A System Performance in Presence of Faults
Modeling Framework Using AADL and GSPNs

Belhassen MAZIGH! and Kais BEN FADHEL!

Department of Computer Science, Faculty of Science of Monastir,
Avenue of the environment, 5019, Monastir - Tunisia
belhassen.mazigh@gmail.com

Abstract. The increasing complexity of new-generation systems which
take into account interactions between hardware and software compo-
nents, particularly the fault-tolerant systems, raises major preoccupa-
tions in various critical application domains.These preoccupations con-
cern principally the modeling and analysis requirements of these sys-
tems.Thus, designers are interested in the verification of critical propri-
eties and particularly the Performance and Dependability analysis.

In this paper, we present an approach for modeling and analyzing sys-
tems with hardware and software components in the presence of faults: an
approach based on Architecture Analysis and Design Language (AADL)
and Generalized Stochastic Petri Nets (GSPN). This approach starts
with the description of the system architecture in AADL. This descrip-
tion is enhanced by the use of two annexes, the existing Error Model
Annex and the Activity Model Annex (proposed Annex). By applying
existing transformation rules of GSPN models, we build two models:
GSPNs Dependability and Performance models. Finally, we apply our
composition algorithm, to obtain a global GSPN model allowing to an-
alyze Dependability and Performance measurements.

1 Introduction

The quantity and complexity of systems continues to rise and generally the cost
of manufacturing these systems is very high. To this end, many modeling and
analysis approaches are more and more used in industry with the aim to control
this complexity since the design phase. These approaches must be accompanied
by languages and tools. An explicit approach presents the building of a GSPN
of a complex system from the GSPNs of its components, taking into account the
interactions between the components, is presented in [1]. These approaches are
referred to as block modeling approach and incremental approach respectively.

AADL is among the languages having a growing interest in industry-critical
systems. This language has been standardized by the "International Society of
Automotive Engineers" (SAE) in 2004 [2, 3] , to facilitate the design and analy-
sis of complex systems, critical, real-time in areas such as avionics, automotive
and aerospace [4]. It provides a standardized graphical and textual notation to
describe the hardware and software architectures. It is designed to be extensible

170 PNSE’13 — Petri Nets and Software Engineering

in order to adapt and analyze architectures execution that the core language
does not fully support. The extensions may take the form of new properties
and notations specific to analysis that may be associated with the architectural
description in the form of annexes. Among these approaches, the one proposed
in [5] allows specialists in AADL to obtain Dependability measures, based on a
formal approach. This approach aims to control the construction and validation
of Dependability models in the form of GSPN. But in reality the designers want
to have a final model of the system that allows them to analyze Dependability
and Performance which take into account functional and dysfunctional aspects
of the system. In this paper we propose an extension to this approach so that the
final model of the system allows us to analyze the attributes of Dependability
and Performance measures. The outline of the paper is as follows. In Section 2,
we define the AADL concepts. Then we present our approach in Section 3 and
its application on a simple example in Section 4. We conclude in section 5.

2 AADL concepts

The AADL core language is used to analyze the impact of different architectural
choices on the properties of the system [6] and [7]. An architecture specification in
AADL describes how components are combined into subsystems and how they
interact. Architectures are described hierarchically. Components are the basic
bricks of AADL architectures. They are grouped into three categories: 1) soft-
ware (process, subprogram, data, and thread), 2) hardware (processor, memory,
device, bus) and 3) composite (system). AADL components may be composed of
sub-components and interconnected through features such as ports. These fea-
tures specify how the components are interfaced with each other. Each AADL
system component has two levels of description: the component type and the
component implementation. The type describes how the environment sees that
component, i.e., its properties and features. Examples of features are in and out
port that represent access points to the component. One or more component
implementations may be associated with the same component type.

As mentioned in the introduction, AADL is designed to be extensible in order to
adapt and analyze architectures execution the core language that does not fully
support. The Error Model Annex is a standardized annex [3] that completes
description of the capabilities of the core language AADL, providing a textual
syntax with a precise semantics to be used to describe the characteristics of
Dependability related to AADL architectural models. AADL error models are
defined in libraries and can be associated with software and hardware compo-
nents as well the connection between them. When an error model is associated
with a component, it is possible to customize it by setting component-specific
values for the arrival rate or the probability of occurrence of error events and
error propagation declared in the error model.

In the same way as for AADL components, the error model has two levels of
description: the error model type and the error model implementation. The er-
ror model type declares a set of error states, error events and error propagation

B. Mazigh et al.: System Performance in Presence of Faults 171

circulating through the connections and links between architecture model. In
addition, the user can declare properties of type Guard to control the propaga-
tion. The error model implementation declares states transitions between states,
triggered by events and propagation declared in the error model type [8]. Note
that in and out features identify respectively incoming propagation and out-
going propagation. An out propagation occurs in an error model source with
property of occurrence specified by the user. The error model source sends the
propagation through all ports and connections of the component to which er-
ror model is associated. As a result, out propagation arrives at one or more
error models associated with receptor components. If an error model receiver,
declares in propagation with the same name as the out propagation received,
the in propagation can influence its behavior.

3 Modeling approach

r’ Description of dependencies \1
Modeling the application !

. [AADL Activity |
‘ AADL Architecturs Modsl ‘ | Modsl i
|
i]
AADL Dependability Model ‘ i AADL Performances Model E
!]
Validation| Model Tr,_Hlfn,mlﬁm Model TrHsfﬂ-mnﬂm
Depeandability Modsl Performancas Modsl
GSPN Matkov chain GSPN Matkov chain

Applying our Composition
Algorithm

Legend:
i - Existi
| GSPN Model of Dependability and Performances | I:l Sing
Our
Analysis qf the Model Contribution

Dependability and Performances
Measures

Fig. 1. Proposed Approach

We can describe our method, presented in Figure 1, into five main steps:

1. The first step focuses on the modeling of the system architecture in AADL.

172 PNSE’13 — Petri Nets and Software Engineering

2. The second step concentrates on building an AADL Dependability Model
and a AADL Performance Model:

— Building Dependability model is done by the association of AADL Error
models to the components of AADL Architectural Model, see [5] for more
details.

— Building performance model is done by the association of our AADL
Activity models to the components of AADL Architectural Model. An
Activity Model is similar to the Error Model, this model works as an
Error Model, but the state change is performed by passing from a reliable
state to another with integration of performance metrics associated to
the properties that must be defined in AADL language. Syntactically it
is inspired by the standard Error Model. Activity models are devoted to
describe the components activities.

3. The third step is to build two GSPN models, of Dependability and Perfor-
mance, from two AADL models using the transformation rules presented in
[5].

4. The fourth step is dedicated to the application of our composition algorithm.
This algorithm receives as an input two GSPN models, a GSPN model of
Dependability and a GSPN model of Performance, each model is composed of
sub-networks of components and sub-networks of dependencies. We obtain a
global GSPN model which allows to analyze Dependability and Performance
measurements for hardware and software systems in the presence of faults.

5. The fifth step is dedicated to analyzing the global GSPN model to obtain
measures of Dependability and Performance. This last step is entirely based
on classical algorithms for processing GSPN models and it is not the subject
of this work, and therefore will not be detailed here.

The next section presents the application of our approach to a simple exam-
ple.

4 Application of our approach

To illustrate our approach, we use a simple system constituted by a processor PR
which executes a user process P. The processor allocation is made according to
the following policy: we define a quantum of time (e.g. q) for the processor PR. A
process P sends an allocation request for the processor PR. If the processor is free
then it accepts the request, the process pass to the execution state. The process
can pass into a blocking state (blocked) if it expects other resource (e.g. end of
an input output). If the execution time is smaller than the quantum then the
process completes its task and passes to termination state otherwise the processor
interrupt the execution of process, so that another process could be executed (the
processor is retained for the current process until the end of quantum). When the
process passes into the blocking state the processor can be allocated to another
process. The processor is not necessarily free. The process then moves to the
ready state. The ready state is the standby state of the processor. It is clear

B. Mazigh et al.: System Performance in Presence of Faults 173

that there is a structural dependence between the processor PR and process
P. Defects in materials could be propagated and influence behavior of software
associated with it.

We will first establish an AADL model of Dependability, with the corresponding
transformation steps into GSPN and we do the same thing to develop an AADL
Performance model. Finally, we apply our composition algorithm to obtain a
global Performance model in presence of software and hardware faults.

4.1 Construction of Dependability model

Error Model comp hard
features
Error Free:initial error state;
Activation 1 error state;
Frroneous : error state;
Fuailed 1 ervor state;
Fault : error event {Occurrence => poisson A}
Temp_Fault : error event {Occurrence => poisson A b
Perm _Fault : error event {Oeccurrence => poisson Agp};
Restart : error event {Occurrence == poisson Aan};
Recover : error event {Occurrence => poisson Mg,
End comp _hard;
Error Maodel implementation comp_hard.general
transitions
Error_Free — [Fault]— > Activation;
Activation — [Perm_ Fault]— > Failed;
Activation — [Temp Fault]— > Erroneous;
Failed — [Restart]— > Error_Free;
Erroneous — [Recover]— > Error _Free;
End comp__hard.general;

Fig. 2. Error Model of hardware component

We propose generic error models (without propagation) for the hardware
and software components (Figure 2 and 3) inspired by the works [8], [9], [10]
and [11]. These two models are respectively associated with the implementation
of the processor PR and the process P components. Because the fact that the
process P is running on the processor PR, the errors in the processor (hardware
faults) can affect the process executed as follows:

— If the fault is temporary, it can transmit errors in the process. The error sent
by the processor leads the process in state relating to the activation of fault
(state "Detect_ ERR’).

— If the fault is permanent, this failure has two consequences: stopping the
software components and synchronizing the restoration actions since the

174 PNSE’13 — Petri Nets and Software Engineering

relaunch of software components is conditioned by the end of the repair
of hardware component on which they were executed.

Error Model comp_soft
Features
Error _Free: initial error state;
Detect KRR : error state;
ERR_ND : error state;
ERR_D: error state;
Erroneous: error state;
Fuailed : error state;
Fault : error event {Occurrence => poisson Ay}
NonDetect : error event {Occurrence => poisson Age};
Eliminate : error event {Occurrence => poisson Ass};
PerceiveFail : error event {Occurrence => poisson Ag)
Detect : error event {Occurrence =2 poisson As.};
Temp Fault : error event {Occurrence == poisson Ass};
Perm_Fault: error event {Occurrence => poisson Az, };
Restart : error event {Occurrence => poisson Mg}
Recover : error event {Occurrence => poisson Mg }s
End comp_so ft;
Error Model implementation comp_soft.general
tramnsitions
Error _Free — [I"m;it]— > Detect _FKRR;
Detect KRR — [NonDetect]— > ERR_ND;
Detect ERR — [Detect]|— > ERR_D;
ERR_ND — [Eliminate]— > Error_Free;
ERR_ND — [f’r::‘r:r;irlr:f”r‘aii]— > Failed;
ERR_D—[Temp _Fault]— > Erroneous;
ERR_D—[Perm_ Faultl— > Failed;
Failed — [Restart]— > Error_Free;
Erroneous — [Recover]|— > Error_Free;
End comp_soft.general;

Fig. 3. Error Model of software component

Figure 4 shows only what is added to the error model associated with the pro-
cessor in order to describe the structural dependency after a recovery failure. The
error model type for processors, comp _hard, is completed with lines Rlo and RQO
in order to include ’out’ error propagation declarations CPR_ Failed’)PR_OFk’),
"PR_Failed’ causes the processes failures while ’PR_OF’ is used to synchro-
nize the repair of the processor with the restart of the process. The error model
implementation, comp _hard.general, takes into account the sender side of the
recovery dependency, it declares one transition triggered by each of the two
newly introduced ’out’ propagation (see lines Ry and R% of Figure 4). When
one of the 'out’ propagation occurs, the processor remains in the same state and
the propagation remains visible until the processor leaves this state. Figure 5
shows what is added to the error model associated with a process in order to
describe the structural dependency. The error model type, comp soft, is com-

B. Mazigh et al.: System Performance in Presence of Faults

s

FEnd

End

Error Model comp_hard
RY PR_Failed : out error propagation {Occurrence => fized gql};
R PR_ok:out error propagation {Oceurrence => fived q2};

Error Model implementation comp _hard.general
transitions

RS Failed — [out PR_Failed|— > Failed;
RS Error_Free — [out PR_ok]— > Error_Free;

eatures

comp__hard;

comp_hard.general;

Fig. 4. Error Model for processor component

175

pleted with lines L, Lyand Lo. Line Ly declares an additional state in which
the process is allowed to restart and Lines L; and Ly declares 'in’ propagation.
The error model implementation, comp _soft.generale, takes into account the
recipient side of the structural dependency by declaring five transitions triggered
by the ’in’ propagation ’PR_ Failed’ (see lines L1, L2 L3 L} and L} of Figure
5) and leading the process from each state (other than ’Failed’) to the ’Failed’
state. The process is authorized to move from the ’Failed’ state to 'InRestart’
state only when it receives the "PR_Ok’ propagation (see line L3 of Figure
5). Since the recovery procedure is now engaged by the InRestart’ state , the
AADL transition (Failed — [Restart]— > Error_Free) will be replaced by the
transition (Failed — [PR_Ok]— > InRestart, see line R).

Ly
Ly
La

Frror Madel comp _soft
features
-]
InHRestart : error state;
PR _Failed : in error propagation;
PR _ok: in error propagation;
FEnd comp_soft
Frror Model implementation comp _soft.general
transitions
-]
Error _Free — [inPR_ Failed]— > Failed;
Detect ERR — [inPR__Failed)|— > Failed;
ERR _ND— [inPR_Failed]— > Fuailed;
ERR _DlinPR_Failed]— > Fuoiled;
Erroneous — [inPR_Failed]— > Failed;
Failed — [inPR_OK]— > InRestart;
InRestart — [Restart]— > Error_Free;
Fnd comp_soft.general

Fig. 5. Error Model for process component

PNSE’13 — Petri Nets and Software Engineering

176

[PPOIN NdSD Apiqepuada(q -9 *Si4q

pEysaNU|

13A0D3Y

5]

-

Heysay

7doxd pug
< Ny
<
Houd Ul HoMd g
PEIES Hd
P3llEdHd IO
<
paiiey ?
pnoauon3y .t‘r
=Y =Y Y

yne4 dwsa) Jneq4 uuad [IEEXNELIEN
-
>
!
>

y =

=y £y

SHEuIW g
Yy
P3llEgHd Ul
M R
{L}ea14 1007
dssas0id fouspuadag

=2

Esay

InEe4 uuag

palted

uey

SNo3uoLg

iy “

L]
\ﬂflk“rlﬂrT

L}

Hd Jossadold

B. Mazigh et al.: System Performance in Presence of Faults 177

By applying transformation rules presented in [5], Figure 6 shows the GSPN
obtained when transforming the AADL model corresponding to the process P
linked to the processor PR. We note that places with dark circles are places with
capacity of one token.

4.2 Construction of Performances model

The following section presents the steps for constructing the AADL Performance
model with corresponding transformation steps. For more clarity, we model each
component (process P or processor PR) in the presence of internal events and ’in’
propagation and then we integrate the 'out’ propagation following the description
of the system. Figure 7 shows the activity model associated with the processor.
As for the error model, we associate the activity model, processor P R.imp, to
the implementation of the component processor. The processor is initially free.
It will be occupied if it receives an allocation request, 'request’. It can go from
'Busy’ state to the "Exp termination’ state if the "End_quantum’ event is
activated with a rate Agp. Or it can pass to the 'Free’ state if it receives an ’in’
propagation 'FreePR’. From the "Exp_termination’ state it can return to its
initial state with a rate A7j.

Activity Model processor_PR
Features
Free: initial state;
Busy : state;
Exptermination : state;
End_quantum : event {occurrence => poissonsig, };
Initialization : event {occurrence => poissonsiq, b
request : in propagation;
FreePR :in propagation;
End processor_PR;
Activity Model implementation processor _PR.aimp
transitions
Free — [in request]— > Busy;
Busy — [End_quantum]— > Exp_termination;
Expiermination — [Initialization]— > Free;
Busy — [fﬂ I"rﬁﬁf’h’.]— > Free;
End processor _P R.imp;

Fig. 7. Activity Model for the processor component

The GSPN model of the processor PR (Figure 8) is obtained by applying the
transformation rules (incomplete model).

Figure 9 shows the Activity Model associated with the process P. Initially,
the process is in ’Ready’ state. It passes to 'Execution’ state when it receives
an 'in’ propagation ’Grant’ (it means that the processor starts its execution). It
can go from ’'Execution’ state to a Ready state if it receives an 'in’ propagation

178

"FQ (it is temporarily suspended to allow the execution of another process). It
passes from the 'Ezecution’ state to the 'blocked’ state if the "Fven R’ event
is activated with a rate A\j;5. When the ’F'__Fven R’ event occurs it passes to
"Ready’ state. It can go from the 'Execution’ state to a 'Ready’ state, if the

PNSE’13 — Petri Nets and Software Engineering

Processor_PR

Initialization

Am

In_request In_FreePR

Exp_ termination

End_quantum
Busy

Fig. 8. GSPN model for the processor component

"End_T’ event is activated with a rate Ajgs.

Activity Model process_p

features

Ready : initial state;

Frecution : state;

blocked : state;

Termination : state;

EndT: event {occurrence => poissons Aigs};
Even_R : event {occurrence == poissons M. };
F_Even_Rt : event {occurrence => poissons Mas };
Initialization : event {occurrence => poissons Mg }s
FQ :in propagation;

Grant @ in propagation;

end process_p;
Activity Model implementation process_p.general

transitions

Ready — [in Grant]— > Erecution;
Erecution — [in FQ]— > Ready;
Frecution — [ET.IF::I._H]— = Blocked;
Blocked — [F_Even_R]— > Ready;
Execution — [EndT]— > Termination;
Termination — [Initialization]— > Ready;

End process_p.general

Fig. 9. Activity Model for the process component

B. Mazigh et al.: System Performance in Presence of Faults 179

By applying the transformation rules we obtain the GSPN model of the
process P (figure 10, incomplete model).

a Process

Ready

D

F_EvenR Initialization

f.jj; ;‘:::

Blocked Termination

Fig. 10. GSPN model for the process component

Figure 11 shows just what is added to the activity model associated with the
processor in order to describe the interaction between process P and the pro-
cessor PR. The activity model type for processor, processor PR, is completed
with lines Lo and Ly (see figure 11) in order to include ’out’ error propagation
declarations such as:

— Line Lo declares an ’out’ propagation ’F'QQ’, which indicate the end of quan-
tum. Its name matches the name of the ’in’ propagation declared in the
activity model type, process p (see figure 9).

— Line L declares an ’out’ propagation 'Grant’, which indicates that the pro-
cessor has given permission to move the process in ’'Execution’ state. Its
name matches the name of the ’in’ propagation declared in the activity
model type, process _p (see figure 9).

The activity model implementation, processor PR.imp, declares two transi-
tions (lines L}, and L) triggered by the newly introduced ’out’ propagation
"FQ’ and 'Grant’. When one of these two ’out’ propagation occurs, the pro-
cessor remains in the same state and the propagation remains visible until the
processor leaves this state.

Similarly, Figure 12 shows what is added to the activity model associated
with the process in order to describe the interaction between process P and
the processor PR. The activity model type for process, process p, is completed
with lines Sp and S; (see figure 12) in order to include ’out’ error propagation
declarations such as :

— Line Sp declares an ’out’ propagation 'request’, to indicate that the process
requires the processor. Its name matches the name of the ’in’ propagation
declared in the activity model type, processor PR (see figure 7).

180 PNSE’13 — Petri Nets and Software Engineering

Activity Madel processor_PR
Jeatures
(-]
Lo FQ: out propagation {occurrence => Fixed Agp};
I Grant : out propagotion {occurrence =>> poissons gy}
End processor_PR;
Activity Model implementation processor _PR.imp
transitions
(]
Ly Busy — [put Grant]— > Busy;
Ly Erp.Termination — [out FQl— > Eep Termination;
FErd processor _PR.aimp

Fig. 11. Activity Model for processor component with interaction

— Line S; declares an ’out’ propagation ’FreePR’. Its name matches the name
of the ’in’ propagation declared in the activity model type, processor PR
(see figure 7).

The activity model implementation, process p.general, declares three transi-
tions (lines Sz, Sy and Ss of figure 12) triggered by the newly introduced ’out’
propagation 'request’ and *FreePR’.

Activity Model process_p
features
]
So request: out propagation {occurrence => poissons Mg}
S1 FreePR: out propagation {occurrence => Fived Aiss };
FEnd process_p;
Activity Model implementation process_p.general
transitions
(]
S: Ready — [out dmdp]— > Ready;
54 Blocked — [out FreePR]— = Blocked;
S5 Termination — [out FreeP R]— > Termination;
End process_p.general;

Fig. 12. Activity Model for process component with interaction

Figure 13 shows the GSPN model obtained by applying the transformation
rules.

181

System Performance in Presence of Faults

B. Mazigh et al.:

9DURWLIONS JO [OPOIN NASD €T “Std

w
"
~

1gaaiy pug

.ﬂ.wmil:_

¥d3=147I00

igeaii pug

Hd33147u| Hd3314INO

wnuenb™pugy

€

queuua) ~ dxg

qwy

uonezZIERU| Asng

Hd Jossasoud

wenb” doxd puz

¢
5| | N

» »
8y _ oiu
4 [sERyls] 4 Ul

:n:m:__.:._m._..

L —

uonegiem|

:._w._.MI_ JUEIS) NG

JuEIS U]

we pug

jsanbai"u|

yuaaz 4

.|...m _I_A
U

1sanbas Q' 1sanbaa

1sanbas pug
Asuspuadag

dssasoug

182 PNSE’13 — Petri Nets and Software Engineering

4.3 Application of composition algorithm

Now after the construction of the Performance and Dependability GSPN mod-
els, we apply our composition algorithm on these two models. Each model is
composed of components sub-nets and dependencies subnets. Each component
has a GSPN model of Dependability and a GSPN model of Performance. The
basic idea of this algorithm is to connect each component sub-net of Performance
with the corresponding component sub-net of Dependability. This algorithm is
defined to ensure that the obtained global GSPN model is correct by construction
(bounded, safe and no deadlock). The main steps of our composition algorithm
are the following:

— For each sub-network component of Performance, if the component has no
replicas, we add a bidirectional arc which connects the transitions of Perfor-
mance model component with the place that represents the initial state of
the corresponding Dependability model. This rule reflects that if the compo-
nent is in a state of Performance model, it can move to another state only if
there is no activation of a fault. Note that the number of tokens in a sub-net
component is always 1 because at a given time a component can be only in
one state. It is clear that if there is activation of a temporary fault, after
adding a bidirectional arc, the component remains in waiting until the reso-
lution of this fault since transitions in the Performance model are disabled.
We note that if there is a place in a Performance model where the activa-
tion of a temporary fault does not exist, for all transitions that represent
the output transitions of this place, the bidirectional arc is eliminated. In
our case if the processor PR in a free state, a temporary fault will never be
activated. Now if a permanent fault occurs, the component must regain its
initial state. The rule of the link consists in adding timed transitions, and
link with a bidirectional arc the initial place of Performance model with the
transition Restart of Dependability model.

— if the component has replicas, each replica has the same GSPN model of
Performance and Dependability. In first step, the addition of bidirectional
arcs is applied to each replica. Then immediate transitions are added to
represent the switching between the GSPN models.

By applying this algorithm on our models, we obtain Figure 14 which shows
the GSPNs models of processor PR and Figure 15 which shows the GSPN models
of the process P. The two models constitute the global model of the studied
system.

183

System Performance in Presence of Faults

B. Mazigh et al.:

[epow 1osseo01d [[opowt NJSH [eqord) 943 jo jred 9siy oy, ‘T ‘S1q

oduaL
Aouapuadag

B4no

o4

Bl U] O]
fouspuadag

eI IN0

el

ils)

PallEdHd Ul o)

P3IIES Hd IO

P3IIES Hd

Aouspuadaqg

uoneulula) dxg

uonezifefiul

wmuenb™

pus X ke r

dpwpTng

Jne4 uuag

uonEAROY

uty

yne4

snoauoug

uzy usy

yne4 dwsa) 3In0DIY

S3JUBWLIONS 1O [SPOIN NdSD

231410113

HO¥d uloL

(LS Oud 0

Aouspuadag

Aungepuadaq jo |]2po NdSD

PNSE’13 — Petri Nets and Software Engineering

184

[epow sseoo1d opowr NJSH [eqO[H) 943 jo 1red puodss oy, *QT “Siq

HdSa14 Ul oL LU ER TS
Hd3313INO fouspuadag Ud=213T N0
Aouapuadag
Hd3314 Hd=314 ;

fouspuadag

\ur_ﬂmmm:_

J0Hd IO
waoig

Aoud Ul

UoREUIUISL

uonez|eqiu|

uonpnoax3

weIg—INg

*
Kpeay
dpupl
dpwpTing oy

=i

a1nooay

Hneq

palies

sty

uuag

lejane0Iad

a uu3

=y
1380

sy
193130 woy

u3PIEg

33141003

SIUBULIONI JO [2POIAl NdSD

Kujiqepuadaq jo [3poiA NdSD

sjeunng

B. Mazigh et al.: System Performance in Presence of Faults 185

5 Conclusion

In this paper, we have presented an approach based on AADL and Generalized
Stochastic Petri Nets for modeling and analyzing Performance and Dependability
of systems in the presence of faults. This approach consists of several steps. After
modeling the system architecture in AADL, two AADL models are obtained,
Dependability and Performance models. They are transformed in two GSPN
models by applying transformation rules presented in [5]. Finally, by applying
our algorithm we build the global model related to the studied system. Our
composition algorithm was implemented in Java language. From Performance
and Dependability models of hardware and software components, our algorithm
builds a global GSPN model. The obtained GSPN model is a file type PNML
exchange format which can be analyzed by tools that support this format such
as Tina toolbox [12]. In [13] we applied this approach on the ABS anti-lock
complex system.

References

1. K. Kanoun, M. Borrel, Fault-tolerant system Dependability: Explicit model-
ing of hardware and software component-interactions, IEEE Transactions on
Reliability, 49, (2000).

2. SAE-AS5506. Architecture Analysis and Design Language, SAE, (2004).

3. SAE-AS5506/1, Architecture Analysis and Design Language Annex Volume 1.
SAE, (2006).

4. Ana Elena Rugina, Karama Kanoun, Mohamed Kaaniche, System Dependabil-
ity modeling using AADL langage, 15eme Congres de Maitrise des Risques et
de Surete de Fonctionnement, Lille, (2006).

5. Ana-Elena Rugina, Dependability Modeling and Evaluation: From AADL
to Stochastic Petri nets, PhD.D. thesis, Institut National Polytechnique de
Toulouse, France, (2007).

6. Thomas Vergnaud. Modelisation des Systemes Temps reel Repartis Embarques
pour la Generation Automatique d Application Formellement Verifiees. PhD
thesis, Ecole Nationale Superieure des Telecommunications, (2006).

7. P. Feiler, B. Lewis, and S. Vestal. The SAE Architecture Analysis & Design
Language (AADL) A Standard for Engineering Performance Critical Systems.
In Proceedings of the 2006 IEEE Conference on Computer Aided Control Sys-
tems Design, (2006).

8. Rogerio de Lemos, Cristina Gacek, Alexander B. Romanovsky, Architecting
Dependable Systems IV, Lecture Notes in Computer Science 4615, Springer,
(2007).

9. Jean-Claude Laprie, Dependable Computing: Concepts, Limits, Challenges,
Invited paper to FTCS-25, the 25th IEEE International Symposium on Fault-
Tolerant Computing,Pasadena, California, USA, June 27-30, Special Issue,
(1995).

10. M. Borrel, Interactions entre composants materiel et logiciel de systemes tol-
erant aux fautes - Caracterisation - Formalisation - Modelisation - Application
a la surete de fonctionnement du CAUTRA, LAAS-CNRS, These de doctorat,
Toulouse, France, (1996).

186

11.

12.

13.

PNSE’13 — Petri Nets and Software Engineering

A. Bondavalli, S. Chiaradonna, F. D. Giandomenico, J. Xu, Fault-tolerant
system Dependability: Explicit modeling of hardware and software component-
interactions, Journal of Systems Architecture, 49, (2002).

B. Berthomieu, P.-O. Ribet, F. Vernadat, The tool TINA — Construction of Ab-
stract State Spaces for Petri Nets and Time Petri Nets, International Journal
of Production Research, Vol. 42, No 14,(2004).

Kais Ben Fadhel, une approche de modelisation et d’analyse des performances
et de la surete de fonctionnement : Transformation d’une specification AADL
en GSPN, Master de recherche, faculte des sciences de Monastir, Tunisie,
(2012).

