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Abstract. In this work we consider modeling of workflow systems with
Petri nets. A resource workflow net (RWF-net) is a workflow net, sup-
plied with an additional set of initially marked resource places. Resources
can be consumed and/or produced by transitions. We do not constrain
neither the intermediate nor final resource markings, hence a net can
have an infinite number of different reachable states.
An initially marked RWF-net is called sound if it properly terminates
and, moreover, adding any extra initial resource does not violate its
proper termination. An (unmarked) RWF-net is sound if it is sound
for some initial resource. In this paper we prove the decidability of both
marked and unmarked soundness for a restricted class of RWF-nets with
a single unbounded resource place (1-dim RWF-nets). We present an
algorithm for computing the minimal sound resource for a given sound
1-dim RWF-net.

1 Introduction

Petri nets constitute a popular formalism for modeling and analysis of distributed
systems. In this paper we consider workflow systems, or, to be more precise,
workflow processes. To model workflow processes a special subclass of Petri nets,
called WF-nets [1, 2], is used.

In the context of WF-nets a crucial correctness criterion is soundness [1, 3].
We say that a workflow case execution terminates properly, iff its firing sequence
(starting from the initial marking with a single token in the initial place) termi-
nates with a single token in the final place (i.e. there are no “garbage” tokens after
the termination). A model is called sound iff a process can terminate properly
starting from any reachable marking.
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Soundness of WF-nets is decidable [1]. Moreover, a number of decidable
variations of soundness are established, for example, k-soundness [9], structural
soundness [14] and soundness of nested models [11].

One of important aspects in workflow development concerns resource man-
agement. Resources here is a general notion for executives (people or devices),
raw materials, finances, etc. To take resources into account different extensions
of a base formalism where introduced, having different versions of soundness
criteria.

In [5, 6] a specific class of WFR-nets with decidable soundness is studied. In
[10, 13] a more general class of Resource-Constrained Workflow Nets (RCWF-
nets) is defined. Informally, the authors impose two constraints on resources.
First, they require that all resources that are initially available are available again
after terminating of all cases. Second, they also require that for any reachable
marking, the number of available resources does not override the number of
initially available resources.

In [10] it is proven that for RCWF-nets with a single resource type soundness
can be effectively checked in polynomial time. In [13] it is proven that soundness
is also decidable in general case (by reducing to the home-space problem).

In all mentioned papers resources are assumed to be permanent, i.e. they are
used (blocked) and released later on. Resources are never created, nor destroyed.
Hence the process state space is explicitly bounded.

To study a more general case of arbitrary resource transformations (that can
arise, for example, in open and/or adaptive workflow systems), in [8] we defined
a notion of WF-nets with resources (RWF-nets). RWF-nets extend RCWF-nets
from [10] in such a way that resources can be generated or consumed during a
process execution without any restrictions (cf. [7]). For RWF-nets we defined no-
tions of resources and controlled resources and studied the problem of soundness-
preserving resource replacement (this problem is important for adaptive work-
flows).

Unfortunately, even sound RWF-nets are not bounded in general, hence exist-
ing soundness checking algorithms cannot be applied here. In [8] the decidability
of soundness for RFW-nets was declared as an open problem.

In this paper we consider a restricted case — RWF-nets with a single resource
place (1-dim RWF-nets). One resource type is sufficient for many practical ap-
plications (memory or money are typical examples of such resources). Note that
1-dim RWF-nets are, generally speaking, not bounded and hence this case cannot
be reduced to finite-state WF-nets with resources, such as RCWF- or WFR-nets.

In this paper we use graph-theoretic properties of RWF-net control automa-
ton to prove decidability of soundness for marked, as well as unmarked 1-dim
RWF-nets. We present also an algorithm for computing minimal sound resource
for a given sound 1-dim RWF-net.

The paper is organized as follows. In Section 2 basic definitions of multisets
and Petri nets are given. In Section 3 we give definitions of sound RWF-nets.
In Section 4 the class of 1-dim RWF-nets is defined and studied, algorithms for
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checking marked soundness, soundness and finding the minimal sound resource
are given. Section 5 contains some conclusions.

2 Preliminaries

Let S be a finite set. A multiset m over a set S is a mapping m : S → Nat,
where Nat is the set of natural numbers (including zero), i. e. a multiset may
contain several copies of the same element.

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S : m(s) ≤ m′(s) (the
inclusion relation). The sum, the union and the subtraction of two multisets m
and m′ are defined as usual: ∀s ∈ S : (m+m′)(s) = m(s) +m′(s), (m∪m′)(s) =
max(m(s),m′(s)), (m−m′)(s) = m(s)	m′(s) (where 	 denotes the truncated
subtraction). ByM(S) we denote the set of all finite multisets over S.

Non-negative integer vectors are often used to encode multisets. Actually, the
set of all multisets over finite S is a homomorphic image of Nat|S|.

Let P and T be nonempty disjoint sets of places and transitions and let
F : (P ×T )∪ (T ×P )→ Nat. Then N = (P, T, F ) is a Petri net. A marking in a
Petri net is a functionM : P → Nat, mapping each place to some natural number
(possibly zero). Thus a marking may be considered as a multiset over the set of
places. Pictorially, P -elements are represented by circles, T -elements by boxes,
and the flow relation F by directed arcs. Places may carry tokens represented by
filled circles. A current marking M is designated by putting M(p) tokens into
each place p ∈ P . Tokens residing in a place are often interpreted as resources
of some type consumed or produced by a transition firing. A simple example,
where tokens represent molecules of hydrogen, oxygen and water respectively is
shown in Fig. 1.
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Fig. 1. A chemical reaction.

For a transition t ∈ T an arc (x, t) is called an input arc, and an arc (t, x) —
an output arc; the preset •t and the postset t• are defined as the multisets over P
such that •t(p) = F (p, t) and t•(p) = F (t, p) for each p ∈ P . A transition t ∈ T is
enabled in a marking M iff ∀p ∈ P M(p) ≥ F (p, t). An enabled transition t may
fire yielding a new marking M ′ =def M − •t+ t•, i. e. M ′(p) = M(p)−F (p, t) +
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F (t, p) for each p ∈ P (denoted M t→ M ′, or just M → M ′). We say that M ′
is reachable from M iff there is a sequence M = M1 → M2 → · · · → Mn = M ′.
For a Petri net N by R(N,M0) we denote the set of all markings reachable from
its initial marking M0.

3 WF-nets with resources

In Petri nets with resources we divide Petri net places into control and resource
ones.

Definition 1. A Petri net with resources is a tuple N = (Pc, Pr, T, Fc, Fr),
where

– Pc is a finite set of control places;
– Pr is a finite set of resource places, Pc ∩ Pr = ∅;
– T is a finite set of transitions, Pc ∩ T = Pr ∩ T = ∅;
– Fc : (Pc × T ) ∪ (T × Pc)→ Nat is a multiset of control arcs;
– Fr : (Pr × T ) ∪ (T × Pr)→ Nat is a multiset of resource arcs;
– ∀t ∈ T ∃p ∈ Pc : Fc(p, t) +Fc(t, p) > 0 (each transition is incident to some

control place).

Note that all transitions are necessarily linked to control places — this guar-
antees the absence of “uncontrolled” resource modifications.

A marking in a Petri net with resources is also divided into control and
resource parts. For a multiset c+ r, where c ∈M(Pc) and r ∈M(Pr), we write
c|r.

Definition 2. For a net N a resource is a multiset over Pr. A controlled re-
source is a multiset over Pc ∪ Pr.

Workflow nets (WF-nets) are a special subclass of Petri nets designed for
modeling workflow processes. To study resource dependencies in workflow sys-
tems we consider WF-nets with resources.

Definition 3. A Petri net with resources N is called a WF-net with resources
(RWF-net) iff

1. There is one source place i ∈ Pc and one sink place o ∈ Pc s. t. •i = o• = ∅;
2. Every node from Pc ∪ T is on a path from i to o, and this path consists of

nodes from Pc ∪ T.

Fig. 2 represents an example of a RWF-net, where resource places r1 and r2
are depicted by ovals, resource arcs — by dotted arrows.

Every RWF-net N = (Pc, Pr, T, Fc, Fr) contains its control subnet Nc =
(Pc, T, Fc), which forms a RWF-net with the empty set of resources.

A marked net is a net together with some initial marking.

Definition 4. A marked RWF-net (N, c|r) is called sound iff ∀s ∈M(Pr), ∀M ∈
R(N, c|r + s) we have:
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Fig. 2. WF-net wth resources.

1. ∃s′ ∈M(Pr) : o|s′ ∈ R(N,M);
2. c′|r′ ∈ R(N,M) ⇒ c′ = o ∨ c′ ∩ o = ∅.

Thus soundness for a RWF-net means that, first, this workflow net can ter-
minate properly from any reachable state, and, additionally, adding any extra
resource does not violate the proper termination property.

Note that our definition is substantially different from the definition of sound
RCWF-nets (Resource-Constrained Workflow net) in [10]. We do not forbid cre-
ating and spending of resources. Thus, in RWF-nets resources may be produced
and consumed during a process execution. This implies the possible unbound-
edness of sound RWF-nets.

The following statement is analogous to Lemma 5 in [10].

Proposition 1. [7] If a marked RWF-net (N, i|r) is sound, then its control
subnet Nc with the initial marking i is also sound.

The proof of this proposition is given in the Appendix.
The converse statement is not true: there may be RWF-nets with sound

control subnets, for which sound resources do not exist. An example of such a
net is given in Fig. 3.

Let N be a RWF-net. By C(N) we denote the set of all control markings
reachable in Nc, i. e. C(N) = R(Nc, i).

Proposition 2. [7] If a marked RWF-net (N, i|r) is sound, then

1. for any reachable control marking c ∈ C(N) there exists a resource r′, such
that (N, c|r′) is sound;

2. for any two control markings c1, c2 ∈ C(N) we have c1 6⊂ c2 and c2 6⊂ c1.

The proof of this proposition is given in the Appendix.
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Fig. 3. RWF-net with a sound control subnet, which is not sound for any resource.

Further, we call a RWF-net N sound (without indicating any concrete re-
source) iff a marked RWF-net (N, i|r) is sound with some initial resource r.

From the second statement of Proposition 2 and the well-known Dickson’s
lemma we obtain the following

Corollary 1. For a sound RWF-net N the set C(N) of all its reachable control
markings is finite.

Note 1. Since the control subnet of a sound RWF-net N is bounded, the set
C(N) can be effectively constructed (e. g. by constructing a coverability tree).

Definition 5. Let N be a RWF-net, c ∈ C(N). We define:

1. res(c) =def {r ∈M(Pr) | (N, c|r) is sound} — the set of all sound resources
for c;

2. mres(c) =def {r ∈ res(c) | 6 ∃r′ ∈ res(c) : r′ ⊂ r} — the set of all minimal
sound resources for c.

Then from Dickson’s Lemma we immediately obtain:

Proposition 3. [7] For any sound RWF-net N and any control marking c ∈
C(N) the set mres(c) is finite.

The questions of computability of mres(c) and decidability of soundness
for RWF-nets remain open. In the next section positive answers to these two
questions are given for a restricted case — RWF-nets with a single resource
place.

4 Soundness of 1-dim RWF-nets

Let N = (Pc, Pr, T, Fc, Fr) be an RWF-net with Pr = {pr}, i.e. with just one
resource place. By 1-dim RWF-nets we denote the subclass of RWF-nets with
single resources. An example of such a net is given in Fig. 4. In the following
sections we consider only 1-dim RWF-nets.

If a control subnet of N is not sound, then N is also not sound. So, we
suppose that the control subnet of N is sound, and hence bounded.
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Fig. 4. 1-dim RWF-net N1.

4.1 Control automaton

It is easy to note that a bounded control subnet can be represented as an equiva-
lent finite automaton (a transition system). This automaton is an oriented graph
with two distinguished nodes – a source node i and a sink node o.

In this control automaton states are exactly the elements of C(N), transitions
— transitions of the given net N . But now it will be more convenient to consider
a transition t as a pair (c1, c2) of control states, where c1

t→ c2. Every transition
t of the automaton is labeled by an integer δ(t), defining a “resource effect” of
transition firing. A positive δ(t) means that the firing of t increments the marking
of a (single) resource place pr by δ(t), a negative δ(t) means that t is enabled in
a state (c|r) iff r(pr) ≥ |δ(t)|, and that the firing of t decrements the resource
by |δ(t)|. Formally,

δ(t) =def

{
−Fr(pr, t) for Fr(pr, t) > 0;
Fr(t, pr) for Fr(t, pr) > 0.

The value δ(t) is called an effect of t (denoted Eff (t)). Note that for simplicity
we exclude loops, when both Fr(pr, t) > 0 and Fr(t, pr) > 0; such loops can be
simulated by two sequential transitions.

A support of t is the amount of the resource required for a firing of t. It is
defined as:

Supp(t) =def

{
0, δ(t) ≥ 0;

|δ(t)|, δ(t) < 0.

Thus, a 1-dim RWF-net N can be transformed into a control automaton
Aut(N), which can be considered as a one-counter net (e.g. [4]) or, alternatively,
a 1-dim Vector Addition System with States (VASS [12]) with a specific workflow
structure: one source state, one sink state, and every state is reachable from the
source state, as well as the sink is reachable from every state. Note that the
control automaton Aut(N) is behaviorally equivalent to N in the branching-
time semantics.
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Consider an example depicted in Fig. 5. This is a control automaton for
the 1-dim RWF-net from Fig. 4. States are denoted by octagons, labelled with
the corresponding control markings of the net. Transitions are labelled with the
corresponding names and effects.
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Fig. 5. Control automaton for N1.

A control automaton (a one-counter net) is a digraph with arcs labeled by
integers. Recall some basic notion from graph theory.

A walk is an alternating sequence of nodes and arcs, beginning and ending
with a node, where each node is incident to both the arc that precedes it and
the arc that follows it in the sequence, and where the nodes that precede and
follow an arc are the head and the tail of this arc.

We consider only non-empty walks, containing at least one arc.
A walk is closed if its first and last nodes coincide.
A path is a walk where no arcs are repeated (nodes may be repeated).
A simple path is a path where no nodes are repeated.
A cycle is a closed path.
A simple cycle is a closed path where no nodes are repeated (except the

first/last one).

A walk in a control automaton corresponds to some sequence of firings in
1-dim RWF-net. Now we inductively define an effect and a support of a walk.
Intutively,

Let t be a transition and σ a walk, such that the ending node of t is the
beginning node of the first transition of σ. Let tσ denote a walk, constructed by
linking t and σ. We define:

Eff (tσ) =def Eff (t) + Eff (σ); Supp(tσ) =def Supp(t) + (Supp(σ)	 Eff (t)),

where 	 denotes the truncated subtraction.
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A positive (resp., negative) walk is a walk with a positive (resp., negative)
effect. Obviously, the effect of a cycle does not depend on a choice of a starting
node.

A node q is called a positive generator, iff there exists a simple positive path
from q to q (a simple positive cycle) with a zero support.

Lemma 1. Any simple positive cycle contains at least one generator.

Proof. Note that without loss of generality we can consider only cycles of even
lengths, having alternating positive and negative arcs. Then the proof is straight-
forward, by induction on the length of a cycle.

A node q is called a negative generator, iff there exists a simple negative path
θ from q to q (a simple negative cycle), such that Supp(θ) = −Eff (θ).

Lemma 2. Any simple negative cycle contains at least one generator.

Proof. Similar to the previous lemma.

4.2 Decidability of soundness for marked nets

Let (N, i|r0) be an initially marked 1-dim RWF-net. By abuse of notation we
denote by N also the control automaton of N , represented as a one-counter net.
Recall that i ∈ C(N) denotes the initial control state, r0 ∈ Nat denotes the
initial value of a counter (the single resource place), and R(N, (i|r0)) denotes
the set of all reachable states.

Note that a marked RWF-net (N, i|r0) with a sound control subnet is not
sound if and only if it does not always terminate with a final control state o for
some larger initial resource r0 + s:

∃(c|r) ∈ R(N, i|r0 + s) such that (o|s′) 6∈ R(N, c|r) for any s′ ∈ Nat.

So we consider both two kinds of possible undesirable (not properly terminating)
behaviours of a Petri net, namely, deadlocks and livelocks.

Definition 6. A state (c|r) ∈ C(N)×Nat is a deadlock iff c 6= o and there is
no transition t ∈ T s.t. (c|r) t→ (c′|r′) for some c′, r′.

A finite set L ⊂ C(N)×Nat of states is a livelock iff

1. |L| > 1;
2. for any (c|r), (c′|r′) ∈ L there is a finite transition sequence σ ∈ T ∗ s.t.

(c|r) σ→ (c′|r′);
3. for any (c|r) ∈ L and t ∈ T s.t. (c|r) t→ (c′′|r′′) we have (c′′|r′′) ∈ L.

A livelock state is a state that belongs to some livelock.

Note that by definition (o|r) 6∈ L for any r;.
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Proposition 4. If a state (c|r) is a deadlock then for any t ∈ T s.t. c t→ c′ we
have Supp(t) > r.

Proof. Straightforward.

Note that Prop. 4 implies δ(t) < 0 and hence we can reformulate it:

Corollary 2. If a state (c|r) is a deadlock then:

1. ∀t ∈ T s.t. c t→ c′ for some c′ we have δ(t) < 0;

2. r < min{|δ(t)| : c
t→ c′ for some c′}.

So deadlocks can occur (1) just for control states with only negative outgoing
transitions; (2) only for a finite number of different resources – when there are
no enough resources for firing any of the successor transitions.

Proposition 5. The set of deadlock states is finite.

Proof. The set of “potential deadlock” control states (nodes with only negative
outgoing transitions) is finite. For a given “potential deadlock” control state the
set of applicable deadlock states (natural numbers smaller than the smallest
required resource for a successor transition) is also finite.

Hence, all deadlocks can be detected by checking control states with only
negative outgoing transitions.

Now let us consider livelocks.

Proposition 6. If L ⊂ C(N)×Nat is a livelock then there is a state (c|r) ∈ L
and a negative transition t ∈ T with c t→ c′, such that δ(t) < −r.

Proof. Straightforward, since the control subnet of RWF-net N is sound.

Proposition 7. The set of livelocks is finite.

Proof. First note that if (c|r), (c|r + x) ∈ L with x > 0 then L is not a livelock.
Indeed, in this case the transition sequence (c|r) σ→ (c|r + x) corresponds to a
positive cycle, that can generate an infinite number of states — a contradiction
to the finiteness of livelocks. So, every control state can occur in a given livelock
at most once.

Now assume the converse: there are infinitely many livelocks. Then there are
infinitely many livelocks with the same set of control states, which differ only in
their resource value. Hence, this set includes a livelock with an arbitrarily large
resource, and we can take a livelock with a resource big enough to reach the final
state o. This implies that o belongs to the livelock — a contradiction with the
definition of a livelock.

Thus, all livelocks can be easily detected by checking finite systems of states,
closed under transition firings (strongly connected components) and satisfying
the property from Prop. 6.
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Fig. 6. Modified RWF-net N.

Theorem 1. Soundness is decidable for marked 1-dim RWF-nets.

Proof. The following proof is similar to the proof of decidability of structural
soundness in [14].

For a given 1-dim RWF-net N construct the modified RWF-net N by adding
a new initial place i and two new transitions, as depicted in Fig. 6. The original
1-dim RWF-net (N, i|r) is sound iff neither deadlocks nor livelocks are reachable
in 1-dim RWF-net (N, i|r) (otherwise some large enough initial resource would
produce the same undesirable situation in the given net N).

Since the sets of deadlocks and livelocks are finite and computable, the prob-
lem of soundness of a marked 1-dim RWF-net can be reduced to a finite number
of instances of a reachability problem for a 1-counter Petri net. This reachability
problem is decidable.

4.3 Decidability of soundness for unmarked nets

Theorem 1 gives us only a semidecision procedure for soundness of a net. One
can check the soundness of a given initial marking, but if the answer is negative,
it is not known whether there exists a larger sound marking.

Definition 7. An unmarked RWF-net N is called sound iff (N, i|r) is sound
for some resource r.

Corollary 2 gives us only a necessary condition of a deadlock, reachable from
some initial marking. Now we prove a stronger theorem, which gives a sufficient
and necessary condition for existence of a soundness-violating deadlock (i.e. a
deadlock that is reachable from an infinite number of different initial markings).

Theorem 2. An unmarked 1-dim RWF-net is not sound with deadlocks iff there
exist a deadlock state (c|r), a negative generator q and a simple path q σ→ c such
that Eff (σ)	 Supp(σ) ≤ r.
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Proof. (⇐) It is sufficient to show that for any (large enough) initial resource
r0 there exists a larger initial resource r0 + x, such that a deadlock is reachable
from (i|r0 + x).

Consider an arbitrary (large enough) initial resource r0 s.t.

(i|r0)
τ→ (q|s)

for some path τ and resource s (it is always possible to find such a resource
since the control net is sound, and therefore any control state is reachable for
some sufficiently large initial resource). Let θ = qc1 . . . cjq be a simple negative
cycle with generator q, i.e. Supp(θ) = −Eff (θ). Denote z = s mod Supp(θ) and
consider a larger initial resource r0 + z + Supp(σ).

We have (
i|r0 + z + Supp(σ)

)

↓ τ
(
q|s+ z + Supp(σ)

)

↓ θ

(
(s+z)/Supp(θ)

)

(
q|Supp(σ)

)

↓ σ
(
c|Eff (σ)	 Supp(σ)

)

and hence a deadlock.
(⇒) Assume the converse: the net is unsound with a deadlock, but for any

given deadlock state, it is impossible to find a negative generator that satisfies
the conditions in the theorem.

The number of deadlock states is finite, hence some deadlock state (c|r)
is reachable from an infinite number of different initial states (initial resource
values).

Every transition sequence σ = t1.t2. . . . .tn from (i|r0) to (c|r) corresponds
to a walk σ in the control automaton graph. Since there are infinitely many
deadlock-generating initial states, the set of corresponding walks is also infinite.
Each of these walks can be decomposed into a sequence of alternating simple
cycles and acyclic simple paths:

σ = τ1(θ1)k1τ2(θ2)k2 . . . τn−1(θn−1)kn−1τn.

Note that this decomposition is not unique: ababa can be considered both as
(ab)2a and a(ba)2. To fix ideas, we only consider “decomposition from the right
to the left”, so a(ba)2.

Let us show that among these walks there is a walk with a negative last cycle
θn−1. Indeed, if the last cycle is positive (or neutral) with an effect x, we can
consider a larger initial resource r0 + x ∗ kn−1 and a shorter walk

σ′ = τ1(θ1)k1τ2(θ2)k2 . . . τn−1τn,
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having the same ending — a deadlock. Now, the new walk σ′ can be decomposed
into simple cycles and simple paths, then the last cycle, if it is positive, can be
removed by increasing the initial resource, and so on. At the end of this process
we will obtain either a walk with a negative “last cycle” or a completely acyclic
walk (simple path from i to c). There are only finitely many acyclic paths in
the graph, but infinitely many deadlock-generating initial markings (and hence
deadlock-generating walks from i to c), so we necessarily obtain a walk with a
negative last cycle.

Consider such a deadlock-walk σ′′, ending with a suffix θkτ, where θ is a
negative cycle and τ is acyclic. Let θ = c1c2 . . . ci . . . cmc1, where ci is a negative
generator (from Lemma 2 such ci always exists). The path

(
(ci . . . cmc1)τ

)
is

simple (remember that we decompose “from the right to the left” and hence θτ
cannot contain cycles other than θ). Since the final state of the whole walk σ′′
is (c|r), for any suffix φ of σ′′ we have

Eff (φ)	 Supp(φ) ≤ r.

It holds for
(
(ci . . . cnc1)τ

)
as well. But this is a simple path that leads from a

negative generator to a deadlock control state – Q.E.D.

A result similar to Th. 2 is valid for livelocks:

Theorem 3. An unmarked 1-dim RWF-net is not sound with livelocks iff there
exist a livelock state (c|r), a negative generator q and a simple path q σ→ c such
that Eff (σ)	 Supp(σ) ≤ r.

Proof. Similar to Th. 2.

Corollary 3. Soundness is decidable for unmarked 1-dim RWF-nets.

Proof. All simple (negative) cycles can be found by Tarjan algorithm, deadlock
and livelock states — by searching for states, satisfiyng Prop. 4 and Prop. 6
respectively. The set of simple paths is finite (and easily computable).

4.4 Computability of a minimal sound resource

Now we propose a plain (and hence, may be, not the most effective) algorithm for
computing the minimal resource r such that (N, i|r) is sound: one tests soundness
for incremented values of r until success. Note that this method can be applied
only to sound nets, while soundness of the unmarked net can be checked with
the algorithm given in Cor. 3.

5 Conclusion

In this paper we have investigated the soundness property for workflow nets with
one (unbounded) resource place. We have proved that soundness is decidable
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for marked and unmarked nets, and that the minimal sound resource can be
effectively computed.

Our decision algorithms use the reduction to the reachability problem for
unbounded Petri nets and hence cannot be considered efficient. However, the
inefficiency could be unavoidable, since RWF-nets are expressively rather close
to ordinary Petri nets (VASS).

Further research will concern decidability of soundness for the general case
of RWF-nets. It is also quite interesting to apply some alternative notions of
soundness to our infinite-state workflow nets. The so-called relaxed soundness is
of a particular interest. Relaxed soundness has been proposed as a weaker than
soundness property.

Some other interesting variants of soundness property are k-soundness, gen-
eralized and structural soundness [3].

The authors would like to thank the anonymous reviewers for their helpful
comments.
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6 Appendix

Proof of Proposition 1.
The proof is by contradiction. Let (N, i|r) be a sound RWF-net and let the

net (Nc, i) be not sound. Then there exists a marking c ∈ R(Nc, i), such that
either the final marking o is not reachable from c, or o ∈ c and c 6= {o}.

Since for the control subnet the control marking c is reachable from the
initial marking i via some sequence of firings, we can always take a resource s,
sufficiently large to support the same sequence of firings for (N, i|r + s) and to
reach the same control state c. If for the control subnet the final state was not
reachable from c, then adding resource places can’t make it reachable for the
net with resources, i. e. for (N, i|r + s), in contradiction with the soundness of
(N, i|r). If, otherwise, o ∈ c and c 6= {o}, then we also obtain a contradiction with
the soundness of (N, i|r), since the control state c is reachable for (N, i|r + s).

Proof of Proposition 2.
(1) Similarly to the proof of the Proposition 1 we can always take a sufficiently

large initial resource r + s.
(2) Suppose this is not true. Assume that for some c1, c2 ∈ C(N) we have

c2 = c1+c′ for some c′ 6= ∅. From the first statement of this proposition it follows
that there exist resources r1 and r2 s. t. RWF-nets (N, c1|r1) and (N, c2|r2) are
sound. Then nets (N, c1|r1+r2) and (N, c2|r1+r2) are also sound. Thus the final
marking o|r′ is reachable from the marking c1|r1 + r2, and (due to monotonicity
property of Petri nets) the marking o+c′|r′ is reachable from the larger marking
c2|r1 + r2 — contradiction with the soundness for RWF-net (N, c2|r1 + r2).
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