
Editor: Daniel Moldt

Proceedings of the
International Workshop on

Mod eling and
B usiness
E nvironments
ModBE’13

University of Hamburg
Department of Informatics

These proceedings are published online by the editor as Volume 989 at

CEUR Workshop Proceedings
ISSN 1613-0073
http://ceur-ws.org/Vol-989

Copyright for the individual papers is held by the papers’ authors. Copying is per-
mitted only for private and academic purposes. This volume is published and copy-
righted by its editors.

Preface

These are the proceedings of the International Workshop on Modeling and
Business Environments (ModBE’13) in Milano, Italy, June 24, 2013. It is
a co-located event of Petri Nets 2013, the 34th international conference on
Applications and Theory of Petri Nets and Concurrency.

More information about the workshop can be found at

http://www.informatik.uni-hamburg.de/TGI/events/modbe13/

Business environments are a central application domain for modeling ap-
proaches. Basic paradigms of these approaches correspond to their central
concepts, such as processes, objects, components, agents, services or organi-
zations. Their inherent properties allow an adequate Business/IT-Alignment.
Within the models and systems of this alignment several principle notions
need to be incorporated, such as distribution, concurrency, correctness and
adaptability. In this workshop modeling approaches will be discussed from
various perspectives with several means.

While ModBE’13 (Modeling and Business Environments) will take place
as a satellite event of Petri Nets 2013 other modeling techniques than Petri
nets and their means are explicitly welcome. Furthermore, experts from the
application domain will challenge the technical and conceptual solutions.
ModBE’13 shall provide a forum for researchers from interested communities
to investigate, experience, compare, contrast and discuss solutions for mod-
eling in business environments. During the workshop a part of the available
time is reserved for a group wise discussion of challenging questions.
The program committee consists of:

Bernhard Bauer (Germany)
Olivier Boissier (France)
Fabian Büttner (France)
Jean-Michel Bruel (France)
Christine Choppy (France)
Ernesto Damiani (Italy)
Patrick Delfmann (Germany)
Susanna Donatelli (Italy)
Joaquín Ezpeleta Mateo (Spain)
Walid Fdhila (Austria)
Michael Felderer (Austria)
Luciano García-Bañuelos (Estonia)
Holger Giese (Germany)
Paolo Giogini (Italy)
Vincent Hilaire (France)
Lom Messan Hillah (France)
Viviana Mascardi (Italy)
Maristella Matera (Italy)

266 ModBE’13 – Modeling and Business Environments

Florian Matthes (Germany)
Jan Mendling (Austria)
Daniel Moldt (Germany) (Chair)
Ambra Molesini (Italy)
Berndt Müller (United Kingdom)
Andreas Oberweis (Germany)
Andrea Omicini (Italy)
Sietse Overbeek (Germany)
Alexei Sharpanskykh (The Netherlands)
Christophe Sibertin-Blanc (France)
Carla Simone (Italy)
Ingo Timm (Germany)
Ferucio Laurentiu Tiplea (Rumania)
Adelinde Uhrmacher (Germany)
Ulrich Ultes-Nitsche (Switzerland)
Wamberto Vasconcelos (United Kingdom)
Jan Martijn van der Werf (The Netherlands)
Mathias Weske (Germany)
Manuel Wimmer (Austria)

We received five high-quality contributions for which at least four reviews
were made. In addition we received two posters. The program committee
has accepted three of them for full presentation. Furthermore the commit-
tee accepted one papers as short presentations. Two more contributions were
accepted as posters.

Furthermore, we would like to thank our colleagues in the local organization
team at the University of Milano, Italy, for their support.

Without the enormous efforts of authors, reviewers, PC members and the or-
ganizational team this workshop wouldn’t provide such an interesting booklet.

Thanks!
Daniel Moldt Hamburg, June 2013

ModBE’13 Proceedings

Part VI ModBE’13: Invited Talk

Knowledge and Business Intelligence Technologies in Cross-
Enterprise Environments for Italian Advanced Mechanical
Industry
Ernesto Damiani and Paolo Ceravolo . 271

Part VII ModBE’13: Long Presentations

Optimizing Algebraic Petri Net Model Checking by Slicing
Yasir Imtiaz Khan and Matteo Risoldi . 275

A Proposal for the Modeling of Organizational Structures
and Agent Knowledge in MAS
Lawrence Cabac, David Mosteller, Matthias Wester-Ebbinghaus 295

Mining Declarative Models Using Time Intervals
Jan Martijn van der Werf, Ronny Mans and Wil van der Aalst 313

Part VIII ModBE’13: Short Presentation

Improving Emergency Department Processes Using Coloured
Petri Nets
Khodakaram Salimifard, Seyed Yaghoub Hosseini and Mohammad
Sadegh Moradi . 335

Part IX ModBE’13: Poster Abstracts

Advantages of a Full Integration between Agents and
Workflows
Thomas Wagner and Lawrence Cabac . 353

Cloud Transition for QoS Modeling of Inter-Organizational
Workflows
Sofiane Bendoukha and Lawrence Cabac . 355

Part VI

ModBE’13: Invited Talk

Knowledge and Business Intelligence
Technologies in Cross-Enterprise Environments

for Italian Advanced Mechanical Industry

Ernesto Damiani and Paolo Ceravolo

SESAR Lab, Department of Computer Science,
Università degli Studi di Milano, Italy

http://sesar.dti.unimi.it

Abstract. Today’s industry is pushed by the competitive pressure to
revise the business model by opening the organizational boundaries to
suppliers, clients and partners. As a side effect, knowledge sharing within
the market increases and organizations may lose control on strategical
knowledge that can be exploited by competitors. For this reason process
monitoring today cannot fail in controlling the collaboration activities
established inside and outside the organization.

KITE.it is a project, founded by the italian Ministry of Economic Devel-
opment, aimed at proposing a methodological and technological frame-
work to support the italian mechanical industry in adopting advanced
business network approached.1 The Kite framework is aimed at driving
the management process in the identification of the business values creat-
ing the network and in supporting the strategical analysis by monitoring
both the operational and collaborative processes.

The metric system was designed to integrate in a unified analysis metrics
insisting on the strategical, operational and collaborative level. From the
technological point of view this is achieved by decoupling the monitoring
format from the execution logs that can be integrated in the Kite model
from heterogeneous data sources.

1 Website: http://www.kite-project.it/en GB/home

272 ModBE’13 – Modeling and Business Environments

Part VII

ModBE’13: Long Presentations

Optimizing Algebraic Petri Net Model Checking
by Slicing

Yasir Imtiaz Khan and Matteo Risoldi

University of Luxembourg, Laboratory of Advanced Software Systems
6, rue R. Coudenhove-Kalergi, Luxembourg
{yasir.khan,matteo.risoldi}@uni.lu

Abstract. High-level Petri nets make models more concise and read-
able as compared to low-level Petri nets. However, usual verification
techniques such as state space analysis remain an open challenge for
both because of state space explosion. The contribution of this paper is
to propose an approach for property based reduction of the state space
of Algebraic Petri nets (a variant of high-level Petri nets). To achieve
the objective, we propose a slicing algorithm for Algebraic Petri nets
(APNSlicing). The proposed algorithm can alleviate state space even for
certain strongly connected nets. By construction, it is guaranteed that
the state space of sliced net is at most as big as the original net. We
exemplify our technique through the running case study of car crash
management system.

Key words: High-level Petri nets, Model checking, Slicing

1 Introduction

Petri nets (PNs) are a well-known low-level formalism for modeling concurrent
and distributed systems. Various evolutions of PNs have been created, among
others High-level Petri nets (HLPNs), that raise the level of abstraction of PNs
by using complex structured data [14]. However, HLPN can be unfolded (i.e.,
translated) into a behaviourally-equivalent low-level PN.

For the analysis of concurrent and distributed systems (including those mod-
eled using PNs or HLPNs) model checking is a common approach, consisting in
verifying a property against all possible states of a system. A typical drawback of
model checking is its limits with respect to the state space explosion problem: as
systems get moderately complex, completely enumerating their states demands
a growing amount of resources, which in some cases makes model checking im-
practical both in terms of time and memory consumption [2, 4, 8, 16]. This is
particularly true for HLPN models, as the use of complex data (with possibly
large associated data domains) makes the number of states grow very quickly.

As a result, an intense field of research is targeting to find ways to opti-
mize model checking, either by reducing the state space or by improving the
performance of model checkers. A technique called PN slicing falls into the first
category. It proposes to reduce the state space size by syntactically reducing a

PN model, taking only the portion of the model that impacts the properties to
be verified. The resultant model will typically have a smaller state space, thus
reducing the cost of model checking.

Slicing was defined for the first time in [17] in the context of program de-
bugging. The proposition was aimed at using program slicing for isolating the
program statements that may contain a bug, so that finding this bug becomes
simpler for the programmer. The first algorithm about PN slicing presented by
Chang et al. [3] slices out all sets of paths in the PN graph, called concurrency
sets, such that all paths within the same set should be executed concurrently.
Some further refined PN slicing algorithms are proposed in [10–13].

One limitation of the cited approaches is that they only apply to low-level
PNs. In order to be applied to HLPNs they need to be adapted to take into
account data types.

In this work, we propose a slicing algorithm that is adapted to Algebraic Petri
nets (APNs, a variant of HLPNs). To the best of our knowledge, there does not
exist any algorithm for slicing APNs. The proposed algorithm iteratively builds
a subnet from a given APN, according to a slicing criterion that is derived from
the property to be verified. The resulting subnet preserves LTL−X properties
under weak fairness assumptions.

UNFOLDING

APN-MODEL

APN-MODEL

PROPERTY

SLICING

UNFOLDED

APN-MODEL

PERFORMING

VERIFICATION

ON SLICED

APN-MODEL

PROPERTY

FULFILLED?
NOTIFICATION

COUNTER

EXAMPLE

YESNO

REFINING

APN-MODEL

EXTRACTING

CRITERION

PLACE(S)

Fig. 1. Process Flowchart of slicing based verification of APN models

Fig.1, gives an overview of the proposed approach for slicing based verifi-
cation of APNs using Process Flowchart. At first, APN-model is unfolded and
then by taking property into an account criterion places are extracted. After-

276 ModBE’13 – Modeling and Business Environments

wards, slicing is performed for the criterion places. Subsequently, verification is
performed on the sliced unfolded APNs. The user may use the counterexample
to refine the APN-model to correct the property.

The rest of the work is structured as follows: we give basic definitions and
concepts of the Algebraic Petri nets (APNs) in section 2. Section 3, illustrates the
steps of slicing based verification of APN-models shown in Fig.1. Details about
the underlying theory and techniques are given for each activity of the process.
In the section 4, we discuss related work and a comparison with the existing
approaches. A small case study from the domain of crisis management system
(a car crash management system) is taken to exemplify the proposed slicing
algorithm in section 5. An experimental evaluation of the proposed algorithm is
performed in section 6. In the section 7, we draw conclusions and discuss future
work concerning to the proposed work.

2 Basic Definitions

In this section, we give basic formal definitions of algebraic specifications used
in this paper. Formal definitions, propositions, lemmas and theorems are taken
as is or with slight modifications from [6,12,14,15].

Definition 1. A signature Σ = (S,OP) consists of a set S of sorts, OP =
(OPw,s)w∈S∗,s∈S is a (S∗×S)−sorted set of operation names of OP. For ε being
the empty word, we call OPε,s the set of constant symbols.

Definition 2. A set X of Σ-variables is a family X = (Xs)s∈S of variables set,
disjoint to OP.

Definition 3. The set of terms TOP,s(X) of sort s is inductively defined by:
1. Xs ∪OPε,s ⊆ TOP,s(X);
2. op(t1, . . . , tn) ∈ TOP,s(X) for op ∈ OPs1,...,sn,s, n ≥ 1 and ti ∈ TOP,si(X)

(for i = 1, . . . , n).

The set TOP,s ≡ TOP,s(∅) contains the ground terms of sort s, TOP (X) ≡⋃
s∈S TOP,s(X) is the set of Σ-terms over X and TOP ≡ TOP (∅) is the set of

Σ-ground terms.

Definition 4. A Σ-equation of sort s over X is a pair (l,r) of terms l, r ∈
TOP,s(X).

Definition 5. An algebraic specification SPEC = (Σ,E) consists of a signature
Σ = (S,OP) and a set E of Σ-equations.

Definition 6. A Σ-algebra A = (SA, OPA) consist of a family SA = (As)s∈S of
domains and a family OPA = (Nop)op∈OP of operations Nop : As1×. . . Asn → As
for op ∈ OPs1...sn,s if op ∈ OPε,s, Nop congruent to an element of As.

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 277

Definition 7. An assignment of Σ-variables X to a Σ-algebra A is a mapping
ass : X → A,with ass(x) ∈ Asiff x ∈ Xs. ass is canonically extended to ass :
TOP (X)→ A, inductively defined by

1. ass(x) ≡ ass(x) for x ∈ X;
2. ass(c) ≡ Nc for c ∈ OPε,s;
3. ass(op(t1, . . . , tn)) ≡ Nop(ass(t1)), . . . , ass(tn)) for op(t1, . . . , tn) ∈ TOP (X).

Definition 8. Let SPEC-algebra is SPEC = (Σ,E) in which all equations in E
are valid. Two terms t1 and t2 in TOP (X) are equivalent (t1 ≡E t2) iff for all
assignments ass : X → A, ass(t1) = ass(t2).

Definition 9. Let B be a set. A multiset over B is a mapping msB: B → N. εB
is the empty multiset with msB(x) = 0 for all x ∈ B. A multiset is finite iff
{∀b ∈ B | msB(b) 6= 0} is finite.

Definition 10. Let MSB = {msB: B → N} be a set of multisets. The addition
function of multisets is denoted by + : MSB ×MSB →MSB. Let ms1B ,ms2B
and ms3B ∈ MSB. (ms1B + ms2B) = ms3B ⇐⇒ ∀b ∈ B,ms3B(b) =
ms1B(b) +ms2B(b).

The subtraction function of multisets is denoted by − : MSB×MSB →MSB.
Let ms1B ,ms2B and ms3B ∈ MSB. (ms1B − ms2B) = ms3B ⇐⇒ ∀b ∈
B,ms1B(b) ≥ ms2B(b)⇒ ∀b ∈ B,ms3B(b) = ms1B(b)−ms2B(b).

Definition 11. Let MSB = {msB: B → N} be a set of multisets. Let ms1B ,
ms2B ∈ MSB . We say that ms1B is smaller than or equal to ms2B (denoted
by ms1B ≤ ms2B) iff
∀b ∈ B,ms1B(b) ≤ ms2B(b). Further, we say that ms1B 6= ms2B iff
∃b ∈ B,ms1B(b) 6= ms2B(b). Otherwise, ms1B = ms2B .

Definition 12. A marked Algebraic Petri Net APN =< SPEC,P, T, F, asg,
cond, λ,m0 > consist of
◦ an algebraic specification SPEC = (Σ,E),
◦ P and T are finite and disjoint sets, called places and transitions, resp.,
◦ F ⊆ (P × T) ∪ (T × P), the elements of which are called arcs,
◦ a sort assignment asg : P → S,
◦ a function, cond : T → Pfin(Σ − equation), assigning to each transition a

finite set of equational conditions.
◦ an arc inscription function λ assigning to every (p,t) or (t,p) in F a finite

multiset over TOP,asg(p),
◦ an initial marking m0 assigning a finite multiset over TOP,asg(p) to every

place p.

Definition 13. The preset of p ∈ P is •p = {t ∈ T |(t, p) ∈ F} and the postset
of p is p• = {t ∈ T |(p, t) ∈ F}. The pre and post sets of t ∈ T defined as: •t
= {p ∈ P |(p, t) ∈ F} and t• = {p ∈ P |(t, p) ∈ F}.

Definition 14. A marking m of an APN assigns to every place p ∈ P a multiset
over TOP,asg(p).

278 ModBE’13 – Modeling and Business Environments

Definition 15. An occurrence mode is a ground substitution of cond(t),m(p),
λ(p, t) and λ(t, p) where p ∈ P, t ∈ T . Obviously, ground substitutions are the
syntactical representations of assignments.

Definition 16. A transition t ∈ T of an APN is enabled in an occurrence mode
at a marking m iff for all p in P with (p,t) ∈ F, λ(p, t) ≤ m(p). If a transition
t is enabled in an occurrence mode at a marking m, then t may occur returning
the marking m′, where for all p ∈ P, m′(p) = m(p)− λ(p, t) + λ(t, p). We write
m[t〉m′ in this case.

Definition 17. A firing sequence σ of a marked APN is maximal iff either σ is
of infinite length or 6 ∃t ∈ T : m0([σt〉), where |σ| ∈ (N ∪ {∞}).

Definition 18. Let σ = t1, t2 . . . be an infinite firing sequence of APN with
mi[ti+1〉mi+1,∀i, 0 ≤ i. σ permanently enables t ∈ T iff ∃i, 0 ≤ i : ∀j, i ≤ j :
mj [t〉.

3 Unfolding and Slicing APNs

One characteristic of APNs that makes them complex to model check is the use
of variables on arcs. Computing variable bindings at runtime is extremely costly.
AlPiNA (a symbolic model checker for Algebraic Petri nets) allows the user to
define partial algebraic unfolding and presumed bounds for infinite domains [1],
using some aggressive strategies for reducing the size of large data domains.
Unfolding generates all possible firing sequences from the initial marking of the
APN, though maintaining a partial order of events based on the causal relation
induced by the net. Concurrency is preserved.

The basic idea of the slicing algorithm is to start by identifying which places
in the unfolded APN model are directly concerned by a property. These places
constitute the slicing criterion. The algorithm will then take all the transitions
that create or consume tokens from the criterion places, plus all the places that
are pre-condition for those transitions. This step is iteratively repeated for the
latter places, until reaching a fixed point.

We refine the slicing construction by distinguishing between reading and
non-reading transitions. The conception of reading and non-reading transitions
is some what similar notion introduced in [13]. The principle difference is that
we adapt the notion of reading and non-reading transitions in the context of
APNs. Informally, reading transitions are not supposed to change the marking
of a place. On the other hand non-reading transitions are supposed to change
the markings of a place. In our proposed slicing construction, we discard reading
transitions and include only non-reading transitions. Formally, we can define the
conception of reading and non-reading transitions such as:

Definition 19. Let N be an unfolded APN and t ∈ T be a transition. We call
t a reading-transition iff its firing does not change the marking of any place
p ∈ (•t ∪ t•) , i.e., iff ∀p ∈ (•t ∪ t•), λ(p, t) = λ(t, p). Conversely, we call t a
non-reading transition iff λ(p, t) 6= λ(t, p).

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 279

Due to partial unfolding, there could be some domains that are not unfolded.
For some cases, we are still able to identify non-reading transitions even if do-
mains are not unfolded. If for example, we have a case where the multiplicities
or cardinalities of terms in λ(p, t), λ(t, p)are different then we can immediately
state λ(p, t) 6= λ(t, p). But for some cases, we don’t have such a clear indication
of the inequality between λ(p, t) and λ(t, p), for example, in the Fig.2, we see
that λ(p, t) = 1 + y and λ(t, p) = 2 + x (defined over naturals). Both terms has
the same multiplicity and cardinality, so we need to know for which values of
the variables it would be a non-reading transition. In general, the evaluation of
terms to check their equality for all the values is undecidable. For this partic-
ular case, we would like to have a set of constraints from the user. Informally,

P 0…10

1+y

2+x

t

Fig. 2. An example APN model with non-unfolded terms over the arcs

a constraints set denoted by CS, is a set of propositional formulas, predicate
formulas or any other logical formulas for certain specific values of variable as-
signements, describing the conditions under which we can evaluate terms to be
equal or not. Consequently, constrains set CS will help to identify under which
cases the transitions can be treated as non-reading.

A function eval : TOP,s(X)× TOP,s(X)×CS → Bool is used to evaluate the
equivalence of terms based on the constraint set. Let us take the same terms
shown over the arcs in Fig.2, term1 = 1 + y, term2 = 2 + x and a constraint set
CS = {∃y, x ∈ (0, . . . , 2)|y = x + 1} . It is important to note that we are not
unfolding the domain but evaluating the terms for some specific values provided
by user to identify reading and non-reading transitions. Of course, the user can
provide sparse values too. Let us evaluate the terms term1 and term2 based on
the constraints set CS provided. For all those values of x, y for which we get eval
function result true are considered to be reading transitions and rest of them are
non-reading transitions. It is also important to note that we include this step
during the unfolding. The resulting unfolded APN will contain only non-reading
transitions for the unfolded domains as shown in Fig.3.

The algorithm proposed in this article assumes that such an unfolding takes
place before the slicing. Since this is a step that is involved in the model check-
ing activity anyway, we do not consider this assumption to be adding to the
complexity of the algorithm. In this section, we will make an extremely simple
example of how the slicing algorithm works, starting from an APN, unfolding it
and slicing it.

280 ModBE’13 – Modeling and Business Environments

P

0…10

t
0,2

t
0,1

2+1

t
1,0

t
0,0

t
1,1

t
1,1

t
1,2

t
2,0

t
2,2

t
2,1

1+1

2+0

1+0

2+0

1+1

2+0

1+2

2+1

1+0

2+1

1+1

2+1

1+2

2+2

1+0

2+2

1+2

2+2

1+1

Fig. 3. Resulting unfolded APN after applying the eval function

3.1 Example: Unfolding an APN

Fig. 4 shows an APN model. All places and all variables over the arcs are of sort
naturals (defined in the algebraic specification of the model, and representing
the N set).

Since the N domain is infinite (or anyway extremely large even in its finite
computer implementations), it is clear that it is impractical to unfold this net
by considering all possible bindings of the variables to all possible values in N.
However, given the initial marking of the APN and its structure it is easy to
see that none of the terms on the arcs (and none of the tokens in the places)
will ever assume any natural value above 3. For this reason, following [1], we
can set a presumed bound of 3 for the naturals data type, greatly reducing the
size of the data domain. By assuming this bound, the unfolding technique in [1]

[]

A

[]C[]

x

[]

[1,2]

t1

[1]

[1,2]

t3

t2

t5

t4

x

x x

y

x+1

yy

y

y+2

z

zz

B

C

E

D

F

G

Fig. 4. An example APN model (APNexample)

proceeds in three steps. First, the data domains of the variables are unfolded up

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 281

to the presumed bound. Second, variable bindings are computed, and only that
satisfy the transition guards are kept. Third, the computed bindings are used
to instantiate a binding-specific version of the transition. The resulting unfolded
APN for this APN model is shown in Fig. 5. The transitions arcs are indexed
with the incoming and outgoing values of tokens. A complete explanation of
the unfolding algorithm, and in particular the existence of the tokens 4 and 5
between transition t23, t42, t43 and place C,F is rather complex and out of the
scope of this article. The interested reader can find details about the partial
unfolding in [1].

3.2 The slicing algorithm

The slicing algorithm starts with an unfolded APN and a slicing criterion Q ⊆ P .
Let Q ⊆ P a non empty set called slicing criterion. We can build a slice for

an unfolded APN based on Q, using following algorithm:

Algorithm 1: APN slicing algorithm
APNSlicing(〈SPEC,P, T, F, asg, cond, λ,m0〉, Q){
T ′ = {t ∈ T | ∃p ∈ Q : t ∈ (•p ∪ p•) : λ(p, t) 6= λ(t, p)};
P ′ = Q ∪ {•T ′} ;
Pdone = ∅ ;
while ((∃p ∈ (P ′ \ Pdone)) do

while (∃t ∈ (•p ∪ p•) \ T ′) : λ(p, t) 6= λ(t, p)) do
P ′ = P ′ ∪ {•t};
T ′ = T ′ ∪ {t};

end
Pdone = Pdone ∪ {p};

end
return 〈SPEC,P ′, T ′, F|P ′,T ′ , asg|P ′ , cond|T ′ , λ|P ′,T ′ ,m0|

P ′
〉;

}

Initially, T ′ (representing transitions set of the slice) contains set of all pre
and post transitions of the given criterion place. Only non-reading transitions
are added to T ′ set. And P′(representing places set of the slice) contains all
preset places of transitions in T ′. The algorithm then iteratively adds other
preset transitions together with their preset places in T ′ and P ′. Remark that
the APNSlicing algorithm has linear time complexity.

Considering the APN-Model shown in fig. 4, let us now take an example
property and apply our proposed algorithm on it. Informally, we can define the
property:

“The values of tokens inside place D are always smaller than 5”.
Formally, we can specify the property in LTL asG(∀tokens ∈ D|tokens < 5).

For this property, the slicing criterion Q = {D}, as D is the only place concerned
by the property. Therefore, the application of APNSlicing(UnfoldedAPN, D)
returns SlicedUnfoldedAPN (shown in Fig. 6), which is smaller than the original
UnfoldedAPN shown in Fig. 5).

282 ModBE’13 – Modeling and Business Environments

A

[1,2] t1
2

t1
3

t1
1

B

t2
1

t2
3

t2
2

t5
1,2

t5
1,3

t5
3,3

t5
1,1

[1]

C

G

t5
2,1

t5
2,2

t5
2,3

t5
3,1

t5
3,2

1

2

3

1

2

3

1

2

3

1

1

1

2

2

2

3

3

3

E

[1,2]

t3
1,3

t3
1,2

t3
1,1

t3
2,1

t4
3

D

F

t3
3,1

t3
3,2

t3
3,3

t3
2,3

t3
2,2

3

1

1

1

2

2

2

3

3

3

1

2

3

1

2

3

1

2

3

3

1

2

3

1

2

3

1

2

3

1

2

3

2

3

4

t4
2

t4
1

2

1

4

5

1

1

1

2

2

2

3

3

1

2

3

1

2

3

1

2

3

3

Fig. 5. The unfolded example APN model (UnfoldedAPN)

Transitions t31,1, t31,2, t31,3, t31,3, t32,1, t32,2, t32,3, t33,1, t33,2, t33,3, t51,1, t51,2,
t51,3, t52,1, t52,2, t52,3, t53,1, t53,2, t53,3, and places C,E, F,G has been sliced away.
The proposed algorithm determines a slice for any given criterion Q ⊆ P and
always terminates. It is important to note that the reduction of net size depends
on the structure of the net and on the size and position of the slicing criterion
within the net.

A

[1,2] t1
2

t1
3

t1
1

B

t2
1

t2
3

t2
2

t4
2

D
11

2

3

1

2

3

1

2

3

1

2

3

t4
3

t4
1

2

3

Fig. 6. Sliced and Unfolded example APN model (SlicedUnfoldedAPN)

3.3 Proof of the preservation of properties

To allow the verification by slice, we have to make restrictions on the formulas
and on admissible firing sequences in terms of fairness assumptions. The original
Algebraic Petri net has more behaviors than the sliced APN, as we intentionally
do not capture all the behaviors.

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 283

Definition 20. Let A be the set of atomic propositions. Let ϕ,ϕ1, ϕ2 be LTL
formulas. The function scope associates with an LTL formula ϕ the set of atomic
propositions used in ϕ i.e. scope : ϕ→ PA.

scope(a) = {a} for a ∈ A;
scope(⊗ϕ) = scope(ϕ) with ⊗ ∈ {¬, X};
scope(ϕ1 ⊗ ϕ2) = scope(ϕ1) ∪ scope(ϕ2) with ⊗ ∈ {∧, U}.

Definition 21. Let N be a marked APN. Let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let σ = t1t2t3 . . .be a firing sequence of N and mi the markings
with mi[ti+1〉mi+1,∀i, 0 ≤ i < |σ|. σ is slice-fair w.r.t N ′ iff either σ is finite
and m|σ| does not enable any transition t ∈ T ′;

or σ is infinite and if it permanently enables some t ∈ T ′, it then fires in-
finitely often some transition of T ′ (which may or may not be the same as t).

Slice-fairness is a very weak fairness notion. Weak fairness determines that every
transition t ∈ T of a system, if permanently enabled, has to be fired infinitely
often, slice-fairness concerns only the transitions of the slice, not of the entire
system net and if a transition t ∈ T of the slice is permanently enabled, some
transitions of the slice are required to fire infinitely often but not necessarily t.

Definition 22. Let N be a marked APN and ϕ an LTL formula. N |= ϕ slice-
fairly iff every slice-fair (not necessarily maximal) firing sequence of σ |= ϕ.

Definition 23. Let N and N ′ be two marked Algebraic Petri nets with T ′ ⊆ T
and P ′ ⊆ P . We define the function: slice(N,N ′) ∈ [(T ∗ ∪ Tw) → (T ′∗ ∪ T ′w)] ∪
[N|P | → N|P ′|] such that a finite or infinite sequence of transitions σ is mapped
onto the transition sequence σ′ with σ′ being derived from σ by omitting every
transition t ∈ T \ T ′. A marking m of N is projected onto the marking m′ of
N ′ with m′ = m |p′ .
The function slice is used to project markings and firing sequences of a net N
onto the markings and firing sequences of its slices.

Proposition 1. Let N be a marked APN. Let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let σ be a weakly fair firing sequence of N. σ is slice fair with
respect to N ′.

Proof. Let us assume, σ is not slice-fair. In case σ is finite this means that
m|σ|[t〉 for a transition t ∈ T ′. In case σ is infinite, there is permanently enabled
transition t ∈ T ′ but all transitions of T ′ are fired finitely often including t. So
both cases contradict the assumption that σ is weakly fair.

Lemma 1. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . The coefficients cij of the incidence matrix equal to zero for
all places pi ∈ P ′ and transitions tj ∈ T \ T ′.
Proof. Let N ′ be its sliced net for a slicing criterion Q ⊆ P . A transition t ∈ T
is also an element of T ′ ⊆ T , if it is a non-reading transition of a place p ∈ P ′.
Thus a transition t ∈ T \ T ′ either is not connected to a place p ∈ P ′ or it is a
reading transition.

284 ModBE’13 – Modeling and Business Environments

Lemma 2. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let m be a marking of N and m′ be a marking of N ′ with
m′ = m |p′ . m[t〉 ⇔ m′[t〉,∀t ∈ T ′.

Proof. Let N ′ be its sliced net for a slicing criterion Q ⊆ P . Since a transition t ∈
T ′ has the same preset places in N and N ′ by the slicing algorithm APNSlicing,
m′ = m |p′ implies m[t〉 ⇐⇒ m′[t〉.

Every firing sequence σ of N projected onto the transitions of T ′ is also a firing
sequence of slice net N ′. The resulting markings m and m′ assign the same
number of tokens to places p′ ⊆ P .

Proposition 2. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let σ be a firing sequence of N and let m be a marking of N .
m0[σ〉m⇒ m0 |p′ [slice(σ)〉m |p′ .

Proof. We prove this Proposition by induction over the length l of σ. Let N be
a marked APN, σ be a firing sequence of N .

l = 0: In this case slice(σ) equals ε. Thus the initial marking of N and N ′

is generated by firing ε. By defintion 23 and the slicing algorithm APNSlicing,
m′0 = m0 |p′

l → l + 1 : Let σ be a firing sequence of length l and ml be a mark-
ing of N with m0[σ〉ml. Let tl+1 be a transition in T and ml+1 a marking
of N such that ml[tl+1〉ml+1. By induction hypothesis, m′0[slice(σ)〉m′k with
ml |p′= m′k. If tl+1 is an element of T ′, it follows by Lemma 2, that m′k en-
ables tl+1, since ml enables tl+1. The resulting marking m′k+1 is determined by
m′k+1(P ′i) = m′k(P ′i) + ci l+1,∀pi ∈ P ′ and ml+1 is determined by ml+1(i) =
ml(i) + ci l+1,∀pi ∈ P ′.

Since ml|P ′ = m′k, it thus follows that mll+1|P ′ = m′k+1. If tl+1 is an element
of t ∈ T \ T ′, then it must be a reading transition for all p ∈ P ; slice(σ) =
slice(σtl+1) and thus m′0[slice(σtl+1)〉m′k a transition t ∈ T \ T ′ can not change
the marking of on any place p ∈ P ′. By Lemma 1 and the resultant markings,
mll+1|P ′ = m′l |P ′ . �

A firing sequence σ′ of the slice net N ′ is also a firing sequence of N . The
resulting markings of σ′ on N and N ′, respectively assigns the same markings
to places p ∈ P ′.

Proposition 3. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let σ′ be a firing sequence of N ′ and let m′ be a marking of
N ′.

m′0[σ′〉m′ ⇒ ∃m ∈ N|P | : m′ = ml|P ′ ∧m0[σ′〉m.

Proof. We prove this Proposition by induction over the length l of σ′.
l = 0: The empty firing sequence generates the marking m0 on N and the

marking m′0, which is defined as m0|P ′ , on N
′, by definition 23.

l → l + 1: Let σ′ = t1 . . . tl+1 be firing sequence of N ′ with length l + 1. Let
m′l and m

′
l+1 be markings of N ′ such that m′0[t1 . . . tl〉m′l[tl+1〉m′l+1. Let ml be

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 285

the marking of N with m0[t1 . . . tl〉ml and ml|P ′ = m′l, which exists according to
the induction hypothesis. Lemma 2, ml enables tl+1. The marking ml+1 satisfies
ml+1(Pi) = ml(Pi) + ci l+1,∀pi ∈ P ′ and m′l+1 satisfies m′l+1(Pi) = m′l(Pi) +
ci l+1,∀si ∈ P ′. With ml|P ′ = m′l, it follows that (ml+1 |P ′) is equal to m′l+1. �

Proposition 4. Let N be a marked APN and let φ be an LTLx formula such
that scope(φ) ⊆ P . Let N ′ be its sliced net for a slicing criterion Q ⊆ P where
Q = scope(φ). Let σ be a firing sequence of N . Let us denote the sequence of
markings byM(σ). Then,M(σ) |= φ⇔M(slice(σ)) |= φ.

Proof. We prove this Proposition by induction on the structure of φ. Let σ =
t1t2 . . . and slice(σ) be σ′ = t′1t

′
2 Let M(σ) = m0m1 . . . and M(σ′) =

m′0m
′
1

φ = true: In this case nothing needs to be shown. φ = ¬ψ, φ = ψ1 ∧ ψ2:
Since the satisfiability of φ depends on the initial marking of scope(φ) only and
scope(φ) ⊆ P ′ ⊆ P , both directions hold.

φ = ψ1Uψ2: We assume that M(σ′) |= ψ1Uψ2. We can divide up σ′ such
that σ′ = σ′1σ

′
2 with m′|σ′1|m

′
|σ′1|+1 . . . |= ψ2 and ∀i, 0 ≤ i < |σ′1| : m′im

′
i+1 . . . |=

ψ1. There are transition sequences σ1 and σ2 such that σ = σ1σ2, slice(σ1) =
σ′1, slice(σ2) = σ′2 and σ1 does not end with a transition t ∈ T \ T ′.

By proposition 2, it follows that m′|σ′1| = (m|σ1| |P ′). Since m′|σ′1|m
′
|σ′1|+1 . . . |=

ψ2,m|σ1|m|σ1|+1 . . . |= ψ2 by induction hypothesis. Let % be a prefix of σ1
such that |%| < |σ1|. Let %′ be slice(%). The firing sequence % truncates at
least one transition t ∈ T ′, consequently |%′| < |σ′1|. Since m′|%′1|m

′
|%′1|+1 . . . |=

ψ1,m|%|m|%|+1 . . . |= ψ1 by the induction hypothesis. Analogously, it can be
shown thatM(σ) |= ψ1Uψ2 impliesM(σ′) |= ψ1Uψ2. �

Proposition 5. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Let σ′ be a maximal firing sequence of N ′. σ′ is a slice-fair
firing sequence of N .

Proof. Let σ′ = t1t2 Letm′i be the marking ofN ′, such thatm′i[ti+1〉m′i+1,∀i,
0 ≤ i < |σ′|. By Proposition 3 σ′ is a firing sequence of N . Letmi be the marking
of N , such that mi[ti+1〉mi+1,∀i, 0 ≤ i < |σ′|. In case σ′ is finite, m′|σ′| does not
enable any transitions t′ ∈ T ′.

By Lemma 2, m|σ′| does not enable any transition T ′ ∈ T ′ , If σ′ is infinite
it obviously fires infinitely often a transition t′ ∈ T ′ and thus is slice-fair. �

Proposition 6. Let N be a marked APN and let N ′ be its sliced net for a slicing
criterion Q ⊆ P . Slice(σ) is maximal firing sequence of N ′.

Proof. Let σ = t1t2 . . . with mi[ti+1〉mi+1,∀i, 0 ≤ i < |σ|. By Proposition 2,
slice(σ) is a firing sequence ofN ′. Let slice(σ) be σ′ = t′1t

′
2 . . . withm′i[t′i+1〉m′i+1,

∀i, 0 ≤ i < |σ|. Let us assume σ′ is not a maximal firing sequence of N ′. Thus
σ′ is finite and there is a transition t′ ∈ T ′ with m′|σ′|[t′〉. Let σ1 be the smallest
prefix of σ such that slice(σ1) equals σ′.

286 ModBE’13 – Modeling and Business Environments

By Proposition 2 (m|σ1| |P ′= m′|σ′|. By Lemma 2, and the state equation it
follows, that (m|σ1| |P ′= m′|σ′|+1 = So t′ stays enabled for all markings mj

with |σ1| ≤ j ≤ |σ| but is fired finitely many times only. This is a contradiction
to the assumption that σ is slice-fair. �

Theorem 1. Let N be a marked APN and let φ be an LTL formula such that
scope(φ) ⊆ P . Let N ′ be its sliced net for a slicing criterion Q ⊆ P . Let Ψ be an
LTL−X formula with scope(Ψ) ⊆ P .

N |= φ slice-fairly ⇒ N ′ |= φ, for an LTL formula φ.
N |= Ψ slice-fairly ⇐ N ′ |= Ψ , for an LTL−X formula Ψ .

Proof. We first show “ N |= φ slice-fairly ⇒ N ′ |= φ ”. Let us assume that
N |= φ slice-fairly holds. Let σ′ be a maximal firing sequence of N ′. Since σ′ is a
slice-fair firing sequence of N by Proposition 5M(σ′) |= φ. Let us now assume
N ′ |= Ψ . Let σ be a slice-fair firing sequence of N . By Proposition 6, slice(σ) is
maximal firing sequence of N ′ and thus satisfies Ψ . By Proposition 4, it follows
that σ satisfies Ψ. �

Verification is possible under interleaving semantics if we assume slice-fairness.
A firing sequence σ is fair w.r.t T ′ , if σ is either maximal and if σ eventually
permanently enables a t′ ∈ T ′, a transition t ∈ T ′ will be fired infinitely often,
t may not equal t′. Unfolded APN |= ϕ fairly w.r.t. T ′ holds if all fair firings
sequences of N, more precisely, their corresponding traces satisfy ϕ.

4 Related Work

Slicing is a technique used to reduce a model syntactically. The reduced model
contains only those parts that may affect the property the model is analyzed for.
Slicing Petri nets is gaining much attention in the recent years [3,10–13]. Mark
Weiser introduced the slicing term in [17], and presented slicing as a formaliza-
tion of an abstraction technique that experienced programmers (unconsciously)
use during debugging to minimize the program. The first algorithm about Petri
net slicing was presented by chang et al [3]. They proposed an algorithm on
Petri nets testing that slices out all sets of paths, called concurrency sets, such
that all paths within the same set should be executed concurrently. Lee et al.
proposed the Petri nets slice approach in order to partition huge place transi-
tion net models into manageable modules, so that the partitioned model can
be analyzed by compositional reachability analysis technique [9]. Llorens et al.
introduced two different techniques for dynamic slicing of Petri nets [10]. A slice
is said to be static if the input of the program is unknown (this is the case of
Weiser’s approach). On the other hand, it is said to be dynamic if a particular
input for the program is provided, i.e., a particular computation is considered.
In the first technique of Llorens et al. the Petri net and an initial marking is
taken into account, but produces a slice w.r.t. any possibly firing sequence. The
second approach further reduces the computed slice by fixing a particular firing
sequence.

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 287

Astrid Rakow developed two flavors of Petri net slicing, CTL∗−X slicing and
Safety slicing in [13]. The key idea behind the construction is to distinguish
between reading and non-reading transitions. A reading transition t ∈ T can
not change the token count of place p ∈ P while other transitions are non-
reading transitions. For CTL∗−X slicing, a subnet is built iteratively by taking
all non-reading transitions of a place P together with their input places, start-
ing with given criterion place. And for the Safety slicing a subnet is built by
taking only transitions that increase token count on places in P and their input
places. CTL∗−X slicing algorithm is fairly conservative. By assuming a very weak
fairness assumption on Petri net it approximates the temporal behavior quite
accurately by preserving all CTL∗−X properties and for safety slicing focus is on
the preservation of stutter-invariant linear safety properties only.

We notice that all the constructions are limited to low-level Petri nets. The
main difference between High-level and low-level Petri net is that in high-level
Petri nets tokens are no longer black dots, but complex structured data. Whereas
in case of low-level Petri nets, all (black) tokens correspond to the same data
object. The idea of reading and non-reading transitions introduced in [13] deals
only with the token count of places in low-level Petri nets. In Algebraic Petri
nets there are properties that may concern to the values of tokens. The main
difference between the existing slicing constructions such as, CTL∗−X , Safety
slicing and our is that in CTL∗−X , Safety slicing only transitions are included
that change the token count whereas in APNSlicing, we include transitions that
change the token values together with the transitions that change the token
count. A comparison between APNSlicing, CTL∗−X and safety slicing algorithms
is shown in Fig. 7.

Slice CTL*
-X

Preserving all CTL*
-X

properties assuming a weak
fairness assumption

Properties are about token
count only

Designed for Low-level
Petri net

Safety Slicing
Preserving safety properties

only
Properties are about token

count only
Designed for Low-level

Petri net

APNSlicing
Preserving all LTL-X

properties assuming a weak
fairness assumption

Properties are about token
count and token values

Designed for High-level
Petri net (APNs)

Fig. 7. A comparison between APNSlicing, CTL∗
−X and Safety slicing

5 Case Study

We took a small case study from the domain of crisis management systems (car
crash management system) for the experimental investigation of the proposed

288 ModBE’13 – Modeling and Business Environments

approach. In a car crash management system (CCMS); reports on a car crash are
received and validated, and a Superobserver (i.e., an emergency response team)
is assigned to manage each crash.

sendcrisis

[$cd]

Recording Crisis Data

[]

[system($cd,false)]

System

validatecrisis

[system(getcrisistype($sy),
 true)]

assigncrisis
isvalidcrisis($sy=true)&

invalidsobs($sob,
getcrisistype($sy)=true)

[$sy] [assigncrisis($sob,$sy)]

Superobserver Ready

[$sob]

ExecutingCrisis

[$sy]

sendreport

[$ec]

[]

ExecutedCrisisReport

[rp($ec)]

[Fire, Blockage]

[sobs(YK,Fire)]

[]

Fig. 8. Car crash APN model

The APN Model can be observed in Fig. 8, it represents the semantics of the
operation of a car crash management system. This behavioral model contains
labeled places and transitions. There are two tokens of type Fire and Blockage in
place Recording Crisis Data. These tokens are used to mention which type of data
has been recorded. The input arc of transition sendcrisis takes the cd variable
as an input from the place Recording Crisis Data and the output arc contains
term system(cd,false) of sort sys. Initially, every recoded crisis is set to false. The
sendcrisis transition passes recorded crisis to system for further operations. The
output arc of validatecrisis contains system(getcrisistype(sy),true) term which
sends validated crisis to system. The transition assigncrisishas two guards, first
one is isvalid(sy)=true that enables to block invalid crisis reporting to be exe-
cuted for the mission and the second one is isvalid(sob,getcrisestype(sy))=true
which is used to block invalid Superobserver (a skilled person for handling crisis
situation) to execute the crisis mission. The Superobserver YK will be assigned
to handle Fire situation only. The transition assigncrisis contains two input arcs
with sob and sy variables and the output arc contains term assigncrisis(sob,sy)
of sort crisis. The output arc of transition sendreport contains term rp(ec). This
enables to send a report about the executed crisis mission. We refer the interested
reader to [7] for the algebraic specification of car crash management system.

An important safety threat, which we will take into an account in this case
study is that the invalid crisis reporting can be hazardous. The invalid crisis
reporting is the situation that results from a wrongly reported crisis. The ex-

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 289

Fire,Blockage

Fire

Blockage

validatecrisis
(Fire,false),(Fire,true)

validatecrisis
(Blockage,false),

(Blockage,true)

sobs(YK,Fire)

assigncrisis
(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire))

sendreport
((Fire,true),(YK,Fire)),((Fire,true),

(YK,Fire))

sendcrisis
Fire,(Fire,false)

sendcrisis
Blockage,

(Blockage,false)

Recording Crisis Data System

(Fire,false)

(Blockage,false)

(Fire,false)

(Blockage,false)

(Fire,true)

ExecutingCrisis

Superobserver Ready

((Fire,true),(YK,Fire))

(YK,Fire)

((Fire,true),(YK,Fire))

((Fire,true),(YK,Fire)) ExecutedCrisisReport

(Fire,true)

(Blockage,true)

Fig. 9. The unfolded car crash APN model

ecution of crisis mission based on the wrong reporting can waste both human
and physical resources. In principle, it is essential to validate the crisis that it
is reported correctly. Another, important threat could be to see the number of
crisis that can be sent to place System should not exceed from a certain limit.
Informally, we can define the properties:

ϕ1 : All the crisis inside place System are validated eventually.
ϕ2 : Place System never contains more than two crisis.

Formally we can specify the properties as, let Crises be a set representing
recorded crisis in car crash management system. Let isvalid : Crises→ BOOL,
is a function used to validate the recorded crisis.

ϕ1 = F(∀crisis ∈ Crises|isvalid(crisis) = true)
ϕ2 = G(|Crises| ≤ 2)
In contrast to generate the complete state space for the verification of ϕ1

and ϕ2, we alleviate the state space by applying our proposed algorithm. For
both ϕ1, ϕ2 LTL formulas, scope(ϕ1 ∧ ϕ2) ⊆ Q. The criterion place(s) for both
properties is System.

The unfolded car crash APN model is shown in Fig. 9. The slicing algorithm
APNSlicing(Unfolded car crash APN model,System) takes the unfolded car crash
APN model and System (an input criterion place) as an input and iteratively
builds a sliced net. The sliced unfolded car crash APN model is shown in Fig. 10,
places named ExecutedCrisis and ExecutedCrisisreporting together with transi-
tion named sendreport are sliced away. From the initial marking of Car Crash
APN Model 36 states are reachable, whereas sliced car crash APN model has
27 reachable states. The resultant sub net is sufficient to verify both properties
(see proof in Theorem 1).

6 Evaluation

In this section, we evaluate our slicing algorithm with the existing benchmark
case studies. We measure the effect of slicing in terms of savings of the reachable

290 ModBE’13 – Modeling and Business Environments

Fire,Blockage

Fire

Blockage

validatecrisis
(Fire,false),(Fire,true)

validatecrisis
(Blockage,false),

(Blockage,true)

sobs(YK,Fire)

assigncrisis
(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire))

sendcrisis
Fire,(Fire,false)

sendcrisis
Blockage,

(Blockage,false)

Recording Crisis Data System

(Fire,false)

(Blockage,false)

(Fire,false)

(Blockage,false)

(Fire,true)

Superobserver Ready

(YK,Fire)(Fire,true)

(Blockage,true)

Fig. 10. Sliced and unfolded car crash APN model

state space, as the size of the state space usually has a strong impact on time
and space needed for model checking. Instead of presenting case studies where
our methods work best, it is equally interesting to see where it gives an average
or worst case results, so that we will present a comparative evaluation on the
benchmark case studies.

To evaluate our approach, we made the follwing assumptions:

– Evaluation procedure is independent of the temporal properties. In general,
it is not feasible to determine which places correspond to the interesting
properties. Therefore, we generated slices for each place in the given APN
model (later, we take some specific temporal properties about the APN mod-
els under observation) .

– We abandoned the initially marked places (we follow [13] to assume that
there are not interesting properties concerning to those places).

Let us study the results summarized in the table.1, the first column shows
different APNs models under observation. Based on the initial markings, total
number of states is shown in the second column. Best reduction and average
reduction (shown in the third and fourth column) refers to the biggest and an
average achievable reduction in the state space among all possible properties.
In the fifth column total number of places is given, for the properties related
to these places, our slicing does not reduce the number of states. Finally, the
structure of APN models under observation is given. Results clearly indicate the
significance of slicing; the proposed APNSlicing algorithm can alleviate the state
space even for some strongly connected nets.

To show that the state space could be reduced for the practically relevant
properties. Let us take some specific examples of the temporal properties from
the APNmodels shown in table.2 and compare the reduction in terms of states by
applying the APNSlicing algorithm. For the Daily Routine of two Employees and
Boss APN model, for an example, we are interested to verify that: “Every time

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 291

Table 1. Results on different APN models

System T.States Bst.Reduct Avg.Reduct Worst P laces
no reduction

N.Type

Complaint Handling 2200 98.01% 40.54% 2 Weak.Connect

Divide & Conqure 117863 99.09% 14.22% 1 Weak.Connect

Bevarage Vending
& Machine

136 80.14% 02.15% 2 Weak.Connect

Daily Routine of 2
Employees & Boss

80 93.75% 86.12% zero Str.Connect

Simple Protocol 1861 95.91% 39.01% 1 Str.Connect

Producer Consumer 372 0.00% 0.00% 5 Str.Connect

the boss does not schedule a meeting, he will be at home eventually”. Formally,
we can specify the property:

ϕ1 = G(NM ⇒ FB1), where “NM" (resp. B1) means “place NM (resp. B1)
is not empty".

For a Producer Consumer APN model an interesting property could be to
verify that: “Buffer place is never empty”. Formally, we can specify the property:

ϕ2 = G(|Buffer| > 0).
And for a Complaint Handling APN model, we are interested to verify: “All

the registered complaints are collected eventually”. Formally, we can specify the
property:

ϕ3 = G(RecComp ⇒ FCompReg), where “RecComp" (resp. CompReg)
means “place RecComp (resp. CompReg) is not empty".

Table 2. Results with different properties concerning to APN models

System Tot.States Property Crit.Place(s) Percent.Reduction

Daily Routine of 2
Employees & Boss

80 ϕ1 {NM,B1} 75.00%

Producer Consumer 372 ϕ2 {Buffer} 0.00%

Complaint Handling 2200 ϕ3 {RecComp,RegComp} 50.54%

Let us study the results summarized in the table shown in table. 2, the first
column represents the system under observation whereas in the second column
total number of states are given based on the initially marked places. The third
column refers the property that we are looking for the verification. In the fourth

292 ModBE’13 – Modeling and Business Environments

column, places are given that are considered as criterion places, and for those
places slices are generated. The fifth column represents the number of states that
are reduced (in percentage) after applying APNSlicing algorithm.

We can draw the following conclusions from the evaluation results such as:

– The choice of the place can have an important influence on the reduction
effects (As the basic idea of slicing is to start from the criterion place and
iteratively include all the non-reading transitions together with their input
places. The less non-reading transitions attached to the criterion place, the
more reduction is possible).

– Reduction can vary with respect to the net structure and markings of the
places (The slicing refers to the part of a net that concerns to the property,
remaining part may have more places and transitions that increase the over-
all number of states. If slicing removes parts of the net that expose highly
concurrent behavior, the savings may be huge and if the slicing removes dead
parts of the net, in which transitions are never enabled then there is no effect
on the state space).

– For certain strongly connected nets slicing may produce a reduced number
of states (For all the strongly connected nets that contain reading transitions
slicing can produce noteworthy reductions).

– Slicing produces best results for not strongly connected nets (By definition
work-flow nets are not strongly connected and since they model work flows,
slicing can effectively reduce such nets).

7 Conclusion and Future Work

In this work, we developed an Algebraic Petri net reduction approach to alleviate
the state space explosion problem for model checking. The proposed work is
based on slicing. The presented slicing algorithm (APNSlicing) for Algebraic
Petri net guarantees that by construction the state space of sliced net is at
most as big as the original net. We showed that the slice allow verification and
falsification if Algebraic Petri net is slice fair. Our results show that slicing can
help to alleviate the state space explosion problem of Algebraic Petri net model
checking.

The future work has twofold objectives; first to implement the proposed
slicing construction in AlPiNA (Algebraic Petri net analyzer) a symbolic model
checker [5]. As discussed in the section 3.1, we are using the same unfolding
approach for APNs as AlPiNA. Obviously, this will reduce the effort in terms
of implementation. Secondly, we aim to utilize the sliced net when verifying the
evolutions of the net. Slicing can serve as a base step to identify those evolutions
that do not require re-verification.

Y. Khan et al.: Optimizing Algebraic Petri Net Model Checking by Slicing 293

References

1. D. Buchs, S. Hostettler, A. Marechal, A. Linard, and M. Risoldi. Alpina: A sym-
bolic model checker. Springer Berlin Heidelberg, pages 287–296, 2010.

2. J. R. Burch, E. Clarke, K. L. McMillan, D. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. In Logic in Computer Science, 1990. LICS ’90,
Proceedings., Fifth Annual IEEE Symposium on e, pages 428–439, 1990.

3. J. Chang and D. J. Richardson. Static and dynamic specification slicing. In In
Proceedings of the Fourth Irvine Software Symposium, 1994.

4. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8:244–263, 1986.

5. S. Hostettler, A. Marechal, A. Linard, M. Risoldi, and D. Buchs. High-level petri
net model checking with alpina. Fundamenta Informaticae, 113(3-4):229–264, Aug.
2011.

6. K. Jensen. Coloured petri nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, volume 254 of Lecture
Notes in Computer Science, pages 248–299. Springer Berlin Heidelberg, 1987.

7. Y. I. Khan. A formal approach for engineering resilient car crash management
system. Technical Report TR-LASSY-12-05, University of Luxembourg, 2012.

8. L. Lamport. What good is temporal logic. Information processing, 83:657–668,
1983.

9. W. J. Lee, H. N. Kim, S. D. Cha, and Y. R. Kwon. A slicing-based approach to
enhance petri net reachability analysis. Journal of Research Practices and Infor-
mation Technology, 32:131–143, 2000.

10. M. Llorens, J. Oliver, J. Silva, S. Tamarit, and G. Vidal. Dynamic slicing techniques
for petri nets. Electron. Notes Theor. Comput. Sci., 223:153–165, Dec. 2008.

11. A. Rakow. Slicing petri nets with an application to workflow verification. In
Proceedings of the 34th conference on Current trends in theory and practice of
computer science, SOFSEM’08, pages 436–447, Berlin, Heidelberg, 2008. Springer-
Verlag.

12. A. Rakow. Slicing and Reduction Techniques for Model Checking Petri Nets. PhD
thesis, University of Oldenburg, 2011.

13. A. Rakow. Safety slicing petri nets. In S. Haddad and L. Pomello, editors, Applica-
tion and Theory of Petri Nets, volume 7347 of Lecture Notes in Computer Science,
pages 268–287. Springer Berlin Heidelberg, 2012.

14. W. Reisig. Petri nets and algebraic specifications. Theor. Comput. Sci., 80(1):1–34,
1991.

15. K. Schmidt. T–invariants of algebraic petri nets. Informatik– Bericht, 1994.
16. A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic

Models, Advances in Petri Nets, the volumes are based on the Advanced Course on
Petri Nets, pages 429–528, London, UK, UK, 1998. Springer-Verlag.

17. M. Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE
Press.

This work has been supported by the National Research Fund, Luxembourg,
Project MOVERE, ref.C09/IS/02.

294 ModBE’13 – Modeling and Business Environments

A Proposal for the Modeling
of Organizational Structures

and Agent Knowledge in MAS

Lawrence Cabac, David Mosteller, Matthias Wester-Ebbinghaus

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics
{cabac,2mostell,wester}@informatik.uni-hamburg.de

http://www.informatik.uni-hamburg.de/TGI

Abstract. One of the most important tasks when developing multi-
agent systems (MAS) is to determine the overall organizational structure
of the system. In this paper we present a service-oriented perspective on
the organizational structure of MAS and we present modeling techniques
and tools for supporting this perspective. We pursue a model-driven ap-
proach and a tight integration between various models on the one hand
and between the models and the generated code on the other hand.
In particular, we combine ontology modeling and organization structure
modeling in a way that we can easily generate the initial content of agent
knowledge bases in the form of FIPA semantic language (SL) fragments
(depending on what positions the agents occupy in the context of the
organizational structure). In addition, this allows the agents to reason
about and to communicate about their organizational embedding using
the same ontology.

Keywords: Renew, Mulan, Paose, Petri nets, multi-agent systems,
model-driven development, organizational structure

1 Introduction

The modeling of the fundamental organizational structure is one of the central
tasks during the development of a multi-agent system (MAS) [9]. While agents
are considered autonomous in their actions, they are also supposed to fulfill cer-
tain functions in relation to the purpose of the overall multi-agent application
(MAA). A wide spectrum of approaches for organizing multi-agent systems ex-
ists [15] and some of them are quite sophisticated in drawing inspiration from or-
ganizing principles of social systems (including multiple organizational modeling
dimensions like social structures, tasks, social interactions, norms etc., cf. [1,8]).
We argue that at the core of most of these approaches lies the determination of
an organizational structure in terms of agent functions and agent dependencies
based on functional dependencies. This concerns the questions, which agents are
required / allowed to do what (responsibilities / abilities) and to whom they can

refer for help in certain cases (support / delegation). Basically, this is a service-
oriented perspective on agent relationships. Agents offer functional services to
other agents and in turn require the services of other agents in order to fulfill
some of their own functionality.

We apply this functional and service-oriented perspective for the design of
the basic organizational structure of a MAS in our Paose approach (Petri
net-based Agent- and Organization-oriented Software Engineering, http://www.
paose.net). It provides a general basis for MAS organization that can be ex-
tended if necessary.1 We have presented our Paose approach on previous occa-
sions and we have particularly elaborated on the model-driven nature of Paose
in [6]. Our multi-agent platform Mulan/Capa [16,22] tightly combines model
and code as it is based on a fusion of high-level Petri nets and Java. This allows
us to model / implement all processes as directly executable Petri nets. In addi-
tion, we use UML-style modeling techniques for development where we need a
more declarative perspective than is offered by Petri nets.

In this paper, we specifically refer to the part of Paose that is concerned
with modeling organizational structures in terms of agent roles and service de-
pendencies between roles. This part relies on ontology modeling as we explicate
the concepts used for organizational structures as an ontology. This has the ad-
ditional benefit that we can easily translate an organizational structure model
into multiple initial knowledge bases for multiple agents (depending on what
positions the agents occupy in the organizational structure). The content of the
knowledge bases is generated in FIPA semantic language (http://www.fipa.org),
which provides the technical basis for agents to reason about and to communi-
cate about their organizational embedding. Compared with our previous work
presented in [6,7], we present a considerable rework including new tools. Our
revision basically takes care of a better and tighter integration between the tools
used as well as between the models and the generated code.

In Section 2 we provide an overview of role and service (dependency) mod-
eling in the MAS field and motivate our own approach. In Section 3, we present
our concrete models and the supporting tools. We place our contribution in the
context of our development process Paose and introduce the agent framework
Mulan/Capa. We also describe how the tools fit into the model-driven nature
of our Paose approach. Section 4 gives an example of our tools in use, demon-
strated in a concrete application scenario. We close with a short summary and
some aspects of future research and development that builds upon the results
presented in this paper in Section 5.

1 For example, we have developed the Sonar model [17,18] for multi-agent teamwork
support, where we use a more elaborate model of functional service dependencies
between agents based on task delegation structures and a behavior-based notion of
service refinement.

296 ModBE’13 – Modeling and Business Environments

2 Organizational Structures of Multi-Agent Systems

In this section we elaborate on our conceptual approach to modeling organiza-
tional structures in terms of agent roles and service dependencies. We motivate
the use of the two core concepts of roles and services in the context of related
work.

2.1 Modeling Agent Roles and Service Dependencies

The interest in establishing organizational structures in a MAS has always been
an important part of agent research. One can argue that it is an important
part of software design in general (although the architecture metaphor is more
established than the organization metaphor). However, in the case of MAS this
topic becomes even more imperative. Artificial social agents are regarded as
very sophisticated software components with complex knowledge and reasoning
mechanisms that often only offer a limited visibility. Consequently, high-level
system perspectives are necessary, in which one can abstract from agent-internal
details and still comprehend the system on a more abstract level.

The concept of a role has been used extensively in this context and has been
established as one of the core concepts of agent-oriented software design [19].
Rights and responsibilities are associated with roles independently from the
specific agents that will occupy the roles. Consequently, this leads to a cer-
tain degree of predictability and controllability of global MAS behavior without
knowing anything about the agents’ internals. Examples of bringing the concept
of roles to use (cf. [1]) is to enable as well as constrain agent behavior in terms of
(1) which roles belong together to a common group context (allowing acquain-
tance and communication between group members), (2) defining which roles are
expected to be associated with which goals, tasks and necessary capabilities and
(3) which roles are supposed to take part in which conversations in which way.

Basically, all these efforts boil down to the abstract question what an agent
occupying a specific role is supposed to do just because of it taking on that
role. We are mainly interested in an explication of a functional perspective on
roles and role relationships. Of special interest is the specification of function-
ality of roles occupants in the context of the wider multi-agent application and
the dependencies that exist between different role occupants. Thus, we apply a
service-oriented perspective on agent roles: Which roles are associated with the
provision of which services and on which other services are they dependent? We
are aiming at a rather minimalistic model of agent roles and their relationships
in terms of service dependencies that can be enriched with more sophisticated
concepts if needed (e.g. goal / task hierarchies, conversation guidelines).

2.2 Related Work

Not only in agent-oriented approaches to software development the modeling
of component dependencies is one of the major challenges. One main problem
(also applying to some of the approaches for role-based specifications mentioned

L. Cabac et al.: Modeling the Organizational Structure of MAS 297

above) is that dependencies are often hidden underneath quite complex specifi-
cations. Ensel and Keller summarize Gopal [13] in the following way: “However,
the main problem today lies in the fact that dependencies between services and
applications are not made explicit, thus making root cause and impact analysis
particularly difficult” [10, p. 148]. Therefore our motivation is to gain the ability
to explicitly model dependencies for MAS and our choice is to model component
dependencies (agent dependencies) in terms of roles and service dependencies.
The actual dependencies between running agents then result from the roles they
occupy.

In the context of the different approaches to software development there exist
various ways of handling component dependencies. Some of them are restricted
to managing service dependencies by utilizing declarative service descriptions,
i.e. using XML [10, p. 148], [24]. From our point of view the more promising
approach consists in making use of diagram-based methods.

The most obvious benefit lies in the incomparably better visualization of
diagram-supported models over declarative service descriptions. This was iden-
tified as a central issue, taking up the above mentioned citation by Ensel and
Keller again. On the one hand, the diagram is the means to make the dependen-
cies explicit [3] instead of an implicit declaration located in the configuration files
of the (distributed) components as it is for example the case in OSGI service de-
scriptions [24]. An explicit representation of the dependencies is of special value
during the design phase for a developer / administrator. On the other hand, the
capabilities of model transformation are given in both possibilities to describe
dependencies as model-based and as declarative descriptions. A similar approach
was taken in [26] for Web Services and BDI-Agents. Service dependencies are
specified in the model domain and tool support is realized as a Rational Software
Modeler extension. “Dependencies between the various components are modeled
at the PIM-level and two-way model transformations help us to ensure inter-
operability at the technical level and consistency at the PIM-level” [26, p. 114].
There are other efforts, which mainly address specification of dependencies be-
tween agents and Web Services (e.g. [14]) whereas our work is focused on agent
relations.

Most software developing methodologies contain a technique for modeling
some kind of dependencies between their components. The Tropos methodology
distinguishes four kinds of dependencies between agents, from hard dependen-
cies (resource) to soft ones (soft-goal). Silva and Castro [23] display how Tropos
dependency relations can be expressed in UML for real time systems. Ferber et
al. [11] show how the organizational structure of an agent-based system can be
modeled using the AGR technique. One of the proposed diagrams, the organi-
zational structure diagram, shows roles, interactions and the relations between
roles and interactions. This diagram is comparable to the Roles/Dependencies
diagram.

In Gaia Zambonelli et al. [25] focus strongly on the organizational modeling.
One of the important models is the service model. Our Roles/Dependencies dia-
gram can be regarded as an implementation of the Gaia service model. However,

298 ModBE’13 – Modeling and Business Environments

Gaia does not recognize hierarchical roles. Padgham and Winikoff [21] explicitly
model acquaintances in Prometheus. But from these models they do not derive
any agent (role) dependencies. Roles are not modeled in Prometheus, instead the
focus lies on agents. The system model in Prometheus gives a good overview of
the system comparable with the overview of the Roles/Dependencies diagram.
It is much more detailed but does not explicitly show any dependencies except
the interaction protocols or messages that connect agents. The structure of the
system model reflects the one of the acquaintances model.

In the following, we introduce our approach for a minimalistic (but extensible)
comprehension of organizational structures of MAS in terms of role descriptions
and role dependencies based on service relationships. Our previous work covered
details on the conceptual side of modeling the basic organizational structure of
MAS, introducing modeling techniques [7,5,4] and tools [6]. In our current work
we improve the methods and tools by putting an even stronger focus on the
model-driven nature of our approach. We pursue a tighter integration of different
tools and to minimize the gap between the models and the code generated from
the models. One specific benefit of our approach lies in the fact that the meta-
model for organizational structures is expressed in the agents’ language – i.e. as
an agent ontology. Thus, the agents are able to communicate and reason about
their own organizational structures.

3 Role/Dependency Tool Support for Model-Driven
Development in PAOSE

In the following we point out how the integration of the conceptional basis we
introduced in the previous section is established in our Mulan framework and
the Paose development process. We introduce two types of diagrams, namely
for ontology modeling and for roles/dependencies modeling. They support the
discussed features in a clear and intuitive way, making use of well-known con-
structs from UML. We also present our tool solution to support our model-driven
development approach. All our Paose tools are realized as plugins for the high-
level Petri net tool Renew (http://www.renew.de).2 They extend Renew with
modeling techniques that are not based on Petri nets.

3.1 The Paose Development Process

This section puts the subsequent work into the context of the Paose approach,
which aims at the development of Mulan applications. The approach focuses on
aspects of distribution, concurrency and model-driven development. The frame-
work Mulan offers the basic artifacts and structuring for the application. Its
four layered architecture features as basic artifacts the communication infrastruc-
ture, the agent platforms, the agents and the agent internals (protocols, decision
components and knowledge bases). With the exception of the communication

2 Renew also provides the virtual machine that executes Mulan applications.

L. Cabac et al.: Modeling the Organizational Structure of MAS 299

infrastructure, all artifacts are implemented as Java Reference nets. Capa ex-
tends the Mulan architecture with FIPA-compliant communication features,
providing inter-platform (IP-based) agent communication. Also the Mulan ap-
plications (MAA) are – similar to the Mulan/Capa framework – implemented
in Java Reference nets and Java. They are executed, together with the Mu-
lan/Capa framework, in the Renew virtual machine. While the implementa-
tion in Java Reference nets introduces concurrency for Mulan applications, the
Capa extension enables the agents to run in distributed environments.

Figure 1. The Paose development process and techniques. Modified from [3, p. 133]

The organization of MAS can be explicitly modeled using model-driven tech-
niques [6], as described in the following sections. However, in addition to the
organizational structure of the MAA, we apply the agent-oriented view onto the
organizational structure of the development team through the metaphor of the
multi-agent system of developers [2]. The metaphor provides the perspective that
human participants of the development team form an organization, similar to
agents in an MAA, and their collaborative efforts constitute the development
process, similar to the MAA process. During development the responsibilities
for the diverse tasks are distributed among the developers, which allows for
concurrent and distributed collaboration as well as explicit identification of de-
pendencies between the team participants. In the previous sections we motivated
a service-oriented composition of MAS based on roles and service dependencies.
Here we argue that developers dependencies result from the organizational struc-
ture and the application’s dependencies. These dependencies are also reflected
in the Paose development process, which consists in iterative repetitions of spe-
cific fundamental steps of design and implementation, as shown in Figure 1. The
figure depicts a simplified Petri-net process of the Paose design cycle.

300 ModBE’13 – Modeling and Business Environments

A project starts with the requirements analysis resulting in a coarse design of
the overall structure of the MAA. The coarse design identifies essential roles and
interactions of the organization. It is used to generate the initial structure (de-
velopment artifacts) of a project. The main step of an iteration consists of three
tasks of modeling and implementation. These are the modeling of interactions,
agent roles and ontologies, as well as generating sources from the models and
refining the implementation. The integration of the resulting artifacts completes
an iteration. In the diagram annotations refer to modeling techniques, which are
utilized to carry out a corresponding task and the artifacts, which are generated
from the design models. Taking up the aforementioned view on the organization
of a development team, the completion of an iteration requires the synchronized,
collaborative effort of the participants.

In the context of this work we introduce a technique and a tool for the
modeling of agent roles. To this end, we utilize the ontology model used in
Paose as a meta-model. In this sense the following section describes how our
integration approach essentially applies ontology concepts for the design of a
new modeling technique and a corresponding tool – in this case the modeling of
organizational structures of MAA.

3.2 Integration Approach

Within our development process we apply a few presumptions. The approach
taken relies on two fundamental ideas. These are the support for the develop-
ment process by making use of methods from model-driven development (MDD)
and the tightening of the integration of models (diagrams), generated code and
serialized representations. This leads to a threefold integrative approach that is
illustrated in Figure 2 and that we discuss in the following.

Integration encompasses three parts: (1) an ontology including multiple con-
cepts, (2) the code generated from the ontology and (3) the serialized represen-
tations of concept instances in FIPA Semantic Language (SL) format [12].

Ontologies are modeled using a light-weight technique called Concept Dia-
gram3. The concepts defined in the ontology are transformed into Java classes,
one class for each concept. Instances of these classes (ontology objects) can be
extracted into SL-formatted text. Through an SL parser the serialized SL text
representations can be used to instantiate Java ontology objects in the reverse
direction. Consequently, we utilize three tools for these three tasks: (1) the Con-
ceptDiagramModeler, (2) the OntologyGenerator and (3) the SL parser.

This basic integration approach described so far has several benefits. The
development process takes on a model-driven approach, which allows for the
specification of ontological concepts in a graphical notation. Concept Diagrams
are very similar to the widely-used UML Class Diagrams. They are quite in-
tuitively comprehensible and easy to manage. Manipulation of attributes can
be carried out directly in the diagram. Additionally, by making use of code
3 An example of a Concept Diagram will be discussed in the context of defining a
knowledge base format in the following section (3.3).

L. Cabac et al.: Modeling the Organizational Structure of MAS 301

Figure 2. The three-part basic model of agent knowledge

generation and the bi-directional conversion between Java objects and SL text
representations for concept instances, the integration of the different representa-
tions is very tight, i.e. transformation is transparent to a user. By using SL for
the text representations of ontology objects we employ an agent-comprehensible
format, as Mulan agents use SL text representations for message encoding. In
addition, our experience has indicated that SL text is also better human-readable
in comparison to an equivalent XML representation and shows a lower overhead.

In the following, we show how we apply this method in the case of modeling
service dependencies and agent knowledge.

3.3 Concept Diagrams for Role and Knowledge Base Concepts

The previous section provides a general overview of our model-driven approach
based on the integration of multiple representations. Now we describe how the
three basic parts (ontology, Java code, SL text representation) are applied in the
case of modeling as well as establishing organizational structures in multi-agent
applications (MAA). The model-driven approach starts with the specification
of an ontology encompassing organizational concepts (roles, services, protocols)
and concepts necessary for the generation of agent knowledge from organizational
structure models (knowledge base as an aggregation of role definitions resulting

302 ModBE’13 – Modeling and Business Environments

from a mapping between agents and roles, in which multiple roles can be assigned
to each agent). The ontology we use is shown in Figure 3 as a Concept Diagram.
It is created with the ConceptDiagramModeler.

Figure 3. A Concept Diagram for agent knowledge base concepts

The Concept Diagram serves in a twofold way. First, it defines all the content
types of the agent communication in an application. Second, it serves as a meta-
model for the tools that handle the modeled contents.

From here on, we rely on further tool support for code generation and conver-
sion between the different representations of concepts and concept instances. We
use the OntologyGenerator (based on Velocity, http://velocity.apache.org) and
the SL parser provided by the Mulan framework. Ontology modeling in terms
of Concept Diagrams and code generation from these models is already a part of
the Paose development process (cf. [3, p. 173]). Thus, the approach described
here for handling organizational structures and agent knowledge fits neatly into
the context of our wider work.

Basically, Figure 3 can be regarded as capturing the ontology for knowledge
bases of Mulan agents (the schema of a knowledge base). It illustrates the
modeling technique of Concept Diagrams in terms of inheritance and the use
of concepts for the definition of other concepts (this could also be modeled via
associations between different concepts).

Besides capturing the ontology for knowledge bases, the ontology is also used
by the AgentRoleModeler tool presented in the next subsection. Java ontology
classes that are generated by the OntologyGenerator tool are specializations
of generic ValueTuple (VT) and KeyValueTuple (KVT) classes. VT and KVT
structures are the root interfaces of an implementation of the FIPA SL.

As mentioned above, by using an SL parser, ontology objects can be instanti-
ated from their SL string representations. This is a feature that lies at the heart
of creating agent instances from knowledge base patterns (because knowledge-
base is a concept in the diagram from Figure 3 and thus each knowledge base

L. Cabac et al.: Modeling the Organizational Structure of MAS 303

as a whole has an SL representation). Ontology classes provide getters, setters
and convenience methods for operations on the data structures. The Ontology-
Generator tool is integrated into the build environment of the Mulan framework
and the SL parser can be used on the fly in a running Mulan MAA. All in all,
this supports our ambition of realizing a tight integration of different models,
tools and code.

Using the knowledge base ontology shown in Figure 3 the following section
explains how we model roles and dependencies in multi-agent applications.

3.4 Roles/Dependencies Diagrams

Roles and role dependencies are modeled with the AgentRoleModeler tool. The
corresponding Roles/Dependencies Diagrams combine notations from Class Dia-
grams and Communication Diagrams. The tool is embedded in our model-driven
development approach. The content of Roles/Dependencies Diagrams (Figure 5)
is based on the concepts that were already defined in the ontology from Figure 3.
Because of this, the AgentRoleModeler tool allows for the generation of knowl-
edge base descriptions in FIPA SL from Roles/Dependencies Diagrams using
the knowledge base ontology from Figure 3 as a meta-model. Thus the concepts
from the Concept Diagram reappear as stereotypes in the Roles/Dependencies
Diagram. The knowledge base descriptions resulting from a Roles/Dependen-
cies Diagram are used as patterns for the initialization of agent instances in the
Mulan multi-agent framework.

Renew-Editor-Palette

Figure 4. The Renew-Editor-Palette

The AgentRoleModeler is a drawing plugin for Renew and adds a custom
palette for drawing elements of Roles/Dependencies Diagrams as shown in Fig-
ure 4 (the AgentRoleModeler palette is shown at the bottom, under Renew’s
standard palettes). The graphical representation of Roles/Dependencies Dia-
gram elements is displayed in Figure 5. The nodes of Roles/Dependencies Dia-
grams (roles and services) contain the text in FIPA SL format, specifying the
corresponding attributes of the element. For a compact representation all draw-
ing elements can be collapsed to a smaller view. This provides a very compact

304 ModBE’13 – Modeling and Business Environments

and high-level view of an organizational structure in terms of roles and role
dependencies based on service dependencies. Expanding the drawing elements
allows manipulation of their attributes.

Figure 5. Constructs of a Roles/Dependencies Diagram.

Following Figure 3, the knowledge base of a Mulan agent contains an ar-
bitrary number of agent role descriptions, depending on which roles the agent
occupies. The attributes of agent roles (besides having a role name) are basi-
cally of three different types: (1) service dependencies, (2) protocol triggers and
(3) state descriptions. Such (initial) knowledge base content can be generated
from Roles/Dependencies Diagrams. Required and provided services of a role
(i.e. hard dependencies) are shown explicitly as independent service nodes and
offer / use associations connected to role nodes4. Protocol triggers are key-value
tuples that define, which conversation protocol (value) an agent should initiate in
reaction to incoming messages of a certain message pattern (key). They are not
represented in a Roles/Dependencies Diagram as explicit nodes but are inserted
directly into the corresponding role description. Further, state descriptions for a
role may contain any kind of key-value tuples that shall serve as initial knowledge
for role occupants. In addition to this flat specification of role dependencies, it
is also possible to define inheritance relationships between roles. This introduces
hierarchical relationships.

A Roles/Dependencies Diagram contains exactly one node that defines an
agent-role mapping. Basically, this node serves to define agent types in terms of
what roles a specific agent type should encompass. For each such agent type,
a pattern in FIPA SL can be generated that serves as the basis for the initial
knowledge of instantiated agents of that type.

4 Refer to [7] for a discussion of our view on hard and soft dependencies.

L. Cabac et al.: Modeling the Organizational Structure of MAS 305

4 Application

Aforementioned, we motivate the modeling of organizational structures in MAS.
Our approach to modeling organizations grounds on a ontological content defini-
tion, namely the three-part basic model of agent knowledge. We introduced the
three-part basic model in Section 3.2. We showed how the concrete realization
of a tool for modeling organizations utilizes the ontological content definition. In
this spirit the previous section introduced the notation of the Roles/Dependen-
cies diagram and the AgentRoleModeler tool. We will now use the technique of a
Roles/Dependencies diagram to model a sample application. The organizational
structure is brought into the MAS by the means of generic knowledge base pat-
terns. In the following example we demonstrate our method of extracting initial
agent knowledge and structural information from the graphical model and show
how they are brought into the running system. We illustrate the modeling of
organizational structures and agent knowledge in sample applications.

The AgentRoleModeler tool was developed in the context of a bachelors thesis
[20] at the University of Hamburg. After its completion it was used in several
student projects for agent-oriented software development. In one of these projects
about 20 team members worked on implementing applications for an agent-based
collaboration platform. The following example from Figure 6 is taken from this
project. It displays the scenario of a chat application, in which agents occur in
the roles of chat senders and receivers.

Figure 6. ARM of WebChat.

Figure 6 shows an instance of a Roles/Dependencies diagram. The model
consists in the concepts that were already used in the previous section, intro-
duced in Section 3.2 and illustrated in Figure 5. The Sender/Receiver-Scenario is
an example we regularly use to demonstrate the Mulan-Framework in student
projects. It consists in two roles, a Sender and a Receiver. Both roles inherit
attributes from the generic CapaAgent role, thus they are specializations of this
role. We will go into more detail about this later. The Sender is in possession of

306 ModBE’13 – Modeling and Business Environments

a decision component SenderDC, which enables him to sporadically participate
in conversation. He is dependent on a service (ChatMessageReception) allowing
him to find and address chat partners. The Receiver is a role, which provides
such a service, as can be seen by the realization relation between the Receiver
role and the ChatMessageReception service. Upon receiving a chat message, the
Receiver role reacts by initiating a chat protocol. The role specification formal-
izes reactive behavior as a protocol trigger, which can be seen on the lower right
part of the above figure. A protocol trigger maps a type of message, identified
by a message pattern, to a protocol. Every time a message of the defined type
is received, the protocol will be triggered. The chat protocol passes chat mes-
sages to a decision component of the Receiver (ReceiverDC) allowing him to
process the message. He can carry out internal reasoning about the conversa-
tion and decide on his further actions, such as creating a response or initiating
a new conversation. The diagram constructs described up to this point make
up the Roles/Dependencies model. There is a part we have not yet discussed.
The agent-roles mapping construct shown on the upper left formalizes an in-
stance specification. It determines, which agents occupy a previously defined set
of roles. The agent-roles mapping in this case maps both roles to one type of
agent, a ChatterAgent. The reason is that a ChatterAgent should naturally have
the ability to do both, send and receive chat messages.

The example displays our notion of functional rights and responsibilities in
terms of services dependencies. This specification of roles and services in form of
the Roles/Dependencies diagram can be used to generate initial knowledge base
contents for the agent instances dedicated to fulfill the corresponding roles. The
following example focuses on the succeeding step of extracting the information
required to initialize agent instances from the model.

Figure 7 shows a fragment of the Roles/Dependencies diagram that basically
refers to one of the roles from the example above. The blue-bordered role figure
(round corners) displays the attributes for the role name, protocol triggers and
state descriptions. On the right hand side one can see a snippet of the FIPA SL
code generated from the Roles/Dependencies diagram. Here, the service provided
by the Receiver role (ChatMessageReception) is also included directly in the
FIPA SL text. It can also be seen that the FIPA SL fragment contains more
than one state descriptions. The additional state descriptions are inherited from
the CapaAgent super role.

The roles and their mutual service dependencies are compiled into knowledge
base patterns. The knowledge base patterns are in FIPA SL text, so they can
directly be used to initialize agent instances, as they are specified in the lan-
guage (ontology) of Mulan-agents. The example shows how this information is
extracted from the model. It also shows how the model can express hierarchies
of roles in terms of role specializations, enabling inheritance of attributes. Be-
sides using the specialization relation between role constructs inside one single
diagram, the mechanism implemented in the AgentRoleModeler tool also allows
using inheritance across diagrams. This is also shown in the above figure. The
CapaAgent role is accessed from the Roles/Dependencies diagram named Agent-

L. Cabac et al.: Modeling the Organizational Structure of MAS 307

Figure 7. Role attributes and FIPA SL code generation.

Role. This is denoted by the displayed notation containing double colons. With
the support for expressing specializations with the AgentRoleModeler tool it is
possible to build graphical models containing hierarchies and compile them into
knowledge base patterns, which allows us to project the overall organizational
structure onto the MAA.

The approach for modeling basic organizational structures of MAS in terms
of roles and role relationships fits neatly into the general model-driven nature of
our Paose approach. In particular, in this case it helps to generate initial agent
knowledge.

5 Conclusion

In agent-oriented software engineering and especially in the context of develop-
ing Mulan applications two essential design aspects are the modeling of the
organizational structures and the initial knowledge of the agents. For the pur-
pose of modeling these fundamental features it requires a conceptional basis as
well as corresponding techniques, methods and tools.

5.1 Summary

In the context of the Paose approach we utilize the technique of Concept Di-
agrams and the OntologyGenerator tool to specify ontology concepts in order
to design multi-agent applications. In the context of this paper this technique
and tool is introduced together with the method of modeling agent roles and
service dependencies. Furthermore we present a technique and a supporting tool

308 ModBE’13 – Modeling and Business Environments

– also implemented as plugin for our IDE Renew – for a light-weight modeling
of service dependencies and agent roles.

In Section 2 we elaborate on organizational concepts in MAS research and
motivate our approach to modeling organizational structures. The main part
of our contribution is preceded by an introduction to the Paose development
process and the Mulan framework (Section 3.1), which constitute the context
of our work. Our approach to modeling roles and dependencies is introduced
in three steps. First, we introduce the three-part basic model of our approach
(Section 3.2). Second, we illustrate the modeling of ontology concepts utilizing
Concept Diagrams and the OntologyGenerator (Section 3.3). Third, we present
the modeling of agent roles and dependencies with Roles/Dependencies Dia-
grams and the AgentRoleModeler (Section 3.4). The presented technique is an
occurrence of the Roles/Dependencies Diagram – a Class Diagram that includes
notations from Communication Diagrams for the modeling of agent role de-
pendencies – that makes use of the Semantic Language (SL) as a description
language for the agents’ initial knowledge base contents. Finally, the techniques
and tools presented in the course of this contribution are demonstrated in a
application scenario in Section 4.

5.2 Future Work

In the context of our current research we elaborate on generalizing the approach
that was presented in this paper to a further step. The idea is not only to apply
the model-driven approach for code generation, conversion and transformation
of models, but to generate special purpose tools from ontology diagrams as well.
A step in this direction is generalizing the AgentRoleModeler tool to a generic
SLEditor tool. The UI of a current prototype is shown in Figure 8. It displays the
previously introduced role description of a Receiver from the Sender/Receiver
application in a nested graphical figure. The outer frame is that of the agent-role.
The highlighted constructs (in gray) indicate ValueTuples. This representation
allows for displaying any nested structure of KeyValueTuples and ValueTuples.
It can be seen as an alternative view to the plain text representation in Semantic
Language. Further efforts are being made to utilize an ontology – modeled with
the technique of a Concept Diagram – as a meta-model to generate specialized
structures and at the same time generate the modeling tools by using the generic
SLEditor. We are occasionally confronted with criticism against grounding our
work on an outdated infrastructure, because we still rely on the FIPA Semantic
Language for the specification of MAA. We address this subject with our devel-
opment plan on extending the SLEditor. With the generic SLEditor tool we can
support the modeling of MAA using other languages for content specification,
such as XML. This can be achieved by extending the ontology to support XML
to express knowledge contents.

Taking up the Figure 2 from Section 3.2 the three-part basic model of agent
knowledge is extended to display an XML ontology of an agent role. The Figure
reveals what is required to enable this feature: an XML schema definition speci-
fying the format of our ontologies and the methods for conversion of representa-

L. Cabac et al.: Modeling the Organizational Structure of MAS 309

Figure 8. Alternative representation of SL content.

Figure 9. The three-part basic model of agent knowledge, extended to support XML
for content specification.

tions between XML-Text and Java-Object. They are at this time not integrated
in Mulan, but there exist standard tools that support XML conversion.

References

1. Olivier Boissier, Jomi Hübner, and Jaime Simão Sichman. Organization ori-
ented programming: From closed to open organizations. In G. O’Hare, A. Ricci,
M. O’Grady, and O. Dikenelli, editors, Engineering Societies in the Agents World

310 ModBE’13 – Modeling and Business Environments

VII, volume 4457 of Lecture Notes in Computer Science, pages 86–105. Springer,
2007.

2. Lawrence Cabac. Multi-agent system: A guiding metaphor for the organization
of software development projects. In Paolo Petta, editor, Proceedings of the Fifth
German Conference on Multiagent System Technologies, volume 4687 of Lecture
Notes in Computer Science, pages 1–12, Leipzig, Germany, 2007. Springer-Verlag.

3. Lawrence Cabac. Modeling Petri Net-Based Multi-Agent Applications, volume 5 of
Agent Technology – Theory and Applications. Logos Verlag, Berlin, 2010.

4. Lawrence Cabac, Ragna Dirkner, and Daniel Moldt. Modeling with service depen-
dency diagrams. In Daniel Moldt, Ulrich Ultes-Nitsche, and Juan Carlos Augusto,
editors, Proceedings of the 6th International Workshop on Modelling, Simulation,
Verification and Validation of Enterprise Information Systems, MSVVEIS-2008,
In conjunction with ICEIS 2008, Barcelona, Spain, June 2008, pages 109–118,
Portugal, 2008. INSTICC PRESS.

5. Lawrence Cabac, Ragna Dirkner, and Heiko Rölke. Modelling service dependen-
cies for the analysis and design of multi-agent applications. In Daniel Moldt,
editor, Proceedings of the Fourth International Workshop on Modelling of Objects,
Components, and Agents. MOCA’06, number FBI-HH-B-272/06 in Report of the
Department of Informatics, pages 291–298, Vogt-Kölln Str. 30, D-22527 Hamburg,
Germany, June 2006. University of Hamburg, Department of Informatics.

6. Lawrence Cabac, Till Dörges, Michael Duvigneau, Daniel Moldt, Christine Reese,
and Matthias Wester-Ebbinghaus. Agent models for concurrent software systems.
In Ralph Bergmann and Gabriela Lindemann, editors, Proceedings of the Sixth
German Conference on Multiagent System Technologies, MATES’08, volume 5244
of Lecture Notes in Artificial Intelligence, pages 37–48, Berlin Heidelberg New
York, 2008. Springer-Verlag.

7. Lawrence Cabac and Daniel Moldt. Support for modeling roles and depen-
dencies in multi-agent systems. In Michael Köhler-Bußmeier, Daniel Moldt,
and Olivier Boissier, editors, Organizational Modelling, International Workshop,
OrgMod’09. Proceedings, Technical Reports Université Paris 13, pages 15–33, 99,
avenue Jean-Baptiste Clément, 93 430 Villetaneuse, June 2009. Université Paris
13. Preeproceedings available online at http://www.informatik.uni-hamburg.
de/TGI/events/orgmod09/#proceedings.

8. Luciano Coutinho, Jaime Sichmann, and Olivier Boissier. Modelling dimensions for
agent organizations. In Virginia Dignum, editor, Handbook of Research on Multi-
Agent Systems: Semantics and Dynamics of Organizational Models, pages 18–50.
Information Science Reference, 2009.

9. Virginia Dignum. The role of organization in agent systems. In Virginia Dignum,
editor, Handbook of Research on Multi-Agent Systems: Semantics and Dynamics
of Organizational Models, pages 1–16. Information Science Reference, 2009.

10. Christian Ensel and Alexander Keller. An approach for managing service depen-
dencies with xml and the resource description framework. Journal of Network and
Systems Management, 10:147–170, 2002.

11. Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From agents to organiza-
tions: An organizational view of multi-agent systems. In Paolo Giorgini, Jörg P.
Müller, and James Odell, editors, Agent-Oriented Software Engineering IV, 4th
International Workshop, AOSE 2003, Melbourne, Australia, Ju ly 15, 2003, Re-
vised Papers, volume 2935 of Lecture Notes in Computer Science, pages 214–230.
Springer-Verlag, 2003.

12. Foundation for Intelligent Physical Agents (FIPA). FIPA SL Content Language
Specification. http://www.fipa.org/specs/fipa00008/index.html, 2002.

L. Cabac et al.: Modeling the Organizational Structure of MAS 311

13. R. Gopal. Layered model for supporting fault isolation and recovery. In Network
Operations and Management Symposium, 2000. NOMS 2000. 2000 IEEE/IFIP,
pages 729–742. IEEE, 2000.

14. C. Hahn, S. Jacobi, and D. Raber. Enhancing the interoperability between mul-
tiagent systems and service-oriented architectures through a model-driven ap-
proach. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010
IEEE/WIC/ACM International Conference on, volume 2, pages 415–422. IEEE,
2010.

15. Bryan Horling and Victor Lesser. A survey of multi-agent organizational
paradigms. The Knowledge Engineering Review, 19(4):281–316, 2005.

16. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling the structure and
behaviour of Petri net agents. In J.M. Colom and M. Koutny, editors, Proceedings
of the 22nd Conference on Application and Theory of Petri Nets 2001, volume 2075
of Lecture Notes in Computer Science, pages 224–241. Springer-Verlag, 2001.

17. Michael Köhler-Bußmeier, Daniel Moldt, and Matthias Wester-Ebbinghaus. A for-
mal model for organisational structures behind process-aware information systems.
volume 5460 of Lecture Notes in Computer Science, pages 98–115. Springer-Verlag,
2009.

18. Michael Köhler-Bußmeier, Matthias Wester-Ebbinghaus, and Daniel Moldt. Gen-
erating executable multi-agent system prototypes from sonar specifications. In
Nicoletta Fornara and George Vouros, editors, 11th Workshop on Coordination,
Organizations, Institutions, and Norms in Agent Systems, COIN@Mallow 2010,
pages 82–97, 2010.

19. Xinjun Mao and Eric Yu. Organizational and social concepts in agent oriented
software engineering. In James Odell, Paolo Giorgini, and Jörg Müller, editors,
Agent-Oriented Software Engineering V, volume 3382 of Lecture Notes in Computer
Science, pages 1–15. Springer Berlin / Heidelberg, 2005.

20. David Mosteller. Entwicklung eines Werkzeugs zur Modellierung der initialen Wis-
sensbasen und Rollen-Abhängigkeiten in Multiagentenanwendungen im Kontext
von PAOSE / MULAN. Bachelor’s thesis, University of Hamburg, Department of
Informatics, December 2010.

21. Lin Padgham and Michael Winikoff. Developing Intelligent Agent Systems : A
Practical Guide. Wiley Series in Agent Technology. Chichester [u.a.] : Wiley, 2004.
isbn:0-470-86120-7, Pages 225.

22. Heiko Rölke. Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen, volume 2 of Agent Technology – Theory and Applications. Logos
Verlag, Berlin, 2004.

23. Carla T. L. L. Silva and Jaelson Castro. Modeling organizational architectural
styles in UML: The tropos case. In Oscar Pastor and Juan Sánchez Díaz, editors,
Anais do WER02 - Workshop em Engenharia de Requisitos, pages 162–176, 11
2002.

24. Andre L.C. Tavares and Marco Tulio Valente. A gentle introduction to OSGi.
SIGSOFT Softw. Eng. Notes, 33:8:1–8:5, August 2008.

25. Franco Zambonelli, Nicholas Jennings, and Michael Wooldridge. Developing multi-
agent systems: The Gaia methodology. ACM Transactions on Software Engineering
and Methodology, 12(3):317–370, 2003.

26. Ingo Zinnikus, Gorka Benguria, Brian Elvesæter, Klaus Fischer, and Julien
Vayssière. A model driven approach to agent-based service-oriented architectures.
In Klaus Fischer, Ingo Timm, Elisabeth André, and Ning Zhong, editors, Multi-
agent System Technologies, volume 4196 of Lecture Notes in Computer Science,
pages 110–122. Springer Berlin / Heidelberg, 2006.

312 ModBE’13 – Modeling and Business Environments

Mining Declarative Models Using Time Intervals

Jan Martijn van der Werf ?, Ronny S. Mans ??, and Wil M.P. van der Aalst

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{ j.m.e.m.v.d.werf, r.s.mans, w.m.p.v.d.aalst }@tue.nl

Abstract. A common problem in process mining is the interpretation of the time
stamp of events, e.g., whether it represents the moment of recording, or its oc-
currence. Often, this interpretation is left implicit. In this paper, we make this
interpretation explicit using time intervals: an event occurs somewhere during a
time window. The time window may be fine, e.g., a single point in time, or coarse,
like a day. As each event is related to an activity within some process, we obtain
for each activity a set of intervals in which the activity occurred. Based on these
sets of intervals, we define ordering and simultaneousness relations. These rela-
tions form the basis of the discovery of a declarative process model describing
the behavior in the event log.

Keywords: Process mining, time intervals, concurrency theory, declarative process
models

1 Introduction

Information systems of today collect large amounts of data. For example, banks are
saving information about the granting of mortgages and loans, insurance companies are
saving information concerning the handling of claims, and hospitals are saving the ac-
tions taken to treat patients. Many of the recorded data concern events which have been
performed in the context of a certain business process. For each event, different aspects
are stored, for example, the activity and case for which the event is raised, its type, and
when it has been raised. Process mining [1] aims to extract process knowledge from
these recorded events to discover, monitor and improve the actual processes supported
by these systems.

The information about when the event occurred, for example using the order in
which events are recorded, or its recorded timestamp is used to discover, monitor and
check the control flow of processes. The implicit assumption many of the process min-
ing algorithms make is that if two events are recorded consecutively, e.g. one is recorded

? supported by the PoSecCo project (project no. 257129), partially co-funded by the European
Union under the Information and Communication Technologies (ICT) theme of the 7th Frame-
work Programme for R&D (FP7).

?? supported by the Dutch Technology Foundation STW, applied science division of NWO and
the Technology Program of the Ministry of Economic Affairs.

before the other, or the timestamp of the first is before the latter, they occurred consecu-
tively. However, in many cases, this assumption may not hold, as systems implement log
recording differently. So, although time information is recorded, it can be interpreted in
many different ways.

One interpretation of the timestamp is that it is the time on which the event actually
occurred. More likely, many systems implement this as the time on which the event
is recorded. Other systems implement logging using a queue system, i.e., the event is
placed in the queue, and then written. Thus, if two events occur at the same time, their
timestamp may differ as they are written consecutively.

A second problem of timestamps is their scale. On the one hand, a too fine time
scale introduces causality that in reality does not exist. For example, consider an infor-
mation system consisting of many different components each with their own logging
mechanism. To construct the process of the information system, the recordings of each
component need to be combined in a single event log. As a result, one needs to ensure
that all components have the same time. On the other hand, a too coarse time scale may
falsely introduce concurrency. For example, if the time scale is in days, the order of
activities executed on the same day cannot be discovered.

A third problem lies in the reliability of the time information. For example, the order
based on timestamps of events is more reliable if the same timestamp generator is used.
Thus, timestamps of events in the same component are more reliable than when the
events are recorded by different components. Another source of unreliability is whether
time information depends on user input, such as calendars, or if it is generated by the
system.

As a result, one should always first check the order in which events occur. One way
to resemble this is to use intervals for event occurrences instead of single timestamps.
This allows to change the time scale from a very fine scale, such as single points, to
very coarse time scales, such as days. For example, an event that occurred on timestamp
‘2013/04/12 12:24:36.3’, can be seen as an interval of a single point, or, if the required
time scale under consideration is in days, it can be seen as an event that occurred on
April 12, 2013, i.e., in the interval ‘2013/04/12 0:00’ - ‘2013/04/12 23:59:59’.

Process mining focuses on the extraction of process knowledge. Whereas process
knowledge mainly focuses on the level of activities, systems recordings are on an event
level, which is not necessarily the same level, as several events may be raised for the
same activity, for example when the activity started or completed. Thus, to be able to
reason on the level of activities, events should be combined into activities. Aggregration
of events in activities can be done in many ways, such as the life-cycle of activities [1].
Depending on the aggregration, each activity may occur several times, each in its own
time interval, resulting in a set of time intervals for each activity.

In this paper, we want to make the time intervals in which an activity occurs ex-
plicit. Based on a set of intervals for each activity, we reason about which relations
can be inferred. For example, do two activities occur simultaneously or do they occur
sequentially. As we use intervals instead of single time points, many activities may oc-
cur concurrently. Procedural languages, like Petri nets [3], model explicitly the order in
which activities occur. For example, places in a Petri net are used to control choices and
to reduce the degree of concurrency in a model. As a consequence, concurrency needs

314 ModBE’13 – Modeling and Business Environments

to be modelled explicitly, rather than being a language primitive. In a declarative ap-
proach, all events may be executed concurrently, unless it is prohibited by constraints.
Therefore, we choose a declarative modelling language instead, called Declare [2], and
show how a declarative model can be derived from the intervals induced by the times-
tamps of the events.

This paper is structured as follows. In Sec. 2 we introduce the basic notions used
throughout the paper. Sec. 3 discusses the role of intervals within an event log. These
events and their intervals can be mapped onto activities in many different ways, as
shown in Sec. 4. Next, in Sec. 5, we define simultaneousness and causality relations on
sets of intervals. Sec. 6 presents a method to build a declarative model based on these
interval relations. Last, Sec. 7 concludes the paper.

2 Basic Notions

Let S be a set. The powerset of S is denoted by P(S) = {S ′ | S ′ ⊆ S }. We use |S | for
the number of elements in S . Two sets U and V are disjoint if U ∩V = ∅. We denote the
cartesian product of two sets S and T by S × T . On a cartesian product we define two
projection functions π1 : S × T → S and π2 : S × T → T such that π1((s, t)) = s and
π2((s, t)) = t for all (s, t) ∈ S × T . We lift the projection function to sets in the standard
way.

A binary relation R from S to T is defined by R ⊆ (S × T). For (x, y) ∈ R, we
also write x R y. For a relation R ⊆ (S × T), the inverse relation R−1 is defined as
R−1 = {(y, x) ∈ (T ×S) | x R y}. A relation R is called a function if x R y and x R z implies
y = z for all x ∈ S and y, z ∈ T . It is called a binary relation over S if R ⊆ (S × S).
A binary relation R is reflexive if x R x for all x ∈ S . It is transitive if x R y and y R z
implies x R z for all x, y, z ∈ S . It is reflexive if (x, x) ∈ R for all x ∈ S , and irreflexive
if (x, x) < R for all x ∈ S . Relation R is symmetric if x R y implies y R x for all x, y ∈ S
and asymmetric if x R y implies ¬y R x for all x, y ∈ S . The relation is antisymmetric if
x R y and y R x imply x = y for all x, y ∈ S . The transitive closure of a binary relation R
is defined as the smallest relation R+ such that x R+ y if either x = y, or x R+ z and z R y
for some z ∈ S .

A binary relation R over some set S is an equivalence relation if it is reflexive,
symmetric and transitive. A transitive, irreflexive binary relation is called a strict order.
It is a preorder, denoted by (S ,R), if R is reflexive and transitive. A preorder is a partial
order if (S ,R) is also antisymmetric. A partial order is called a total order, if in addition
also x R y or y R x for all x, y ∈ S .

A sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S . If n > 0 and
σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉. The length of a sequence is
denoted by |σ|. The sequence of length 0 is called the empty sequence, and is denoted
by ε. The set of all finite sequences over S is denoted by S ∗. Let ν, γ ∈ S ∗ be two
sequences. Concatenation, denoted by σ = ν; γ is defined as σ : {1, . . . , |ν| + |γ|} → S ,
such that for 1 ≤ i ≤ |ν|: σ(i) = ν(i), and for |ν| + 1 ≤ i ≤ |ν| + |γ|: σ(i) = γ(i − |ν|).

Given a set S and a, possibly infinite set T ⊆ R, a function f : S → T × T is called
an interval function if π1(f (a)) ≤ π2(f (a)) for all a ∈ S .

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 315

2.1 Event Logs

For each user action on the system, an event is raised. An event records its type, for
which activity it has been raised, for which case or business process instance, when
it was raised, by whom, and the data inserted by the user. Such a recording is called
an event log [1]. The set of all possible events, i.e., the event universe is denoted by E.
Similarly, we denote the case, attribute and value universes by C,A andV, respectively,
such that E,C,A ⊆ V and E, C and A are pairwise disjoint. We assume A ⊆ V to be
the (possibly infinite) set of activities.

Definition 1 (Event log). An event log is a 3-tuple L = (C, E, #) where

– C ⊆ C is a set of case identifiers in the event log;
– E ⊆ E is a set of event identifiers in the log;
– # : A× (C ∪ E)→ P(V) is an attribute mapping.

For an attribute n ∈ A we write #n(·) as a shorthand for #(n, ·). The following attributes
are always defined:

– Each event belongs to exactly one case and each case has at least one event, de-
noted by the mandatory attribute case ∈ A, i.e., for all events e ∈ E, a case c ∈ C
exists with #case(e) = {c}, and for all c ∈ C an event e ∈ E exists with #case(e) = {c};

– Each event belongs to some activity, denoted by the mandatory attribute act ∈ A,
i.e., for all events e ∈ E an activity a ∈ A exists such that #act(e) = {a};

– An event may record the time it was recorded using the timestamp attribute time ∈
A, i.e., for all events e ∈ E we have #time(e) = {t} for some timestamp t ∈ T, where
T resembles the set of timestamps.

3 Intervals in Event Logs

There are many techniques for discovering a process model out of an event log. An ex-
tensive overview of available process discovery techniques can be found in [24]. Some
examples are the alpha miner [4], the ILP miner [27] and the declarative miner [17].
In many discovery methods, events are considered to be instantaneous: they occur at a
single point in time. However, in many information systems, such as electronic patient
records, or financial statements, only a date is recorded. Consequently, even if events
are considered to occur instantaneously, if they are observed within the same interval,
the only conclusion to be drawn is that these occurred simultaneously.

The more coarse the chosen time scale (e.g., days, weeks or months), the more
events will occur concurrently. Another consequence of a more coarse time scale is that
events occur in some time window, rather than occurring at a single moment in time.
It is important to note that there are some techniques which do not consider events to
be instantaneous. That is, the authors of [15], exploit the fact that activities take time,
i.e. each activity has a start and complete event. As a result, parallelism can be detected
explicitly. Two activities are considered to occur in parallel if there is at least one case
in which the activities overlap in time. In [20], the authors consider the execution of an
activity as a time interval based on a starting and ending event. Parallelism is detected

316 ModBE’13 – Modeling and Business Environments

Table 1. Example event log, time scale in days

date events date events
7-1-2013 (1, A) 14-1-2013 (3, G) (4, A)
8-1-2013 (1, B), (1, E) 15-1-2013 (4, F), (5, A), (6, A)
9-1-2013 (2, A), (1, G) 16-1-2013 (4, G), (5, D)
10-1-2013 (2, E), (2, C), (3, A) 17-1-2013 (5, G), (6, F)
11-1-2013 (2, G), (3, D) 18-1-2013 (6, G)

by identifying two executions in which one activity occurs before the other one, and the
other way around. The work described in [21] is comparable to [20], which presents a
different control-flow discovery algorithm based on the notion of time intervals. All the
aforementioned techniques only use one notion for determining intervals for activities
and whether they overlap. In this paper, we study the case where activities occur in
multiple intervals within the same execution.

Consider the events presented in Tbl. 1 showing for each day the events that oc-
curred. For each event, its case and activity are recorded. The time stamps of these
events are in days, e.g., event (1, B) occurred on January 1, 2013, as well as event
(1, E). Based on this information, we cannot infer any order between B and E, the only
fact that can be inferred is that these events occurred simultaneously.

As the time scale is relatively coarse, a first analysis of this event log would be the
degree of concurrency. We can build a graph that depicts the intervals on a time scale,
as shown in Fig. 1(a). Based on this graph, we derive a concurrency relation I ⊆ E × E,
such that a I b if and only if a and b occur within the same time interval. This results in
a graph as depicted in Fig. 1(b), where the dashed and solid edges together represent the
relation I. For readability, the self loops have been omitted. Note that (A,G) is an edge
in the graph, while no case exists in which activities A and G occur simultaneously.
Therefore, we can partition the relation I into two relations IS and IG such that a IS b if
and only if #case(a) = #case(b), and IG analogously. In Fig. 1(b), the edges of relation IS

are solid, the edges of relation IG are dashed. Similarly, the concurrency relation is not
transitive with respect to the event log: even though (B, E) and (E,C) are edges in the
graph, B, C and E never occur simultaneously in any case.

Whereas in Fig. 1(b) an absolute time window is taken, one could also choose to
map each event to a relative interval, e.g. the respective day from the start of the day,
as shown in Fig. 1(c). To allow such abstractions, we introduce the notion of an event
interval mapping function that maps each event onto a time interval.

Definition 2 (Event interval mapping function). Let L = (C, E, #) be an event log. A
function mL : E → T × T is an event interval mapping function for L if it is an interval
function. The default interval mapping function DL : E → T × T of L is defined by
DL(e) = (#time(e), #time(e)) for all e ∈ E.

Based on the event interval mapping function, two notions of concurrency can be
observed: one based on the whole event log, called the concurrency relation, and one
based on the individual executions: the simultaneousness relation. Thus, the simultane-
ousness relation I for an event log L can be defined as the events that occur in the same
interval defined by some interval mapping function.

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 317

(1,A) (1,E)

(1,B)

(1,G)

(2,A)

(2,C)

(2,E)

(3,A)

(3,D)

(2,G)

(4,A)

(3,G)

(5,A)

(4,F)

(6,A)

(4,G)

(5,D)

(5,G)

(6,F)

(6,G)

(a) intervals

G D

E

B

A

C

F

(b) concurrency graph

(1,A) (1,E)

(1,B)

(1,G)

(2,A)

(2,C)

(2,E)(3,A)

(3,D)

(2,G)

(4,A)

(3,G)

(5,A)

(4,F)(6,A)

(4,G)

(5,D)

(5,G)

(6,F)

(6,G)

(c) Relative time, intervals

Fig. 1. Intervals of Tbl. 1

Definition 3 (Concurrency, simultaneousness relation). Let L be an event log, and m
a corresponding event interval mapping function. Its concurrency relation Īm ⊆ E × E
is defined by a Īm b iff π1(m(a)) ≤ π2(m(b)) and π1(m(b)) ≤ π2(m(a)) for a, b ∈ E. Its
simultaneousness relation Im ⊆ E × E is defined by a Im b iff both a Īm b and #case(a) =

#case(b) for a, b ∈ E.

In the literature, the graph imposed by the concurrency relation is called the interval
graph [11, 16]. Following [11], we can define an ordering relation � that is defined by
a � b iff π2(m(a)) < π1(m(b)), stating that b “wholly occurs after” a. Relation � is
called an interval order [28, 29], as proven in [11].

Definition 4 (Interval order). A binary relation R over some set S is an interval order
if a R b and c R d imply a R d or c R b for all a, b, c, d ∈ S .

Using intervals in concurrency is not new. For example, Janicki and Koutny [14]
show that the notion of interval orders naturally follows from a basic assumption on
concurrency: “the observer can state that one event preceded another event, or that two
events occurred simultaneously”. The authors show that for finite event logs, events can
be interpreted as intervals on a discrete time scale. The authors introduce a model as
a set of relations defining (weak) causalities, commutativity and synchronisation. An
observation is called a history of a model if the relations induced by the observation
coincide with the relations of the model.

318 ModBE’13 – Modeling and Business Environments

In [6], Allen defines a set of assertions and properties based on time intervals: “be-
fore”, “equal”, “meets”, “overlaps”, “during”, “starts” and “finishes”. Based on these
predicates, the authors introduce the assertion “occurs” with two variables: an event
and an interval. This approach is often used in the area of artificial intelligence to rea-
son over time using logic programming [7, 22].

4 Activities as Sets of Intervals

The interval mapping function on event logs introduced in the previous section induces
an interval order on the events in the event log. In this way, approaches like in [9,14] are
directly applicable on this interval mapping function. These approaches mainly focus
on a single run of a system: each event occurs exactly once. However, process mining
mainly focuses on the analysis of the process implied by the activities for which the
events in the event log occurred.

Different events for the same activity may indicate that the activity has been exe-
cuted several times. Or, if an event represents the different stadia of some life cycle of
activities, like a start and complete type, multiple events occur for the same activity.
In [19] an approach is given for identifying pairs of events which denote the start and
end of an activity. Thus, a single execution involves multiple occurrences of activities
with some duration. Therefore, we search for new relations such that we can describe
the relations on activity level, rather than on the level of events.

One way to lift the interval functions from events to activities is by defining a re-
lation based on the interval order. Similar to the concurrency and simultaneousness
relation, one would obtain two relations R̄ and R such that

a R̄ b⇔ ∃e1, e2 ∈ E : #act(e1) = a ∧ #act(e2) = b ∧ e1 � e2

a R b⇔ ∃e1, e2 ∈ E : #case(e1) = #case(e2) ∧ #act(e1) = a ∧ #act(e2) = b ∧ e1 � e2

In fact, using the default event interval mapping of an event log, relation R coincides
with the weak order relation of [25], which allows us to construct a relation set [26]
based on intervals. In this paper, we will focus on behavioural relations based on the
interval in which an activity is executed.

Although the above relation R̄ is transitive, it abstracts away from the observed
sequences in the event log. As activities may have multiple occurrence intervals, it is
not an interval function. Therefore, we need to generalize the interval function to sets
of intervals.

Definition 5 (Generalized interval function). Given a set S and a, possibly infinite
set T ⊆ R, a function f : S → P(T × T) is called a generalized interval function if
x ≤ y for all (x, y) ∈ f (a) and a ∈ S .

A generalized interval function can define a large set of small intervals, or a small
set of large intervals. We call this the granularity of the interval function. Given any
generalized interval function, we can define its most fine granular interval function, i.e.,
each point is its own interval, and the most coarse granular interval function, i.e., the
conjunction of all intervals.

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 319

Table 2. Event log of a single case

Act. Type Time Act. Type Time
A start 1 B start 9
B start 2 D complete 10
B complete 3 B complete 11
C start 4 E complete 12
A complete 5 D start 13
C complete 6 F start 14
D start 7 D complete 15
E start 8 F complete 16

A
B
C
D
E
F

(a) Per instance of the activity

A
B
C
D
E
F

(b) Total time

Fig. 2. Possible occurrence intervals of Tbl. 2

Definition 6 (Finest and coarsest interval functions). Let f : S → P(T × T) be a
generalized interval function. Its finest interval function, denoted by f ↓: S → P(T×T),
is defined by

f ↓ (s) = {(t, t) | ∃(x, y) ∈ f (s) : x ≤ t ≤ y}
The coarsest interval function of f , denoted by f ↑: S → P(T × T), is defined by:

f ↑ (s) = { (min{ π1(f (s)) },max{ π2(f (s)) }) }

Consider as an example the event log shown in Tbl. 2 representing the events of
a single case. In this example, the time scale is defined as hours since the start of the
execution. Many different ways exists to map these events to a generalized interval
function on activities.

Two example mappings are given in Fig. 2. In the first example, the start and com-
plete events of each activity are used to define the different intervals, whereas in the
second example the very first start event of the activity defines the begin of the interval,
and the very last complete event of the activity the end of the interval. Observe that in
Fig. 2(a) activities B and C have no overlap, whereas in Fig. 2(a) these activities do
have overlap.

In general, an event log records many different executions. Therefore, we map each
execution to its own activity interval function. This results in an activity interval map-
ping for an event log.

As each event belongs to a single activity, we require that an activity interval map-
ping defines a unique interval for each event in the event log. On the other hand, as an
activity may be represented by multiple occurrences, multiple events may be related to
the same activity interval.

320 ModBE’13 – Modeling and Business Environments

Definition 7 (Activity interval mapping). Let L = (C, E, #) be an event log with cor-
responding event interval mapping m, let A be a set of activities of L, and let T ⊆ R
be the time scale. The function G : C × A → P(T × T) is called an activity interval
mapping iff

– each event has a unique corresponding interval, i.e.,

∀e ∈ E : (∃I ∈ G(#case(e), #act(e)) : m(e) ⊆ I)
∧ (∀I, J ∈ G(#case(e), #act(e)) : (m(e) ⊆ I ∧ m(e) ⊆ J) =⇒ I = J)

– each interval has at least one event occurrence, i.e.,

∀a ∈ A, c ∈ C, I ∈ G(c, x) : ∃e ∈ E : #case(e) = c ∧ #act(e) = a ∧ m(e) ⊆ I

The default activity interval mapping of an event log L, denoted by L̄ : C × A→ T × T,
is defined by:

L̄(c, a) = {m(e) | ∃e ∈ E : #case(e) = c ∧ #act(e) = a}
Many different interval functions can be defined for an event log. As the next corol-

lary shows, such activity interval mappings are related, as intervals may be combined
into larger intervals, or split into several smaller intervals. It is simple to see that given
some activity interval mapping, its coarsest interval function is also an activity interval
mapping. Further, the finest interval function of the minimal activity interval mapping
is contained in the finest interval function of the activity interval mapping.

Corollary 8. Given an event log L with corresponding event interval mapping m and
activity interval function G. Let A be the set of activities in L. Then (1) G↑is an activity
interval mapping, (2) L̄ ↓⊆ G ↓, and (3) π1(G ↑ (a)) ≤ π1(L̂ ↑ (a)) and π2(G ↑ (a)) ≥
π2(L̄↑ (a)) for all activities a ∈ A.

5 Relations on Interval Sets

In general, a generalized interval function does not define any interval order. Conse-
quently, approaches like in [6, 14] cannot be used to determine causality and similarity
relations. In this section, we derive such notions based on the generalized interval func-
tion.

5.1 Notions of Simultaneousness

In an interval order two intervals are unrelated if one does not wholly occur after the
other, and vice versa. With sets of intervals, different degrees of simultaneousness can
be defined.

The weakest form of simultaneousness is when two elements have some overlap-
ping intervals. For example, in the intervals shown in Fig. 3(a), activities A and B have
some intervals that overlap. Note that the relation is not transitive, as shown in the same
figure. We say an element s is dependent simultaneous with some other element t if for
every interval of s, an overlapping interval of t exists. Thus, everytime s is started, t will
be started as well, whereas if t occurs, s does not have to occur. If s always overlaps
with t, we say they are strongly dependent.

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 321

A
B
C

(a) Weakly simultaneous

A
B
C

(b) Dependent simultaneous

A
B
C

(c) Strongly simultaneous

Fig. 3. Simultaneousness relations

Definition 9 (Simultaneousness). Let f be a generalized interval function over some
set S . Let s, t ∈ S . Then:

– s and t are weakly simultaneous, denoted by s ↔ t, if s and t share some interval,
i.e., ∃I ∈ f (s), J ∈ f (t) : I ∩ J , ∅;

– s is dependently simultaneous with t, denoted by s ⇒ t, if always if s occurs, then
t occurs in the same interval, i.e., ∀I ∈ f (s) : ∃J ∈ f (t) : I ∩ J , ∅;

– s and t are strongly simultaneous, denoted by s� t, if s and t always overlap, i.e.,
s� t if and only if s⇒ t and t ⇒ s.

Consider again Fig. 3. In Fig. 3(a) we have A ↔ B and B ↔ C but not A ↔ C,
in Fig. 3(b) we have A ⇒ B as every interval of A overlaps with some interval of B,
B ⇒ C as each interval of B overlaps with some interval of C and A ↔ C but not
A ⇒ C as not every interval of A overlaps with an interval of C. Last, in Fig. 3(c) we
have A � B, B � C and A ⇒ C but not A � C, as every interval of A overlaps some
interval of C but not vice versa.

Based on their definitions, it is trivial to see that strong simultaneousness implies
dependent simultaneousness which in turn implies weak simultaneousness.

Corollary 10. Let f be a generalized interval function over some set S , and let s, t ∈ S .
Then (1) s⇒ t ∧ f (s) , ∅ =⇒ s↔ t, and (2)� and↔ are symmetric and reflexive.

As shown in Fig. 3, none of these relations is transitive. Consequently, we cannot
obtain equivalence classes based on the intervals. As the relation � is symmetric and
reflexive, it can be used as a dependence relation over the set of activities, which allows
us to use Mazurkiewicz trace theory [10] for e.g. synthesis and to check completeness
of event logs.

5.2 Notions of Causality

Fishburn showed in [11], that given an interval function f , any order � with x � y iff
π2(f (x)) < π1(f (y)), i.e., that the interval of x is wholly after the interval of y, is an
interval order. Similarly, the > relation in relation sets [4,26] states that if a > b but not

322 ModBE’13 – Modeling and Business Environments

A
B
C

(a) Wholly succeeded by

A
B
C

(b) Succeeded by

A
B
C

(c) Strictly succeeded by

A
B
C

(d) Preceeded by

A
B
C

(e) Strictly preceeded by

Fig. 4. Different causal relations based on the intervals

b > a, then a and b are causally ordered, i.e., a is followed by b, but b never followed by
a. In terms of intervals, similar relations can be defined. Again, as an activity possibly
has multiple intervals, we need to adapt the notion of causality to sets of intervals.

The first causality relation we introduce is if all intervals of some activity t occur
after the intervals of s occurred, i.e., s is wholly succeeded by t. An example is depicted
in Fig. 4(a), in which A is wholly succeeded by B and B is wholly succeeded by C. If
for each interval of s some interval of t can be found that wholly succeeds the interval
of s, we say that s is succeeded by t. In Fig. 4(b), A is always succeeded by B, and B is
always succeeded by C. Note that this allows intervals of t to occur simultaneously with
intervals of s, or even occurring before s, as shown in Fig. 4(b) where B occurs before
A. If s is succeeded by t and they have no overlapping intervals, we say that s is strictly
succeeded by t. An example is shown in Fig. 4(c), where A is strictly succeeded by B,
and B strictly succeeded by C. Note that whereas the succeeded relation is transitive,
the strictly succeeded is not, as A and C have overlap.

Symmetrically, if for each interval of t an interval of s can be found that wholly
preceeds the interval of t, we say that t is preceeded by s. This allows intervals of s
to occur after intervals of t, or even simultaneously, as shown in Fig. 4(d) where B is
preceeded by A, and C by B. The relation is called strict, if s and t are not simultane-
ously. Again, as shown in Fig. 4(e), the strictly preceeded relation is not transitive, as
B is strictly preceeded by A, and C by B, but A and C have overlap. This leads to the
following notions of causality.

Definition 11 (Causality). Let f be a generalized interval function over some set S .
Let s, t ∈ S . Then:

– s is wholly succeeded by t, denoted by s�t, if all intervals of t are after the intervals
of s, i.e., π2(f ↑ (s)) < π1(f ↑ (t));

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 323

– s is succeeded by t, denoted by s D t, if each interval of s is followed by an interval
of t, i.e., ∀(a, b) ∈ f (s) : ∃(c, d) ∈ f (t) : b < c;

– s is strictly succeeded by t, denoted by s� t, if s D t and not s↔ t;
– t is preceeded by s, denoted by s w t, if each interval of t is preceeded by an interval

of s, i.e. ∀(c, d) ∈ f (t) : ∃(a, b) ∈ f (s) : b < c;
– t is strictly preceeded by s, denoted by s = t, if s w t and not s↔ t.

It is easy to see that the wholly succeeded relation is a strict order. Similarly, the
followed by and preceeded by relations are transitive. However, these relations are not
irreflexive in general. Only if the set of intervals for some activity is finite, the relations
are irreflexive as well, and thus a strict order. If an activity has an infinite set of intervals,
then it is succeeded by itself.

If some activity is wholly succeeded by some other activity, then it is easy to show
that the former activity is strictly succeeded by the latter, and the latter is strictly pre-
ceeded by the former.

Corollary 12. Let f be a generalized interval function over some set S . Then (1) � is
a strict order, (2) D, and w are transitive, and (3) x � y =⇒ x � y ∧ x = y for all
x, y ∈ S .

Further, the strictly succeeded by and strictly preceeded by relations are subsets of
the succeeded by and preceeded by relations, respectively.

Corollary 13. Let f be a generalized interval function over some set S . Then (1) � ⊆
D, and (2) = ⊆ w.

As for the interval order � defined on events, the wholly succeeded by relation on
activities is an interval order, which follows directly from the definitions.

Lemma 14 (Wholly succeeded is an interval order). Let f be a generalized interval
function over some set S . Then � is an interval order.

Proof. Let a, b, c, d ∈ S such that a � b, and c � d. We need to show that either a � d
or c� b holds.

Suppose a� d does not hold, i.e., π2(f ↑ (a)) ≥ π1(f ↑ (d)). Then π2(f ↑ (c)) < π1(f ↑
(d)) ≤ π2(f ↑ (a)) < π1(f ↑ (b)). Hence, c� b.

Similarly, suppose c � b does not hold, i.e., π2(f ↑ (c)) ≥ π1(f ↑ (b)). Then π2(f ↑
(a)) < π1(f ↑ (b)) ≤ π2(f ↑ (c)) < π1(f ↑ (d)). Hence, a� d. ut

5.3 Other Control-Flow Relations

The simultaneousness and causality relations form the basic building blocks of any pro-
cess modelling language. Many other control-flow relations can be defined, depending
on the needs within the process modelling notation. For example, one can define a next-
to relation on activities, defining whether two activities are directly after one another,
without any activitiy in between. As for simultaneousness, this can be a weak relation,
i.e., for two activities there are intervals next to each other, or a strong relation, i.e., for
all intervals.

324 ModBE’13 – Modeling and Business Environments

Definition 15 (Next-to relation). Let f be a generalized interval function over some
set S . Let s, t ∈ S . We say s is next to t, denoted by s ◦ t, if some interval of s is directly
followed by an interval of t, without any occurrence of other activities in between, i.e.,
∃(k, l) ∈ f (s), (o, p) ∈ f (t) : (l < o ∧ ¬(∃u ∈ S : (m, n) ∈ f (u) : l < n ∧ m < o))

Similarly, s is followed by t, denoted by s • t, if all intervals of s are directly followed
by an interval of t, without any occurrence of other activities in between, i.e.,
∀(k, l) ∈ f (s) : (∃(o, p) ∈ f (t) : l < o ∧ ¬(∃u ∈ S : (m, n) ∈ f (u) : l < n ∧ m < o))

Naturally, if s is followed by t, then s is also succeeded by t.

Corollary 16 (Follows implies succeeded). Let f be a generalized interval function
over some set S , and let s, t ∈ S . Then if s • t then also s D t.

As activities are represented by sets of intervals, an activity can be enclosed by
some other activity, i.e., some activity B always occurs between two intervals of A. We
call this relation betweenness. Again, this can be a strong notion, requiring this for all
intervals of B, or a weak notion, only requiring the existence of such an interval of B.

Definition 17 (Betweenness). Let f be a generalized interval function over some set
S . Let s, t ∈ S . We say t is weakly in between s, denoted by s# t, if some interval of t
is in between two intervals of s, i.e., ∃(m, n) ∈ f (t), (k, l), (o, p) ∈ f (s) : l < m ∧ n < o.

Similarly, we say t is in between s, denoted by s	 t, if all intervals of t are between
two intervals of s, i.e., ∀(m, n) ∈ f (t) : (∃(k, l), (o, p) ∈ f (s) : l < m ∧ n < o).

Altough betweenness seems a natural choice, it can be expressed in terms of the
basic causality notions defined in Def. 11.

Corollary 18 (Betweenness implies basic causality). Let f be a generalized interval
function over some set S , and let s, t ∈ S . If s	 t then s w t and t D s.

6 Discovering Declarative Models

The density of the time scale has a great impact on the level of concurrency in an event
log, and hence in the model that describes the allowed behaviour of the executions in
the event log. Procedural languages prescribe the order in which activities are supposed
to occur. Consequently, concurrency needs to be modelled explicitly in such languages.
Instead, we use a declarative approach that has concurrency as a language primitive:
activities may occur simultaneous, unless constraints prohibit the execution of the ac-
tivity.

6.1 Declare Language

In this paper, we use the declarative language Declare [2]. The language provides a
graphical layout to visualize the activities and constraints in the model. It does not
come with a predefined set of language constructs. Instead it offers a set of language
constructs called constraint templates, which the user may adapt to its own needs. These
constraint templates are based on Linear Time Logic (LTL) [8]. Declare comes with a

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 325

Table 3. Basic language constructs in Declare

Constraint Template Graphically

init σ(1) = A
A

init

response �(A =⇒ �B)
A B

precedence ((¬B) U A) ∨ �¬B
A B

non coexistence ¬((�A) ∧ (�B))
A B

(n..m) occurrences |{i | σ(i) = A}| ∈ [n..m] ⊆ N A

n..m

Table 4. Newly introduced constraints in Declare

Constraint Template Graphically

strongly simultaneous A� B
A B

Dependently simultaneous A⇒ B
A B

wholly succeeded A� B
A B

strict response A� B
A B

strict precedence A = B
A B

basic set of language constructs. Tbl. 3 depicts the language constructs from Declare
used in this paper.

The first constraint template, init, states that the first activity of any sequence, rep-
resented by σ, should start with A, where A is a placeholder for the actual activity.
Similarly, the response template states that every A should eventually be followed by
some activity B. The precedence constraint template expresses that some activity B has
to be preceeded by some activity A. With the non coexistence template, it is possible to
express that two activities should not occur together in any sequence. Last, we allow to
limit the number of times an activity can be executed using the n..m occurrences tem-
plate, where n ≤ m specifies the minimal and maximal number of times some activity
A is executed.

6.2 Interval-Based Constraints

The constraints in Declare do not take activity duration into account. Consequently, we
need to relate the constructs used in Declare with the simultaneousness and causality
relations defined in the previous section.

First, consider the response constraint template. This constraint expresses that ac-
tivity A is always eventually followed by B. This can be interpreted in many different

326 ModBE’13 – Modeling and Business Environments

ways, e.g., “once activity A is started, activity B will eventually start”, or “once activ-
ity A is finished, activity B will eventually start”. We choose the latter interpretation,
i.e., after activity A finished, eventually activity B will start. A second consideration is
whether the response and precedence templates should allow the activities in the con-
straint to occur simultaneously. As the response template is transitive in the Declare
language, we allow the activities to overlap. Thus, we interpret the response template
with the succeeded by relation introduced in the previous section. Similarly, we interpret
the preceeds template as “before activity B starts, activity A should be finished”, which
coincides with the preceeds by relation introduced in the previous section. Therefore,
the strictly succeeded by and strictly preceeded by relations are added to the Declare
language, as shown in Tbl. 4.

Although in Declare concurrency is a language primitive, each activity in the model
is considered to be instantaneous. The language does not provide any constraint that
limits concurrency without destroying it. Thus, the weak simultaneousness relation as
presented in the previous section is directly supported in the language. The two stronger
simultaneousness relations impose an order on the activities: although the activities
may overlap, the other activity must be executed simultaneously. This is expressed by
the strongly simultaneous template and dependent simultaneous template as depicted in
Tbl. 4.

6.3 Discovery

In the previous section, we introduced several notions of simultaneousness and causal-
ity. Up to now, these relations only consider a single execution of the system. An event
log contains a set of executions that are executed by, most likely, the same process.
Hence, to come to a model that describes each of the executions in the event logs, we
need to aggregate the relations over the different executions in the event log.

In what follows, we sketch a declarative discovery algorithm based on time inter-
vals. Here, it is important to mention that the choice of the generalized interval functions
for the activities breaks or makes the approach presented in this paper.

Events to interval First step in the approach is to map each event to an interval. In
many cases the default event interval mapping, i.e., that maps each event to a single-
point interval, can be used. In some cases, for example if event logs of multiple systems
are combined, a reliability interval can be attached to each interval.

Activities to sets of intervals Next step is the construction or discovery of an accurate
activity interval mapping. For example, one can fix the granularity of the time scale,
make it relative or absolute, and then map each event to the corresponding time interval.
Or, one can use the event types to determine the life cycle of an activity, and base the
activity interval mapping on this information. Although at first sight this seems to be
a trivial step, there are many pitfalls [12]. For example, if two instances of the same
activity run simultaneously, which interval should be used to map the activity on?

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 327

Strongly
simultaneousness

Dependently
simultaneousness

Weakly
simultaneousness

(a) Simultaneousness

Wholly succeeded by

Strictly
succeeded by

Strictly
preceeded by

succeeded by preceeded by

(b) Causality

Fig. 5. Hierarchy of simultaneousness and causality relations

Derive relations Once the activity interval mapping has been established, we can start
to derive the different relations. For example, the (n..m) occurrences template can be
easily constructed by analyzing the number of occurrences in each of the sequences in
the event log. Similarly, the non-coexistence relation can be calculated by a single walk
through the sequences of the event log.

Next step would be to derive the different simultaneousness relations and causality
relations. For this, we use the relation hierarchy as depicted in Fig. 5, which follows
directly from Cor. 10 and Cor. 12. An arrow from one relation to another relation means
that the former is included in the latter. For example, the strongly simultaneousness
relation is included in the dependently simultaneousness relation. The algorithm starts
with assuming the strongest relation between each of the activities. By going through
the different intervals, relations are weakened, until all intervals of all sequences in the
event log have been inspected.

The algorithms to derive the simultaneousness and causality relations do not take
transitivity into account, which results in models with many constraints, expressing the
complete transitive closure of the respective relations. Therefore, these relations need
to be reduced, such that the transitive closure of this reduced relations remain the same.
For this, standard algorithms as described in [5] can be used. Although at first sight this
seems a straightforward task, it is not, as one wants to take the hierarchy of relations
into account during the reduction, which is closely related to the “minimum equivalent
graph” problem [18], which is NP-hard.

Last, we sugar the models using nesting, as has been done in e.g. Dynamic Condi-
tion Response Graphs [13]. In this approach, set of nodes having the same constraints
are nested in a so called “super nodes”.

For the example event log of Tbl. 1, the discovery algorithm that has been sketched
above results in the model depicted in Fig. 6. For the activities B, C, and E, we briefly
illustrate the steps of the algorithm. In the first step, we take a relative time scale for
the activity interval mapping. Moreover, a “start” event denotes the start time of an
activity and a “complete” event denotes the end time of an activity. Secondly, all three

328 ModBE’13 – Modeling and Business Environments

A

1..1

init

B

0..1

E

0..1

C

0..1

G

1..1

D

0..1

F

0..1

A

B

0..1

E

0..1

C

0..1

G

1..1

D

0..1

F

0..1

Fig. 6. Model discovered from the event log in Tbl. 1

activities occur at most once in each of the sequences of the event log resulting into a
0..1 occurrence relation for each of them. Also, activity A and B never occur together
in each sequence. In the third step, it is discovered that activities B and C are strongly
simultaneous. Also, the tree activities are all preceeded by activity A and succeeded by
activity G. Finally, in the last step, activities B, E and C are nested, as these activities
are all preceeded by A, do not coexist with D and F, and are all succeeded by G.

7 Conclusions

Timestamps in an event log play an essential role in process mining to determine the
order in which events occur. A typical problem in process mining is the impreciseness
of these timestamps. In this paper, we overcome this problem by assuming that each
event occurs in some time window, i.e., in some interval. As the intervals in an event
log are on the level of events, rather than on the level of activities, we have presented
an approach based on sets of intervals to represent the occurrences of the activities in
the model. On these sets of intervals new notions of simultaneousness and causalities
are derived. These notions form the basis to discover declarative models.

The simultaneousness relation forms a natural candidate for the dependency relation
in Mazurkiewicz traces. In this way, simultaneousness can be used to test the complete-
ness of event logs, by exploring the Mazurkiewicz equivalent traces.

Although intervals are a natural choice to overcome the impreciseness of times-
tamps, choosing the right time window is a hard problem. The events and activities can
be mapped to intervals in many different ways. The granularity of the time scale, like
milliseconds, hours or days, can be used to define the intervals, the time scale can be
relative or absolute. Or, if the event log contains a transition life cycle, like a start and
complete event, then the first and last event of each execution can be used to deter-
mine the intervals in the activity interval mapping. Empirical research is needed to test,
validate and compare the different alternatives.

As the proof of the pudding is in the eating, we will implement the presented ap-
proach in ProM [23] to perform more case studies to test and fine tune the resulting
declarative models.

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 329

Acknowledgements The authors would like to thank Jetty Klein for the fruitful discus-
sions about paradigms of concurrency and interval orders.

References

1. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer-Verlag, Berlin, 2011.

2. W.M.P. van der Aalst, M. Pesic, and M.H. Schonenberg. Declarative workflows: Balancing
between flexibility and support. Computer Science - Research and Development, 23:99–113,
2009.

3. W.M.P. van der Aalst and C. Stahl. Modeling Business Processes -Ű A Petri Net-Oriented
Approach. The MIT Press, 2011.

4. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering
Process Models from Event Logs. Knowledge & Data Engineering, 16(9):1128–1142, 2004.

5. A.V. Aho, M. R. Garey, and J. D. Ullman. The Transitive Reduction of a Directed Graph.
SIAM Journal on Computing, 1(2):131–137, June 1972.

6. J.F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23(2):123–
154, July 1984.

7. J.F. Allen. Actions and Events in Interval Temporal Logic 1 Introduction. Journal of Logic
and Computation, 4:531–579, 1994.

8. E. Clarke and E. Emerson. Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic. In Logics of Programs, volume 131 of LNCS, pages 52–
71. Springer-Verlag, Berlin, 1982.

9. P. Degano and U. Montanari. Concurrent Histories: A Basis for Observing Distributed Sys-
tems. Journal of Computer and System Sciences, 34(2-3):422–461, 1987.

10. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore,
1995.

11. P.C Fishburn. Interval graphs and interval orders. Discrete Mathematics, 55(2):135–149,
July 1985.

12. T. Gschwandtner, J. Gärtner, W. Aigner, and S. Miksch. A Taxonomy of Dirty Time-Oriented
Data. In G. Quirchmayr, J. Basl, I. You, and E. Weippl, editors, CD-ARES 2012, volume 7465
of LNCS, pages 58–72. Springer, 2012.

13. T. Hildebrandt, R. Mukkamala, and T. Slaats. Nested dynamic condition response graphs.
Fundamentals of Software Engineering, pages 343–350, 2012.

14. R. Janicki and M. Koutny. Structure of concurrency. Theoretical Computer Science,
112(1):5–52, April 1993.

15. Wen. L., J. Wang, W.M.P. van der Aalst, B. Huang, and J. Sun. A Novel Approach for
Process Mining based on Event Types. Journal of Intelligent Information Systems, 32:163–
190, 2009.

16. R.D. Luce. Semiorders and a Theory of Utility Discrimination. Econometrica, 24(2):178–
191, 1956.

17. F.M. Maggi, R.P.J.C. Bose, and W.M.P. van der Aalst. Efficient discovery of understandable
declarative process models from event logs. In CAiSE, volume 7328 of LNCS, pages 270–
285. Springer-Verlag, Berlin, 2012.

18. D.M. Moyles and G.L. Thompson. An algorithm for finding the minimum equivalent graph
of a digraph. Journal of the ACM, pages 455 – 460, 1969.

19. J. Nakatumba and W.M.P. van der Aalst. Analyzing Resource Behavior Using Process Min-
ing. In S. et al. Rinderle-Ma, editor, BPM 2009 Workshops, volume 43 of LNBIP, pages
69–80. Springer, 2009.

330 ModBE’13 – Modeling and Business Environments

20. S.S Pinter and M. Golani. Discovering Workflow Models from Activities’ Lifespans. Com-
puters in Industry, 53:283–296, 2004.

21. Y.-L. Qu and T.-S. Zhao. Building Process Models Based on Inverval Logs. In M. Ma, editor,
Communication Systems and Information Technology, volume 100 of LNEE, pages 71–78.
Springer, 2011.

22. G. Rosu and S. Bensalem. Allen Linear (Interval) Temporal Logic – Translation to LTL and
Monitor. In Computer Aided Verification, pages 263–277. Springer, 2006.

23. H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. XES, XE-
Same, and ProM 6. In Information System Evolution, volume 72, pages 60–75. Springer,
2011.

24. J. de Weerdt, M. de Backer, J. Vanthienen, and B. Baesens. A Multi-dimensional Quality
Assessment of State-of-the-Art Process Discovery Algorithms using Real-Life Event Logs.
Information Systems, 37:654–676, 2012.

25. M. Weidlich, J. Mendling, and M. Weske. Efficient consistency measurement based on be-
havioral profiles of process models. IEEE Trans. Software Eng., 37(3):410 – 429, 2011.

26. M. Weidlich and J.M.E.M. van der Werf. On Profiles and Footprints – Relational Semantics
for Petri Nets. In Application and Theory of Petri Nets, LNCS, pages 148–167. Springer,
2012.

27. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process Dis-
covery Using Integer Linear Programming. Fundamenta Informatica, 94(3 – 4):387 – 412,
2009.

28. N. Wiener. A contribution to the theory of relative position. Proceedings of the Cambridge
Philosophical Society, 17:441–449, 1914.

29. N. Wiener. A new theory of measurement: A study in the logic of mathematics. Proceedings
of the London Mathematical Soc., s2-19(1):181–205, 1921.

J.M.E.M. v.d. Werf et al.: Mining Declarative Models Using Time Intervals 331

332 ModBE’13 – Modeling and Business Environments

Part VIII

ModBE’13: Short Presentation

Improving Emergency Department Processes Using Coloured
Petri Nets

Khodakaram Salimifard1, Seyed Yaghoub Hosseini2, Mohammad Sadegh Moradi1

1 Industrial Management Department, Persian Gulf University, Bushehr, Iran

salimifard@pgu.ac.ir, msadeghmoradi@gmail.com

2 Business Management Department, Persian Gulf University, Bushehr, Iran

hosseini@pgu.ac.ir

Abstract. With increasing demand for medical services, emergency departments (ED)
are facing problems such as overcrowding and dissatisfaction. Improving the key per-
formance indicators of EDs has been the focal point of healthcare management. This
paper addresses performance analysis of ED of a general hospital. To this aim, a dis-
crete event dynamic modeling approach is used to model the ED processes. The mod-
el employs a hierarchical timed Coloured Petri net framework in a concise and de-
tailed way to capture patient flow and care processes within the ED. The simulation
model was validated against historical data and then different types of scenarios were
used to assess, compare and improve ED key performance indicators, such as patients
waiting time, length of stay (LOS), and resource utilization rate. The proposed model
helped the hospital policy makers to configure the ED in a way to improve its effi-
ciency and staff satisfaction.

Keywords: Healthcare System, Emergency Department, Coloured Petri Net, Perfor-
mance Analysis

1 Introduction

Emergency departments (ED) are facing different problems which affect their performance.
Of these, overcrowding is a common issue around the world which provides EDs patient
with long length of stay (LOS), waiting times for receiving services and then dissatisfaction
[1]. Although most emergency departments are under growing demand, they often face
with insufficient staffing and budget constraints. One solution to this problem is to increase
capacity of ED, providing adequate facilities and manpower, but this is not the best ap-
proach for solving the problem, and perhaps not achievable [2]. Recently, the need for im-
provement in ED processes due to cost, overcrowding and safety of patients admitted to a
large extent [3].To improve the efficiency and quality of ED processes, different methods
were used which include process mapping, demand management, critical path identifica-
tion, queuing systems, statistical forecasting, balanced scorecard and computer simulation
[4].

In the last years, the use of computer simulation to help effective decision making in
health care and to improve the medical operations has been rising [5]. One of the main rea-

sons that simulation has become a common practice in solving medical problems is its abil-
ity to dynamically analyze situations and present to the stakeholders a more realistic view
of the system [6]. The main purpose of the use of simulation studies in health care is to
reduce waiting times and length of stay for patients, better use of resources and reducing
operating cost [7]. Among the various methods for simulation in health care, discrete event
simulation is the most used method especially in EDs, and it seems to be a better alternative
with less time and cost compared to more traditional statistical methods [8].

This study is intended to present a general simulation model for studying hospital emer-
gency department. For this purpose, we used Coloured Petri Nets modeling and simulation
formalism for making a general model of emergency department of a general hospital. In
addition to internal processes, external relations between ED and other hospital wards, such
as Radiology and Laboratory, is also considered. The main objective of this paper is, hence,
to improve ED processes. The problem we are dealing with is ED overcrowding which
provide patient with long length of stay and waiting times.

The remainder of the paper is organized as follows. Section 2 covers a brief literature re-
view of the application of simulation in emergency departments. Research methodology,
simulation model, input data and variables are presented in Section 3. Section 4 focuses on
improvement scenarios and results of simulation runs. Finally, the paper is concluded in
Section 5.

2 Literature review

In the literature, the main focal point of discrete-event simulation models that are used
for analysis of hospital emergency department is improving the flow of patients to reduce
waiting times. Examples of this include studying patient flow and forecasting ED over-
crowding using simulation by Hoot et al. [9], defining buffer concept to reduce waiting
times and increase throughput, and comparing amount of improvement gain by buffers by
Kolb et al. [10], and Khandekar et al. [11] paper on rearranging sequence of activities of
care process in order to reduce waiting times. Another area of ED simulations study focus
is on capacity estimation which determines the optimum number of personnel and physical
resources such as bed [12], [13] and also ED layout [14]. Improving quality of services and
ED processes is another area of study [5], [15].

 Although the use of Petri nets in the health sector is less than other fields such as com-
puter networks and production system, but it can be a useful method in this area. Here some
related works in this area are presented. Xiong et al. [16], apply petri nets for modeling and
analysis of health care process. They used a Petri net model to examine the effect of chang-
es in arrival pattern and resources on performance metrics such as waiting times and re-
source utilization. Chockalingam et al [17] used Petri nets to model patient and resource
flow in a hospital system. Using the Petri net model they obtained a stochastic representa-
tion of a metric termed distance to divert which measure the proximity of a hospital to a
divert state. Dotoli et al. [18] focused on pulmonology department workflow and drug dis-
tribution system and used simulation as a decision support system. They employed a timed
Petri net (TPN) framework to describe the workflow in the department. Another example
is the work done by Ronny Man et al [19] of using process mining and Petri nets for pre
hospital stroke care. In the paper, process mining is used to extract process related infor-
mation e.g. timing information. Jorgensen et al [20] have used CPN for implementing a
new Electronic Patient Record Workflow System at two stages. The first CPN model is

336 ModBE’13 – Modeling and Business Environments

used as an execution engine for a graphical animation called EUC and the second CPN
model is a Coloured Workflow Net (CWN). Together, the EUC and the CWN are used to
close the gap between the given requirements specification and the realization of these re-
quirements with the help of an IT system.

In this paper, care processes of ED are modeled using hierarchical timed CPN. The main
focus of the model is on patient flows. The model also concentrates on the inter-department
care processes. It is aimed to find a suitable operating scenario to improve some perfor-
mance metrics of the department. Similar to [17], this paper has considered the relationship
between different departments (Labs, Radiology) of the hospital. Performance metrics in-
cluding waiting time, patient length of stay, and resource utilization are calculated under
different operating scenarios. Compared to existing literature, this paper puts more empha-
sis on using features of CPN (color, time, and hierarchy) to capture the complex nature of
the system.

3 Research methodology

In this paper, CPN Tools is utilized to create the Coloured Petri net model of the system
and to simulate the model to produce desired outputs. CPN Tools [21] is a powerful soft-
ware tool for modeling and simulation of discrete event systems modeled in CPN. Our
choice of using CPNs to model ED patient flow stems from the fact that PNs capture struc-
tural properties of the underlying system which we can study and use. Petri nets provide the
foundation of the graphical notation and the basic primitives for modeling concurrency and
synchronization, conditions which are common in our model. After reviewing a wide range
of related literature, an initial model was prepared. Based on the initial model, the generic
conceptual model was developed. The generic model aimed to capture the characteristics of
an emergency department of a general hospital in Iran. Information required for the model-
ing and simulation of processes were collected using hospital information system, sampling
in ward, and also open interview with employees. In order to simulate the model under
different configurations, different types of improvement scenarios were defined and com-
pared against performance criteria. Please note that here the term “Generic” as Gunal and
Pidd [22] mentioned means that the model has a defined structure with probability distribu-
tions that can be parameterized by the user.

The hospital under study is a general hospital in the city of Yazd of Iran. The emergency
department of the hospital consists of one triage room, one primary visit room, admission
and discharge unit, CPR room, and two inpatient areas with 24 inpatient bed. It works 3
shifts a day with 1 triage nurse, 1 general practitioner (GP), 1 emergency medicine special-
ist (SP), 1 admission staff and 6 nurses.

3.1 Process flow chart

Fig.1. depicts an overall patient flow of Emergency Department of the hospital. This flow
chart is depicted based on researcher observation of the process and also domain expert
opinion. The process diagram was drawn in such a way that in addition to our hospital it
could also be used in other Iranian hospitals. Patients are triaged on arrival at the emergen-
cy department. The triage nurse makes an initial evaluation of patient symptoms. Then,
according to Emergency Severity Index (ESI), she classifies the patient in one of the 5 lev-
els of emergency. A patient in level 1 is with more acuity while a patient in level 5 is in fact

K. Salimifard et al.: Improving Emergency Department Processes 337

an outpatient with less acuity. After this stage, patient is referred to the GP. The GP deter-
mines whether or not the patient requires other care services. Usually, patients with acuity
level 5 will leave the ED as soon as the payment cleared. Other patients who need more
medical services, such as diagnostic tests, need to be registered and will be directed through
the other processes. The final decision about the patient including discharge, inpatient at
ED, or being referred to other wards is taken by SP.

3.2 Performance variables

For each process improvement project, establishing quantitative measures to implement
changes and develop monitoring system for continuous improvement is crucial. In this
paper, we investigate three key performance metrics including patients waiting times,
length of stay, and ED resource utilization.

• Waiting times [min]. It is the mean duration a patient need to spend in the ED waiting
room.

• Length of stay (LOS) [min]. The total time of staying at ED, from arrival to the time of
final decision made by SP.

• Resource utilization [%]. Represents the total busy time of resources compared with total
working time.

3.3 Data collection

Model inputs are distribution functions of ED activities. Random sampling was used to
estimate required data for patient’s arrival times and service time for all resources. All
distributions determined from the data and used in the model were validated by using Kol-
mogorov Smirnov goodness of fit test with a 5% significance level. Using statistical good-
ness of fit method, the distribution of processing time of different activities have been de-
fined.

338 ModBE’13 – Modeling and Business Environments

Fig. 1. Process flow of emergency department

Table 1. Simulation input distribution functions

Input parameter Distribution
Patients inter arrival pattern Exponential , expel(9)

Triage time Lognormal , 0.21 + LOGN(0.875, 0.613)
GP visit time Gamma , 1 + GAMM(0.732, 2.2)

admission Lognormal , 0.16 + LOGN(1.11,0.729)
SP visit time Triangular (1,2,3)

CPR time Triangular (5,15,30)
ED outpatient surgery(OR) Triangular (10,20,30)

In cases where there was no possibility of sampling, based on information available in the
hospital information system and also hospital staff experience, minimum, average and max-
imum duration of each activity were chosen as the statistical distribution.

K. Salimifard et al.: Improving Emergency Department Processes 339

3.4 The Hierarchical Timed Petri Net Model of the ED

We used Color Petri-nets (CPNs) to model patient flow in an emergency department of a
hospital. A PN consists of a set of places, and a set of transitions and arcs that connect
place(s) to a transition and vice-versa. Non-negative integers assigned to every place in the
net are known as tokens.

Overview of Colored Petri Nets. Coloured Petri nets are a discrete-event modeling lan-
guage combining the capabilities of Petri nets with the capabilities of a high-level pro-
gramming language. Petri nets are directed, bipartite graphs that can be used to model dis-
crete distributed systems. A CPN as defined by [23] is a nine-tuple
𝐶𝑃𝑁 = (𝑃,𝑇,𝐴, Σ,𝑉,𝐶,𝐺,𝐸, 𝐼), where 𝑃 is a finite set of place 𝑇, is a finite set of transitions 𝑇
such that 𝑃 ∩ 𝑇 = ∅, 𝐴 ⊆ 𝑃×𝑇 ∪ 𝑇×𝑃 is a set of directed arcs, Σ is a finite set of non-empty
color sets, 𝑉 is a finite set of typed variables such that type [𝑣]𝜖Σ for all variable 𝑣𝜖𝑉 s,
𝐶:𝑃 → Σ is a color set function that assigns a color set to each place, 𝐺:𝑇 → 𝐸𝑋𝑃𝑅! is a
guard function that assigns a guard to each transition 𝑡 such that type 𝐺 𝑡 = 𝐵𝑜𝑜𝑙,
𝐸:𝐴 → 𝐸𝑋𝑃𝑅! is an arc expression function that assigns an arc expression to each arc 𝛼 such
that type, 𝐸 𝑎 = 𝑐(𝑝)!" where 𝑝 is the place connected to the arc 𝛼, 𝐼:𝑃 → 𝐸𝑋𝑃𝑅! is an
initialization function that assigns an initialization expression to each place 𝑝 such that
type. 𝐼 𝑝 = 𝑐(𝑝)!". A CP-net has a distinguished initial marking, denoted by 𝑀!, and
obtained by evaluating the initialization expressions. The marking can be viewed as a
‘snapshot’ of how tokens are distributed in the PN [24].

The simulation model of ED. Fig.2. shows the key structures of the model. The top layer
of the ED model is illustrated in this figure. This layer is the core part of the model. In the
model each place (circle) represents the state where patients may to be exposed there (table
2). Entry of each patient to the ED is modeled by a token on the place New Patient
(Fig.2). This place has the color set PAT, whose elements are 5-tuples (ESI, at,
qtr., wt, pt) consisting of patient Emergency Severity Index (ESI=1,...,5),
patient arrival time to the ED (at), an intermediate variable for Calculating wait time (qt),
patient wait time for receiving services (wt) and activities process time (pt). In the initial
marking, the New Patient has a random integer ESI number Between 1 to 5, an arrival
time based on an exponential distribution with mean 9, qt is equal to at and wt and pt are
equal to 0. In the ED layer (Fig.2) there are 8 transitions (the rectangles) with tag beside
them which called substitution transitions. Each of this transition has a subnet page belong
to it that corresponds to one of the considered tasks in the process. To know about the mod-
el mechanism in each subnet consider GP visit subnet page as an example (Fig.3).The oc-
currence of the transition Start visit models the situation where a general Practitioner
(resource) changes from being ready to being busy until the transition End visit occurs.
Patients wait to seize GP and after stochastic delay (GP visit time) and receiving GP orders,
they release that resource and come back to top layer to carry on rest of the process. The
other page is as the illustrated mechanism.

340 ModBE’13 – Modeling and Business Environments

Table 2. Place Description of the ED core layer

Place description
P1 State for non urgent patient

P2 State for urgent patient (CPR needed)

P3 Patients visited and need extra services

P4 Patients visited and will be discharge

P5 Patients admitted

P6 Patients admitted and need surgery

P7 Number of patients waiting for radiology

P8 Number of patients waiting for laboratory

P9 Patients have done radiology test

P10 Patients have done radiology and also need lab test

P11 Surgery result with success

P12& P13 Patients with their Lab test result

P14 Patients have done radiology and do not need Lab

The model contains resources (shown in Table 3) like nurses; physicians etc. in the form of
tokens, and patients use these resources according to model logic to receive care. These
resource tokens are held by the patients until they move to the next stage. The delay in
availability of a resource is represented as non-availability of tokens to advance the patient
tokens through the net. This delay increases the number of patient tokens in the system
waiting for a resource. Also Sets of variables used on the transitions in Fig. 2 are showed in
Table 4.

Table 3. Initial resource-token distribution

resources places tokens
Triage nurse 1

GP Doc 1
admission 1
SP Doctor 1

Radiology staff 6
Laboratory staff 12
CPR equipment 1

K. Salimifard et al.: Improving Emergency Department Processes 341

Table 4. Model variables and description

variable description

p Represent each patient and carry five attribute: ESI, arrival
time, qt, wait time, process time which are assigned to them

l determine that patient need laboratory test or not

r determine that patient need radiology test or not

LR Laboratory result

RR Radiology result

gp General Practitioner (resource)

sp Emergency medicine specialist (resource)

342 ModBE’13 – Modeling and Business Environments

Fig. 2. Core page of ED simulation model using Coloured Petri net (top layer)

 In Fig.3 the function on output arc from end visit transition determines whether pa-
tients need diagnostic tests (laboratory or radiology) or surgery or to be discharged. In SP
visit subnet page shown in Fig.4, the SP Doctor place is a common resource that is shared
by three activities in the page. Patients with Lab result, Radiology result or both of them are
coming to SP, because SP should decide about them. Patients may need to be inpatient in
ED. So go to the ED inpatient place or maybe it is necessary to go to other hospital ward
for special care, then go to the refer place. Finally, patient after visit by SP may be dis-
charged, so they go to discharge place in SP visit page.

Model validation. We validate final results of the simulation model at first by interviewing
ED senior managers and nursing staff in order to validate the final results of the simulation
model. Secondly output of the simulation model is compared with real performance indica-
tors (Table 5) and it shows the validation of our model

p

p

gp

gp

p

p

(p,LR,RR)
(p,LR)

(p,l,RR)

(p,RR)

(p,RR)

(p,l,RR) (p,l,RR) (p,l,RR)

(p,LR,RR)(p,LR)

(p,l,RR)(p,l)

(p,l)

(p,l,r)

if	 result=0
then	 1`p	
else	 empty

if	 result=1
then	 1`p	
else	 empty

p

p

p

p

pp

(p,l,r)

(p,l,r)

p

sp

p

NewPatient	 (p)

p@+expTime(9)

((p,l,r),or)

p

(p,l,r) (p,l,r)

sp

sp

p

p

p p

((p,l,r),or)

p

p

t4[l=N]

t
3

[l=Y]

t5

[result=bernoulli(0.4)]

t2[r=notneed]

Arrival

t
6

t1

[r=need]

SP	 visit

SP	 visit

CPR
CPRP_HIGH

GP	 visit
GP	 Visit

LAB

LAB

Radiology

Radiology
ED	 OR

OR

Triage

Triage

Admission

Admission

GP
Doc

1`gp@0

GP

p13 PAT6
p12 PAT5

p14

PAT3

p10

PAT2

p9 PAT2

p11 PAT

PATPATPAT

p7 PAT1

p6

PAT

next
patient

1`(1,0,0,0,0)@0

PAT

p5

PAT1

p2

PAT

p4

PAT

p8 PAT4

SP
Doctor

1`sp@0

SP

p3OPAR

p1 PAT

new
patient

PAT

PAT

Admission

Triage

OR
Radiology

LAB

GP	 Visit

CPR

SP	 visit

inpatient dischargereferdead

K. Salimifard et al.: Improving Emergency Department Processes 343

Fig. 3. GP visit page of substitution transition GP visit in ED page (subnet layer)

Finally we also used CPN Tools state space graph to investigate whether the model works
truly or not. The state space tools are used to calculate state spaces and to generate state
space reports. Because our graph is very large, it is not possible to show it here.

Table 5. Comparison between simulated and real data.

real data	 Simulation
output	 Performance criteria	

2.9 	 3.2 	 Wait for GP visit	
5.5 	 5.12 	 Wait for Admission	
1 	 1.15 	 Wait for SP visit	

37.5 	 38.2 	 ESI 1&2 LOS	
187 	 185 	 ESI 3 LOS	
136 	 140 	 ESI 4 LOS	
12 	 11.5 	 ESI 5 LOS	

The performance metrics are investigated using 5 different replications with 95% confi-

dence interval. In each case the system is simulated by a long simulation run of 3 years.

p

((p,l,r),or)

((p,l,r),or)

p

((p,l,r),or)

(((esi,at,qt,wt,pt),labNEEd(),radNEEd()),OrNEed())

(esi,at,qt,wt,pt)upd_p@+proctime

gpgp

t2t1

end
visit

start
visit

input	 (p);
output	 (upd_p,proctime);
action
startGPVisit(p);

p3
Out OPAR

p4
Out

PAT

p1
In

PAT

visit
ed

PAT0

GP
Doc

I/O

1`gp@0

GP

visit
room

PAT

I/O

In

Out Out

[l=N,r=notneed,or=no]

344 ModBE’13 – Modeling and Business Environments

Fig. 4. SP visit page of substitution transition SP visit in ED page (subnet layer)

4 Improvement scenarios

In order to improve processes in terms of system performance metrics, four types of scenar-
ios were defined. These alternate scenarios are validated with domain experts and then were
implemented in simulation model. They are as fallow:

• Current scenario (benchmark):
A – Current state of the ED as a basis for comparisons.

• Increase or decrease scenarios. It is, in fact, the most common type of scenario associ-
ated with simulation studies. In this scenarios (increase or decrease) number of re-
sources, the number of emergency room doctors, nurses, beds and other physical re-
sources will be changed. In this view, one scenario is defined here:

B – Increase an emergency medicine specialist (SP)

• Displacement Scenarios. In these scenarios, if possible, an alternative resource will be
replaced with available resource.

C – Putting in place an emergency medicine specialist instead of GP

p

p

p
p

p

p
p

(p,RR)(p,RR)(p,LR)(p,LR)
(p,LR,RR) (p,LR,RR)(p,LR,RR)

sp

sp

sp

sp

sp

sp

((esi,at,qt,wt,pt),LR) ((esi,at,qt,wt,pt),RR)

((esi,at,qt,wt,pt),RR)

(upd_p,RR)@+proctime

(p,RR)

((esi,at,qt,wt,pt),LR,RR)

((esi,at,qt,wt,pt),LR,RR)

(upd_p,LR,RR)@+proctime

(p,LR,RR)(p,LR)

((esi,at,qt,wt,pt),LR)

(upd_p,LR)@+proctime

t3

[LR=unnatural	 andalso	 RR=notok]

t1
[LR=natural]

t7

[RR=notok]

t6 [RR=ok]t5

[LR=natural	 andalso	 RR=ok]

t4

[LR=unnatural	 andalso	 RR=ok	 orelse
LR=natural	 andalso	 RR=notok]

t2[LR=unnatural]

start
visit3

input	 (p,RR);
output	 (upd_p,proctime);
action
startSPVisit3(p,RR);

end
visit3

start
visit2

input	 (p,LR,RR);
output	 (upd_p,proctime);
action
startSPVisit2(p,LR,RR);

end
visit2

end
visit1

start
visit1

input	 (p,LR);
output	 (upd_p,proctime);
action
startSPVisit1(p,LR);

PAT
PAT

SP
Doctor

I/O

1`sp@0

SP

p14
In

PAT3

p3 PAT3

p6 PAT3p5PAT6p4 PAT5

p2PAT6

p13
In

PAT6p12
In

PAT5

p1 PAT5

In In In

I/O

PATinpatient
OutOut

refer
OutOut

dicharge
OutOut

K. Salimifard et al.: Improving Emergency Department Processes 345

• Structural scenarios. The purpose of these scenarios is change of the process activities
and even delete or add new activities as part of the process.

D – Remove triage unit and refer patients for triage and visit to GP

• Hybrid scenarios. These scenarios are defined as a combination of two or more than
two of the above scenarios. For example, displacement scenarios, and a structural sce-
nario combined to make a hybrid one.

 E – Replace GP visit and triage activities with a substitute emergency medicine
specialist who does these two.

In scenario B, we have added 1 specialist to SP Doctor place and then run the simula-

tion model. To implement scenarios D and E, we have to change our basic model. In these
scenarios triage and visit is done simultaneously by a substitute doctor (GP or SP). The
difference is on the time of visit done by each of them. It’s less for SP than GP.

The results of running simulation model with scenarios A to E alongside with their im-
provement are shown in Table 6. We ran each of the improvement options individually as
separate scenario for this purpose.

Table 6. Improvement rate of each scenario considering its resources

Sc
en

ar
io

s

Resources Improvement rate (%)

G
P

SP

A
dm

is
si

on
 S

ta
ff

Resource utilization rate
(%)

W
ai

t f
or

 G
P

W
ai

t f
or

 S
P

W
ai

t
fo

r A
dm

is
si

on

ES
I 1

&
2

 L
O

S

ES
I 3

 L
O

S

ES
I 4

 L
O

S

ES
I 5

 L
O

S

A
dm

is
si

on
 S

ta
ff

SP

G
P

A 1 1 1 62 63.7 58 3.2 5.12 1.1 38 185 140 11.5

B 1 2 1 +9.67 -10.5 0 0 +23 0 +5.2 +2.7 +2.65	 0

C - 2 1 +7.25 -1.8 - - -21 -7.2 +5.2 +0.5 +1 +8.7

D 1 1 1 +8 -0.3 +14.5 -65 +0.3 -81 +8.6 +1 +1.42 +19.1

E - 2 1 +11.3 -0.3 - - -2 -81 +9.2 +1.35 +2.15 +21.7

 Benchmark scenario, A, represent current situation in terms of three performance
measures. Waiting time is one of the effective measures of patient satisfaction. Here are
three main areas of patients waiting for service. Current scenario has the lowest waiting for
GP. Scenario B and C reduce SP waiting by about 45% and 0.4%. Scenario B reduces
admission waiting by 10%. Patients’ length of stay is a measure of ED efficiency and very
important in hospital performance evaluation. We compare LOS for patients with different
ESI level. ESI 1 and 2 include those patients who need CPR and then go to inpatient. In this
level, E has 9.2% improvement. D reduces LOS by about 8.6% and B and C by about 5.2%.
Patients with ESI 3 are patients who need two diagnostic tests here include Laboratory and

346 ModBE’13 – Modeling and Business Environments

Radiology. In this level B, C, D and E reduced LOS by about 2.7%, 0.5%, 1% and 1.35%.
Patients with ESI 4 just need one diagnostic test, laboratory or radiology. In this level B, C,
D and E reduced LOS by about 2.65%, 1%, 1.42% and 2.15%. Finally, patients with ESI 5
are outpatient and leave ED after GP visit. In this level B, C, D and E reduced LOS by
about 0%, 8.7%, 19.1% and 21.7%. Resource utilization represents total busy time of re-
sources to available working time under the simulated conditions.it is a good measure for
ED manager in the allocation of resources. Scenario A improves GP utilization by 18%.
Scenario B, C, D and E improve admission staff utilization by about 9.67%, 7.25%, 8% and
11.3%. Scenario A has the most SP utilization and other scenarios reduced it. Substituted
SP utilization for scenario E is more than C by about 2.1 minute. Also ED staff reaction to
our work was positive and they helped us through the work but due to the reluctance of ED
managers, we failed to implement the proposed changes in reality.

5 Conclusions and future work

 In this research a CPN model was developed to analyze the performance of an emergency
department. To evaluate the system under different conditions and improve processes, im-
provement scenarios were defined. These scenarios may not greatly improve the perfor-
mance of the model parameters, but could be considered as an existing and potential alter-
native. We compare 5 scenarios by three variables.

In table 7, improvement rate of each scenario, considering its resources, presented.
To have a better analysis in choosing scenarios, it is necessary to see cost and benefit of
each scenario simultaneously. Another option which should be considered is ED’s mission,
saving patients with high acuity (ESI 1&2), and scenarios that aim to facilitate this pur-
pose even if they cost more than other, are selected. Among defined scenarios, E and D
have more improvement especially about patient with ESI 1&2. Although the cost of sce-
nario E to scenario D is some more, but given the purpose of the improvements resulting
from the scenario E, this scenario is selected as major one. In the next stage scenario D due
to lower cost and also more overall improvement than the other two scenarios have been
chosen as the second better scenario.
 Based on the model proposed in this paper, it is possible to translate the flow diagram
into a Generalized Stochastic Petri net. It would be interesting to compare the results of the
two modeling approaches. That is, the exact values of different performance indices can be
compared with the simulated values. Because of the hierarchical nature of the model and
that every activity has a separate page belong to it; acceptance and use of this model in
various conditions may seem easy and by just few change it could be localized. Using Col-
oured Petri net, we were able to assign different attributes to patients entered into the ED
and therefore, the model traces them to calculate performance metrics. The tools and fea-
tures that are available for simulating CPN models in CPN Tools e.g. hierarchy, functions,
guards, state space analysis etc. made it a useful option in simulating complex systems
specially healthcare. Future development to this work would be to add other attributes to
tokens color such as cost of each activity in the process and engage other wards. Also, it
would be of value to consider other resources including beds, facilities and equipment.

K. Salimifard et al.: Improving Emergency Department Processes 347

Reference

1. Buckley, B., Castillo, E., Killeen, J., Guss, D., Chan, T.: Impact of an express admit unit on
emergency department length of stay. Journal of emergency medicine 39(5), 669-673 (Nov
2010)

2. Soremekun, O., Takayesu, J., Bohan, S.: Framework for analyzing wait times and other
factors that impact patient satisfaction in the energency department. The Journal of
Emergency Medicine 41(6), 686-692 (2011)

3. Holden, R.: Lean Thinking in Emergency Departments: A Critical Review. Annals of
Emergency Medicine 57(3), 265-278 (2010)

4. Eitel, , Rudkin, S., Malvehy, A., Killeen, J., Pines, J.: Improving service quality by
understanding emergency department flow: a white paper and position statement prepared
for the american academy of emergency medicine. The Journal of Emergency Medicine
38(1), 70-79 (2010)

5. Zeng, Z., Ma, X., Hu, , Li, J.: A simulation study to improve quality of care in the
emergency department of a community hospital. Journal of Emergency Nursing 38(4), 322-
328 (2011)

6. Baldwin, L., Eldabi, T., Paul, R.: Simulation in healthcare management:a soft approach
(MAPIU). Simulation Modelling Practice and Theory 12(7 - 8), 541 - 557 (2004)

7. Alvarez , A., Centeno , : Enhancing simulation models foremergency rooms using VBA. In
: Proceedings of the I999 Winter Simulation Conference, New York, NY, USA, vol. 2,
pp.1685-1693 (1999)

8. Villamizar, J., Coelli, F., Pereira, W., Almeida, R.: Discrete-event computer simulation
methods in the optimisation of a physiotherapy clinic. Physiotherapy 97(1), 71 - 77 (2011)

9. Hoot, N., LeBlanc, , Jones, I., Levin, S., Zhou, , Gadd, C., Aronsky, D.: Forecasting
Emergency Department Crowding: A Discrete Event Simulation. Annals of Emergency
Medicine 52(2), 116-125 (2008)

10. Kolb , E., Peck , J., Schoening , S., Lee , T.: Reducing emergency department
overcrowding – five patient buffer in comparison. In : Proceedings of the 2008 Winter
Simulation Conference, Austin, TX, pp.1516-1525 (2008)

11. Khandekar, S., Mari, J., Wang, S., Gandhi, T.: Implementation of Structural Changes to the
Care Process in the Emergency Department using Discrete Event Simulation. In :
Proceedings of the 2007 Industrial Engineering Research Conference (2007)

12. Nagula, P.: Redesigning the patient care delivery processes at an emergency department.,
New York (2006)

13. Park, , Park, J., Ntuen, , Kim, D., Johnson, K.: Forecast Driven Simulation Model for
Service Quality Improvement of the Emergency Department in the Moses H. Cone
Memorial Hospital. The Asian Journal on Quality 9(3) (2008)

14. Khadem, M., Bashir, H., Al-Lawati, Y., Al-Azri, F.: Evaluating the Layout of the
Emergency Department of a Public Hospital Using Computer Simulation Modeling: A
Case Study. In : Industrial Engineering and Engineering and Management, Singapore,
pp.1709-1713 (2008)

15. Gonzilez, , Gonzilez, , Rios, N.: Improving the quality of service in an emergency room
using simulation-animation and total quality management. In : Proceedings of the 21st
international conference on Computers and industrial engineering, Tarrytown, NY, USA ,
vol. 33, pp.97-100 (1997)

16. Xiong, , Zhou, M., Manikopoulos, : Modeling and Performance Analysis of Medical

348 ModBE’13 – Modeling and Business Environments

Services Systems Using Petri Nets. In : Systems, Man, and Cybernetics, San Antonio, TX,
pp.2339-2342 (1994)

17. Chockalingam, A., Jayakumar, , Lawley, : A stochastic cotrol approach to avoiding
emergencydepartment overcrowding. In : Proceedings of the 2010 Winter Simulation
Conference, Baltimore, MD, pp.2399-2411 (2010)

18. Dotoli, M.: Modeling and Management of a Hospital Department via Petri Nets. In : 2010
IEEE Workshop on Health Care Management (WHCM), Venice, pp.1-6 (2010)

19. Mans, R., Schonenberg, H., Leonardi, G., Panzarasa, S., Cavallini, A., Quaglini, S., van der
AALST, W.: Process Mining Techniques: an Application to Stroke Care 136. Stud Health
Technol Inform (2008)

20. Jørgensen, J., Lassen, K., van der Aalst, W. M.: From task descriptions via Coloured Petri
nets towards an implementation of a new electronic patient record workflow system.
International Journal on Software Tools for Technology Transfer 10(1), 15-28 (2008)

21. CPN Tools. In: AIS group, Eindhoven University of Technology, The Netherlands.
(Accessed 2012) Available at: http://www.cpntools.org

22. Günal , M., Pidd , : Moving from specific to generic: Generic modelling in health care. In :
Proceedings of the 2007 INFORMS Simulation Society Research Workshop (2007)

23. Jensen, K., Kristensen, L.: Coloured Petri Nets , Modelling and Validation of Concurrent
Systems. Springer, Denmark (2009)

24. Jensen, K.: An introduction to the practical Use of coloured Petri nets. Lecture Notes in
Computer Sciencee, Springer-Verlag, 1-14 (1996)

K. Salimifard et al.: Improving Emergency Department Processes 349

350 ModBE’13 – Modeling and Business Environments

Part IX

ModBE’13: Poster Abstracts

Advantages of a Full Integration
between Agents and Workflows

Thomas Wagner and Lawrence Cabac

University of Hamburg, MIN Faculty, Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

Abstract. This poster describes the notion of a full integration of agents
and workflows. It differentiates the term from the more common partial
integrations already well documented and researched. Finally, the advan-
tages of a full integration are discussed.

Multi-agent systems feature a very structure-centric perspective on a software
system. Agents are the main modelling abstraction, and other aspects are al-
ways seen in relation to them. Workflow systems on the other hand feature a
very behaviour-centric perspective. The main abstraction here are the work-
flows/processes, which incorporate the data/information about other aspects.
An integration of the two concepts agent and workflow can offer many advan-
tages. These advantages represent the first outcomes in our current research on
modelling systems and are the main result presented in this poster.

It is possible to differentiate between two kinds of integrations: partial and
full. In a partial integration one of the concepts is used to enhance the other
one. This includes agent-based workflow management systems (WFMS) and
workflow-based agent management systems. Partial integrations feature only one
of the two concepts main abstraction. This main abstraction may be enhanced
and enriched in a number of ways, but still remains, at its core, either an agent
or a workflow. This limits the potential benefits in a partial integration.

A full integration between agents and workflows aims to address that limit.
In contrast to partial integrations it features both agents and workflows incor-
porated into one main modelling unit. This unit can serve as agent, workflow, or
a hybrid between the two and can dynamically change its role during runtime.
We call these hybrids that provide all the functionality agents and workflows
would usually provide, including communication and user interaction facilities,
entities. Using entities enables a system modeller to dynamically switch and mix
structural and behavioural aspects of a system. This allows for a new integrated
perspective on the system during development.

There are numerous examples of partial integrations. Agent-based WFMS
are, for example, presented in [1,2]. A workflow-based agent management system
is discussed in [3]. All of these make use of both concepts to provide an enhanced
modelling experience. They still only offer extended classical workflow or agent
functionality and do not feature the possibilities of a full integration. To the best
of our knowledge there are no examples of full integrations.

A full integration between agents and workflows exhibits a number of ad-
vantages to the system modeller. These assume an efficient and comprehensive
implementation of a full integration system (see last paragraphs for outlook).

Abstraction The abstraction of the individual concepts into one unified
entity enables a freedom to work with dynamic and hybrid constructs. Entities
can operate as agents, workflows, or something in between. They can dynamically
adapt to the requirements before, acting as an agent at one point and processing
like a workflow at another. Entities naturally and directly incorporate any and
all mechanisms, facilities, and properties of agents and workflows. Consequently,
providing these characteristics in dynamic ways becomes far easier.

Flexibility Allowing a modeller to use agents and workflows on the same
abstraction level, allows to model a system along the two dimensions structure
and behaviour. Classically, only one of these dimensions was in the foreground,
while modelling aspects of the other was heavily biased by the original dimen-
sion. This two-dimensional modelling enables a modeller to utilise the dynamic
interaction between agents and workflows on a conceptual level.

Simplicity A full integration offers the combined capabilities of agents and
workflows. It does so by providing simple-to-use and predefined constructs (en-
tities) which allow a modeller to make full use of the strengths of agents and
workflows. The entities in themselves can be used similarly to agents and work-
flows, but possess a larger spectrum of capabilities.

Expressiveness A full integration cannot necessarily express more then the
classical paradigms. However, in the classical paradigms complex helper con-
structs might be necessary to implement more complicated structures available
directly in a full integration. This means that a full integration is capable of
expressing more constructs in a natural and simple way.

Enrichment The enrichment aspect, the main advantage of partial integra-
tion, is also applicable in a full integration. In fact, it is even more emphasised,
since an entity can be improved from both its agent and workflow side.

Concerning future work the provision of a comprehensive implementation of
a full integration is the main focus. Currently, the work is centred on establishing
a working prototype as proof-of-concept. In conclusion, a full integration offers
many beneficial advantages in comparison to classical systems. When extensively
and efficiently implemented, it is a powerful tool for a system modeller to use.

References

1. P. Czarnul, M. Matuszek, M. Wójcik, and K. Zalewski. BeesyBees - efficient and
reliable execution of service-based workflow applications for BeesyCluster using dis-
tributed agents. In Proceedings of IMCSIT 2010, pages 173 –180, oct. 2010.

2. F. Hsieh. Collaborative Workflow Management in Holonic Multi-Agent Systems. In
J. O’Shea et al., editors, Agent and Multi-Agent Systems: Technologies and Appli-
cations, volume 6682 of LNCS, pages 383–393. Springer Berlin Heidelberg, 2011.

3. A. Mislevics and J. Grundspenkis. Workflow based approach for designing and
executing mobile agents. In Digital Information Processing and Communications
(ICDIPC), 2012 Second International Conference on, pages 96 –101, july 2012.

354 ModBE’13 – Modeling and Business Environments

Cloud Transition for QoS Modeling of
Inter-Organizational Workflows

Sofiane Bendoukha and Lawrence Cabac

University of Hamburg, Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

Abstract. In this paper we present an architecture for enabling com-
plex workflow execution in Cloud-like environments. We focus mainly
on modeling concepts and techniques to enhance accessibility to Cloud
services by different kind of users.

Complex workflow tasks need in some cases to be mapped to distributed
resources and involves the cooperation between several partners. Workflow man-
agement is critical to a successful long-term Cloud computing strategy. The
notion of inter-organizational workflow still needs conceptual and technical sup-
port especially in complex and dynamic environments like Clouds. New ways to
tackle this problem have to be found. Therefore, existing workflow architectures
need to be adapted for the Cloud and workflow management systems (WfMS)
should be integrated with Cloud infrastructure and resources [3].

In this paper we use Inter-Cloud Workflow Petri Nets (ICWPN), an ap-
proach for enabling workflows in an (Inter)-Cloud environment. A specialized
Cloud Task Transition (CTT) is introduced to facilitate the connection to the
Cloud and to support Quality of Service (QoS) management [1]. The CTT (see
Fig. 1 (a)) is based on the Workflow Task Transition [2], which is the core of
the workflow net formalism in Renew1 (Reference Net Workshop). Workflow
modelers specify their requirements as parameters to the CTT in form of tuples
(S, Q, I), which correspond respectively to the Cloud service (S) that they want
to use (it can be a storage or a compute service), the QoS constraints (Q) con-
sisting of deadlines or costs and input data (I) consisting either of required files
in case of a storage or scripts if they want to execute their codes on the Cloud.
Synchronous channels are used to make the connection with the WfMS, which
controls the completion of the task. It either initiates the firing or cancels it and
all input parameters are put back onto the input places.

To see how the CTT is used in practice, we introduce a Cloud-based workflow
architecture, it is depicted in Fig. 1 (b). It includes three basic layers from top to
bottom: user applications layer (UL), middle-ware layer (ML) and the resource
layer (RL), which consits mainly of Cloud services. In our approach we view the
process of executing an application in an Inter-Cloud environment as a 6-phase
process: (1) Users use the offered modeling tools consisting mostly of Renew
and the introduced CTT to specify the requirements (Cloud services, QoS con-
straints, specific input data) for their applications using Petri nets models. (2)
1 Renew is available at http://www.renew.de

(a) The Cloud Transition (b) General Cloud Workflow Architecture

Fig. 1. Cloud-based Workflow Management

A list of requirements is created consisting of required services as well as their
related QoS constraints. (3) Make a request to the Cloud Service Repository
(CSR) which is accessible by the WfMS to achieve workflow tasks (4) Based on
the above steps (2-3) a decision is made by the Decision Maker who determines
whether the workflow tasks will be executed locally or using Cloud resources. (5)
After that the workflow tasks are mapped to the adequate resources. (6) When
the workflow is deployed, information about Cloud providers and the state of
their services are constantly updated.

Here we focused primarily on Cloud technologies. Nevertheless, the intro-
duced model (see Fig. 1(b)) can be also applicable to other dynamic domains
where distributed resources are shared and dynamically allocated and usually
priced.

References

1. Sofiane Bendoukha and Thomas Wagner. Cloud transition: Integrating cloud calls
into workflow Petri nets. In Lawrence Cabac, Michael Duvigneau, and Daniel Moldt,
editors, PNSE, volume 851 of CEUR Workshop Proceedings, June 2012.

2. Thomas Jacob, Olaf Kummer, Daniel Moldt, and Ulrich Ultes-Nitsche. Implemen-
tation of workflow systems using reference nets – security and operability aspects.
In Kurt Jensen, editor, Fourth Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools, August 2002.

3. Suraj Pandey, Dileban Karunamoorthy, and Rajkumar Buyya. Workflow Engine
for Clouds, pages 321–344. John Wiley & Sons, Inc., 2011.

356 ModBE’13 – Modeling and Business Environments

