers if
appropriate tools and methods are not applied, misleading them to erroneously
identify inexistent patterns and features. We made use of two tools to assist us
on reaching our goals, namely XFlow and JDX.
XFlow [18] is an extensible open source tool that enables empirical software
evolution analyses from both technical and sociotechnical perspectives. We used
XFlow to extract and process projects’ data, evaluate metrics of the selected
projects, and also adapted the tool to extract software projects’ dependencies
and present the visualizations described on the previous subsection.
Java Dependency eXtractor (JDX) is a library developed to identify static de-
pendencies from java source code artifacts, being able to compute call-graphs
using Eclipse IDE compiler’s JDT Core to handle source code in plain form. We
used JDX to compute static dependencies between source code artifacts.

5.3 Analysis Procedure

We analyzed one specific release of Apache Sling, developed from May 14th, 2009
to April 18th, 2011. The information about the release dates was obtained by
browsing the project’s mailing lists and looking for release announcements. In
this period, the project was actively developed by a group of 7 people. Apache
Sling is composed of several modules within the same repository, and our data
collect procedure was configured to extract data from all these modules’ trunk
directories, resulting in 830 commits found. We then proceeded with the data
gathering by accessing and collecting data from Sling’s JIRA, collecting 318 is-
sues reported and/or resolved by a supporting community of 51 people.
After this initial data collect we used XFlow to analyze Sling’s dependencies and
choose two related projects to consider on our analysis: Apache Felix (release
1.2.0 to 1.4.0) and Apache Jackrabbit (release 1.5.0 to 1.6.0). Apache Felix is
an open source implementation of OSGi R4 Service Platform and other OSGi-
related technologies, being widely used by well-known projects such as Glassfish
application server and the Netbeans IDE; while Jackrabbit is an implementa-
tion of Content Repository for Java (JCR) specification, and provides content



Towards the Analysis of Software Projects Dependencies 9

management services. We analogously collected data from these selected projects
VCS trunks and issue trackers, ending up with a small portion of Sling’s ecosys-
tem for study.
For the data processing phase, we obtained the source bundle of analyzed
projects on their official site to identify static dependencies between the ar-
tifacts and modules, while logical dependencies were identified using data ex-
tracted from VCS and issue trackers by XFlow. We then proceeded to generate
visualizations and analyzed our results, discussed on the next subsection.

5.4 Results

Our exploratory analysis was able to successfully depict interaction among
projects under our SECO definition (Figure 1 and Figure 2). This initial ex-
ploitation was a necessary step to justify further studies, since we couldn’t pre-
dict how intense would be the interaction among communities of related software
projects. Also while our visualizations may not scale to display a large amount
of data, we believe that filtering graph nodes using metrics such as centrality
and betweenness centrality on future studies can reduce these problems.
Besides verifying the feasibility of our approach, we observed interesting fea-
tures on the analyzed SECO. The discussion of these findings has been divided
in technical and sociotechnical perspectives.

Technical Discussion For the technical perspective analysis we focused on
the dependencies between Apache Sling and both Apache Felix and Jackrabbits,
excluding dependencies between the latter projects. We did that since the graph
that resulted when considering all projects was too dense and proved difficult to
represent in a legible figure and was beyond our exploratory context.
Considering this limitation, we have analyzed the reused artifacts and the tech-
nical view suggests that there are some critical artifacts to the maintenance of
Apache Sling that are provided by other projects. We did not find any class
that depended upon artifacts from two projects, and identified two interesting
patterns on the assets reused: i) a large set of classes that depends on a single
class of another project (Figure 3(a)); and ii) a class that depends on various
artifacts of other projects (Figure 3(b)). These patterns suggest how prepared
to reuse these components were, implying on the reliability of the modules that
depend on them. In the first pattern, for instance, a defect on the reused arti-
fact could be propagated to several artifacts that reuse it; while the second one
indicates that even small changes in a class could require knowledge of several
other classes from other projects.

Sociotechnical Discussion From a sociotechnical perspective, we observed
that all projects of the SECO were related (Figure 1). We identified that most
of the interactions between the communities involved on the analyzed period has
occurred via issue tracking systems, in which 8 collaborators from Apache Sling’s
issue tracker contributed to project Apache Jackrabbit’s issue tracker and vice-
versa, 7 between Apache Sling and Apache Felix, and 3 between Apache Felix



10 Francisco Santana & Cláudia Werner

and Apache Jackrabbit. We also note that there is one contributor that bridges
all the projects, contributing to all three issue tracker. Looking at the VCS com-
munities, we observed that few developers had participated on two projects on
the same period (3 between Apache Sling and Apache Felix), while none had
participated in all three.

(a)

(b)

Fig. 3: Patterns identified on technical visualization.

Based on these exploratory findings, we conclude that there have been con-
siderable contributions between all the projects of the SECO and reaffirm the
importance of sociotechnical analysis on software engineering studies. This initial
analysis also provides basis to the conception of an experimental hypothesis that
needs further studies to be answered, regarding topics such as the role of those
contributors who participate on various projects inside a SECO, or the identi-
fication of features that facilitate or hinder the contribution towards a specific
project from external developers that reuse its assets.

5.5 Threats to Validity

Our study is characterized as a proof of concept, and thus has not the same rigor
as a formal experiment. Nevertheless, we found interesting results that must be
interpreted considering the following validity threats.
Construct Validity. The relationships between developers that we have found
may not be totally accurate as it’s common to find some contributors who do
not have permission to commit to the project’s VCS and have their contributions
carried out by others developers.
Internal Validity. Our approach is based on the hypothesis that features of a
project’s dependencies impact the project that uses them as components, but
we have not extensively verified the correlation between the projects. Consider-
ing this, we cannot determine that the characteristics we observed actually come



Towards the Analysis of Software Projects Dependencies 11

from the related projects or are derived from unobserved attributes.
External Validity. As we analyzed few projects, all of them belonging to the
same organization (ASF), we do not claim that these results remain valid for
other projects and in different development contexts.
Conclusion Validity. We did not conduct any statistical analysis in order to vali-
date our findings, making use of purely visual methods to perform our analysis.
While this could be interpreted as a serious threat to our findings, given the
lack of related work with similar objectives we decided to first conduct analy-
ses without statistical rigor to explore the degree of interdependencies between
projects and general interaction of SECO communities.

6 Final Remarks and Future Work

This paper presented an approach to analyze SECOs from a technical and so-
ciotechnical perspective, focusing on projects that share reuse dependencies. Our
exploratory study matched our expectations that the different projects interact
beyond the technical level, and this motivated us to further inspect how features
of a reusable component affect software projects and the contributors’ commu-
nities that reuse them.
We remark that this paper presents an initial effort to explore SECOs and ex-
pect to expand this proposal under the following two major aspects:
SECO Metrics: given that software ecosystems form a recent subject for Soft-
ware Engineering studies, there is a lack of papers that list formal metrics and
indicators applicable for SECOs. We intend to conduct a systematic mapping of
studies to identify metrics used by recent works on SECOs context, gathering a
list of metrics that will enable us to further investigate SECOs.
Expand Research Perspective: our initiative is part of a greater context of SECOs
exploration, with other researchers interested in the investigation of IT and Gov-
ernance aspects and the proposal of a framework for modeling and managing
SECOs [19]. In the future we expect to integrate our solutions and provide more
complete studies on SECOs.

Acknowledgments. Francisco Santana receives individual grant from CAPES,
and Cláudia Werner from CNPq.

References

1. Jiang, L., Carley, K., Bigrigg, M., Eberlein, A., Galster, M.: The impact of com-
ponent interconnections on software quality: A network analysis approach. In:
Systems, Man, and Cybernetics (SMC’12). (2012) 1865–1872

2. De Souza, C.R.B.: On the relationship between software dependencies and coordi-
nation: field studies and tool support. PhD thesis, Long Beach, CA, USA (2005)

3. Cataldo, M., Mockus, A., Roberts, J.A., Herbsleb, J.D.: Software dependencies,
work dependencies, and their impact on failures. IEEE Transactions on Software
Engineering 35(6) (2009) 864–878



12 Francisco Santana & Cláudia Werner

4. Pérez, J., Deshayes, R., Goeminne, M., Mens, T.: Seconda: Software ecosystem
analysis dashboard. In: Software Maintenance and Reengineering (CSMR), 2012
16th European Conference on. (2012) 527–530

5. Goeminne, M., Mens, T.: A framework for analysing and visualising open source
software ecosystems. In: Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software Evolution
(IWPSE). IWPSE-EVOL ’10, New York, NY, USA, ACM (2010) 42–47

6. Lungu, M., Lanza, M., Gı̂rba, T., Robbes, R.: The small project observatory:
Visualizing software ecosystems. Sci. Comput. Program. 75 (April 2010) 264–275

7. Barbosa, O., Santos, R., Alves, C., Werner, C., Jansen, S.: A systematic mapping
study on software ecosystems through a three-dimensional perspective. In Jansen,
S., Brinkkemper, S., Cusumano, M., eds.: Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry. Edward Elgar Publishing,
Cheltenham, UK, and Northampton, MA, USA (2013)

8. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem: Understanding an Indis-
pensable Technology and Industry. MIT Press, Cambridge, MA, USA (2003)

9. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem model-
ing. In: Proceedings of the 1st international workshop on Open component ecosys-
tems. IWOCE ’09, New York, NY, USA, ACM (2009) 41–50

10. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference. SPLC ’09, Pittsburgh,
PA, USA, Carnegie Mellon University (2009) 111–119

11. Cataldo, M., Herbsleb, J.D.: Architecting in software ecosystems: interface translu-
cence as an enabler for scalable collaboration. In: Proceedings of the Fourth Eu-
ropean Conference on Software Architecture: Companion Volume. ECSA ’10, New
York, NY, USA, ACM (2010) 65–72

12. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. J. Syst. Softw. 83(1)
(January 2010) 67–76

13. Mens, T., Goeminne, M.: Analysing the evolution of social aspects of open source
software ecosystems. In: Proceedings of the Third International Workshop on
Software Ecosystems. IWSECO ’11 (2011) 1–14

14. Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J.M., Herraiz, I.: 3. In: Ap-
plying Social Network Analysis Techniques to Community-Driven Libre Software
Projects. Volume 1. Information Resources Management Association (2009) 28–50

15. Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling based on prod-
uct release history. In: Software Maintenance, 1998. Proceedings., International
Conference on. (1998) 190–198

16. Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., Carley, K.M.: Identification of coor-
dination requirements: implications for the design of collaboration and awareness
tools. In: Proceedings of the 2006 20th anniversary conference on Computer sup-
ported cooperative work. CSCW ’06, New York, NY, USA, ACM (2006) 353–362

17. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evo-
lution of Software. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

18. Santana, F.W., Oliva, G.A., de Souza, C.R.B., Gerosa, M.A.: Xflow: An extensible
tool for empirical analysis of software systems evolution. In: Proceedings of the
VIII Experimental Software Engineering Latin American Workshop. ESELAW ’10,
New York, NY, USA, ACM (2010) 353–362

19. Santos, R.P., Werner, C.M.L.: Reuseecos: An approach to support global software
development through software ecosystems. In: ICGSE Workshops. (2012) 60–65


	Towards the Analysis of Software Projects Dependencies: An Exploratory Visual Study of Software Ecosystems 
	Francisco Santana, Claudia Werner

