
Modeling Distributed Private Key Generation by
Composing Petri Nets

Luca Bernardinello1, Görkem Kılınç1, Elisabetta Mangioni1,2, and Lucia
Pomello1

1 Dipartimento di Informatica Sistemistica e Comunicazione,
Università degli studi di Milano - Bicocca,

Viale Sarca, 336 - Edificio U14 - I-20126 Milano, Italia
2 Istituto per la Dinamica dei Processi Ambientali,
Consiglio Nazionale delle Ricerche (CNR-IDPA),

Piazza della Scienza, 1 - Edificio U1 - I-20126 Milano, Italia

Abstract. We present a Petri net model of a protocol for the distributed
generation of id-based private keys. Those keys can then be used for
secure communications. The components of the system are built as re-
finements of a common interface, by applying a formal operation based
on a class of morphisms between Elementary Net Systems. It is then
shown that we can derive behavioural properties of the composed sys-
tem without building it explicitly, by exploiting properties of the given
morphisms.

Keywords: Petri Nets, morphisms, local state refinement, composition,
distributed private key generation

1 Introduction

In [1] we proposed a way to compose Elementary Net Systems (ENS) by iden-
tifying conditions, places, and events. The identification is ruled by a pair of
morphisms from the two components to an interface. The interface is an ENS
which can be seen as specifying the protocol of interaction between components,
or a common abstraction.

This framework was first defined relying on N-morphisms, originally intro-
duced in [11], [4]. Later, the same operation was defined over a new class of
morphisms, called α-morphisms (see [3] and [1]).

An α-morphism from an ENS N1 to an ENS N2 corresponds to a relation of
refinement: some subnets of N1 refine conditions of N2. This refinement may re-
quire that some events be duplicated. Such morphisms are defined and discussed
in Section 3.

When composing two ENS, N1 and N2 over an interface NI , the two mor-
phisms towards the interface specify how each component refines parts of the
interface. An uninterpreted example is given in Section 4.

One of the claimed advantages of this approach to design is the ability to
derive properties of the composed systems from properties of the components and

of the morphisms, without the need to actually build and analyse the composed
system.

Ideally, one would like to derive behavioural properties, like liveness and
safety properties, by analyzing only the structure of the models involved, thus
avoiding the potentially high cost of computing the reachable markings. This
is not always possible. Hence, the method we propose uses some behavioural
information about components and interface; however, this is limited to only a
part of the models, and does not involve the whole system model.

Here, we test these ideas on a protocol for distributed generation of id-based
cryptographic keys. The protocol, described in more detail in Section 5, requires
the cooperation of several private key generators (PKGs) so that a client can
build a private key. Basically, n PKG nodes come together to generate a master
key pair consisting of a private and a public key. After that, each PKG node has a
share for the master key pair. A client who wants to have a private key applies to
k available PKG nodes. Each PKG node calculates a piece of the client’s private
key by using the unique id-string of the client and the share of the master private
key which is held by that specific PKG node. On receiving k pieces, the client
continues to extract its private key. The so called bulletin board is responsible for
the initialization of the components in the system and broadcasting the public
parameters. During both the distributed generation of the master key pair and
the extraction of the clients’ private keys, a verification can be performed by
using the commitment values and public keys held and broadcast by the bulletin
board. The id-based distributed private key generation protocol was proposed
in [5]; an improved version is presented in [6]. In [7], a Petri net model for the
protocol to be implemented on industrial control systems is presented.

In the next section, basic definitions related to ENS are recalled. Section 3
recalls the formal definition of α-morphisms and the properties they preserve
or reflect and which are used in the rest of the paper. The definition of an
operation of composition of ENS, based on α-morphisms, is informally recalled
in Section 4 on the basis of an uninterpreted example. In the same section, the
main result relating behavioral properties of the composed system to behavioral
properties of its components is recalled. Section 5 presents the distributed private
key generation protocol which is modelled by Petri nets in Section 6. In the same
section, we analyze behavioural properties of the model. The paper is closed by
a short concluding section.

2 Preliminary definitions

In this section, we recall the basic definitions of net theory, in particular Ele-
mentary Net Systems and unfoldings [13].

A net is a triple N = (B,E, F), where B is a set of conditions or local states,
E is a set of events or transitions such that B∩E = ∅ and F ⊆ (B×E)∪(E×B)
is the flow relation.

78 PNSE’13 – Petri Nets and Software Engineering

We adopt the usual graphical notation: conditions are represented by circles,
events by boxes and the flow relation by arcs. The set of elements of a net will
be denoted by X = B ∪ E.

The preset of an element x ∈ X is •x = {y ∈ X|(y, x) ∈ F}; the postset of x
is x• = {y ∈ X|(x, y) ∈ F}; the neighbourhood of x is given by •x• = •x ∪ x•.
These notations are extended to subsets of elements in the usual way.

For any net N we denote the in-elements of N by ◦N = {x ∈ X : •x = ∅}
and the out-elements of N by N◦ = {x ∈ X : x• = ∅}.

A net N ′ = (B′, E′, F ′) is a subnet of N = (B,E, F) if B′ ⊆ B,E′ ⊆ E, and
F ′ = F ∩ ((B′×E′)∪ (E′×B′)). Given a subset of elements A ⊆ X, we say that
N(A) is the subnet of N identified by A if N(A) = (B ∩A,E ∩A,F ∩ (A×A)).
Given a subset of conditions A ⊆ B, we say that NA is the subnet of N generated
by A if NA = (A, •A•, F ∩ ((A ∪ •A•) × (A ∪ •A•))). Note that given A ⊆ B,
N(A ∪ •A•) = NA.

A State Machine is a connected net such that each event e has exactly one
input condition and exactly one output condition: ∀e ∈ E, |•e| = |e•| = 1.

Elementary Net (EN) Systems are a basic system model in net theory. An
Elementary Net System is a quadruple N = (B,E, F,m0), where (B,E, F) is a
net such that B and E are finite sets, self-loops are not allowed, isolated elements
are not allowed, and the initial marking is m0 ⊆ B.

A subnet of an EN System N identified by a subset of conditions A and all its
pre and post events, N(A∪ •A•), is a Sequential Component of N if N(A∪ •A•)
is a State Machine and if it has only one token in the initial marking.

An EN System is covered by Sequential Components if every condition of
the net belongs to at least a Sequential Component. In this case we say that the
system is State Machine Decomposable (SMD).

Let N = (B,E, F,m0) be an EN System, e ∈ E and m ⊆ B. The event e is
enabled at m, denoted m [e〉, if •e ⊆ m and e• ∩m = ∅; the occurrence of e at
m leads from m to m′, denoted m [e〉m′, iff m′ = (m \ •e) ∪ e•.

Let ε denote the empty word in E∗. The firing rule is extended to sequences
of events by setting m [ε〉m and ∀e ∈ E,∀w ∈ E∗,m [ew〉m′ = m [e〉m′′[w〉m′;
w is called firing sequence.

A subset m ⊆ B is a reachable marking of N if there exists a w ∈ E∗ such
that m0 [w〉m. The set of all reachable markings of N is denoted by [m0〉.

An EN System is contact-free if ∀e ∈ E,∀m ∈ [m0〉: •e ⊆ m implies e•∩m =
∅. An EN System covered by Sequential Components is contact-free [13]. An
event is called dead at a marking m if it is not enabled at any marking reachable
from m. A reachable marking m is called dead if no event is enabled at m. An
EN System is deadlock-free if no reachable marking is dead.

Let N = (B,E, F) be a net, and let x, y ∈ X. We say that x and y are in
conflict, denoted by x #N y, if there exist two distinct events ex, ey ∈ E such
that exF ∗x, eyF ∗y, and •ex ∩ •ey 6= ∅, where F ∗ is the reflexive and transitive
closure of F .

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 79

The semantics of an EN System can be given as its unfolding. The unfolding
is an acyclic net, possibly infinite, which records the occurrences of its elements
in all possible executions.

An occurrence net is a net N = (B,E, F) such that if e1, e2 ∈ E, e1• ∩ e2• 6=
∅ then e1 = e2; F ∗ is a partial order; for any x ∈ X, {y : yF ∗x} is finite;
#N is irreflexive and the minimal elements with respect to F ∗ are conditions.
Occurrence nets were introduced in [10]; in [13] they are called branching process
nets.

A branching process of N is an occurrence net whose elements can be mapped
to the elements ofN . LetN = (B,E, F,m0) be an EN System, andΣ = (P, T,G)
be an occurrence net. Let π : P ∪ T → B ∪ E be a map. The pair (Σ, π) is a
branching process of N if π(P) ⊆ B, π(T) ⊆ E; π restricted to the minimal
elements of Σ is a bijection on m0; for each t ∈ T , π restricted to •t is injective
and π restricted to t• is injective and for each t ∈ T , π(•t) = •(π(t)) and
π(t•) = (π(t))•.

The unfolding of an EN System N , denoted by Unf (N), is the maximal
branching process of N , namely the unique, up to isomorphism, branching pro-
cess such that any other branching process of N is isomorphic to a subnet of
Unf (N). The map associated to the unfolding will be denoted u and called
folding.

3 α-morphisms

In this section we present the formal definition of α-morphisms [3, 2] for State
Machine Decomposable Elementary Net Systems (SMD-EN Systems) and the
structural and behavioural properties α-morphisms preserve and reflect.

Definition 1. Let Ni = (Bi, Ei, Fi,m
i
0) be a SMD-EN System, for i = 1, 2. An

α-morphism from N1 to N2 is a total surjective map ϕ : X1 → X2 such that:

1. ϕ(B1) = B2;
2. ϕ(m1

0) = m2
0;

3. ∀e1 ∈ E1, if ϕ(e1) ∈ E2, then ϕ(•e1) = •ϕ(e1) and ϕ(e1
•) = ϕ(e1)•;

4. ∀e1 ∈ E1, if ϕ(e1) ∈ B2, then ϕ(•e1•) = {ϕ(e1)};
5. ∀b2 ∈ B2

(a) N1(ϕ−1(b2)) is an acyclic net;
(b) ∀b1 ∈ ◦N1(ϕ−1(b2)), ϕ(•b1) ⊆ •b2 and (•b2 6= ∅ ⇒ •b1 6= ∅);
(c) ∀b1 ∈ N1(ϕ−1(b2))◦, ϕ(b1

•) = b2
•;

(d) ∀b1 ∈ ϕ−1(b2) ∩B1,
(b1 6∈ ◦N1(ϕ−1(b2)) ⇒ ϕ(•b1) = {b2}) and (b1 6∈ N1(ϕ−1(b2))◦ ⇒
ϕ(b1

•) = {b2});
(e) ∀b1 ∈ ϕ−1(b2) ∩ B1, there is a sequential component NSC of N1 such

that b1 ∈ BSC and ϕ−1(•b2•) ⊆ ESC .

We require that the map is total and surjective because N1 refines the ab-
stract model N2, and any abstract element must be related to its refinement.

80 PNSE’13 – Petri Nets and Software Engineering

In particular, a subset of nodes can be mapped on a single condition b2 ∈ B2;
in this case, we will call bubble the subnet identified by this subset, and denote
it by N1(ϕ−1(b2)); if more than one element is mapped on b2, we will say that
b2 is refined by ϕ.

In-conditions and out-conditions have different constraints, 5b and 5c respec-
tively. As required by 5c, choices which are internal to a bubble can not constrain
a final marking of that bubble: i.e., each out-condition of the bubble must have
the same choices of the condition it refines. Instead, pre-events do not need this
strict constraint (5b): hence it is sufficient that pre-events of any in-condition are
mapped on a subset of the pre-events of the condition it refines. Moreover, the
conditions that are internal to a bubble must have pre-events and post-events
which are all mapped to the refined condition b2, as required by 5d. By require-
ment 5e, events in the neighbourhood of a bubble are not concurrent, and the
same holds for their images. Within a bubble, there can be concurrent events;
however, post events are in conflict, and firing one of them will empty the bubble
[8]. Moreover, given that a bubble can be abstracted by a single condition no
input event of a bubble is enabled whenever a token is within the bubble [8].

It is possible to show that the family of SMD-EN Systems together with
α-morphisms forms a category [8].

In [8] and [3] structural and behavioral properties preserved or reflected by α-
morphisms has been studied. In particular, sequential components are reflected
in the sense that the inverse image of a sequential component is covered by
sequential components and α-morphisms preserve reachable markings.

Moreover, stronger properties hold under additional constraints. In order
to present them, we have to consider the following construction. Given an α-
morphism ϕ : N1 → N2, and a condition b2 ∈ B2 with its refinement, we define
two new auxiliary SMD-EN Systems. The first one, denoted S1(b2), contains the
following elements: a copy of the subnet which is the refinement of b2, i.e.: the
bubble; its pre and post events in E1 and two new conditions, denoted bin1 and
bout1 . bin1 is pre of all the pre-events, and bout1 is post of all the post-events. The
initial marking of S1(b2) will be {bin1 } or, if there are no pre-events, the initial
marking of the bubble in N1. The second system, denoted S2(b2), contains b2,
its pre- and post-events and two new conditions: bin2 , which is pre of all the
pre-events, and bout2 , which is post of all the post-events. The initial marking of
S2(b2) will be {bin2 } or, if there are no pre-events, the initial marking of b2. Define
ϕS as a map from S1(b2) to S2(b2), which restricts ϕ to the elements of S1(b2),
and extends it with ϕS(bin1) = bin2 and ϕS(bout1) = bout2 . Note that S1(b2) and
S2(b2) are SMD-EN Systems and that ϕS is an α-morphism. Let Unf (S1(b2))
be the unfolding of S1(b2), with folding function u : Unf (S1(b2))→ S2(b2).

Consider the following additional constraints:

c1 the initial marking of each bubble is at the start of the bubble itself; formally,
for each b2 ∈ B2 one of the following conditions hold:
– ϕ−1(b2) ∩m1

0 = ∅ or
– if •b2 6= ∅ then there is e1 ∈ ϕ−1(•b2) such that ϕ−1(b2) ∩m1

0 = e1
• or

– if •b2 = ∅ then ϕ−1(b2) ∩m1
0 = ◦ϕ−1(b2);

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 81

c2 any condition is refined by a subnet such that, when a final marking is
reached, this one enables events which correspond to the post-events of the
refined condition, i.e.: ϕS ◦ u is an α-morphism from Unf (S1(b2)) (in which
we put a token in the in-condition of the net) to S2(b2);

c3 different bubbles do not “interfere” with each other; where we say that two
bubbles interfere with each other when their images share, at least, a neigh-
bour.

Note that the third constraint is not restrictive since the refinement of two
interfering conditions can be done in two different steps.

Under c1, c2, and c3, the following properties can be proved [8]:

p1 reachable markings of N2 are reflected:
for all m2 ∈

[
m2

0

〉
, there is m1 ∈

[
m1

0

〉
such that ϕ(m1) = m2;

p2 N1 and N2 are weakly bisimilar:
by using ϕ, define two labelling functions such that E2 are all observ-
able, i.e.: l2 is the identity function, and the invisible events of N1 are the
ones mapped to conditions; then (N1, l1) and (N2, l2) are weakly bisimilar
(N1, l1) ≈ (N2, l2).

For a definition of weak bisimulation of EN Systems see [12] and [9].

4 Composition based on α-morphisms

In this section, we recall the composition of SMD-EN Systems based on α-
morphisms as defined in [1], on the basis of an uninterpreted example given in
Fig. 1.

The two systems to be composed, N1 and N2, must be mapped onto a com-
mon interface, which is another SMD-EN System NI . The interface can be seen,
intuitively, as a protocol of interaction, with which the components must comply,
or as a common abstraction; in this second view, each component can refine some
parts of the common abstraction. The two α-morphisms, from the components
to the interface, determine how the two components refine the local states of the
interface, and then which elements are to be identified and which events in the
two components have to synchronize.

To compose two net systems, each must be canonical with respect to the cor-
responding morphism towards the interface. We say that a net system is canon-
ical with respect to an α-morphism if each bubble contains a condition, called
representation, that corresponds to the abstraction of that bubble. Examples of
representations are rN1(b1) and rN2(b0) in Fig. 1. If a system is not canonical, it
is always possible to construct its unique (up to isomorphism) canonical version
by adding the missing representations, and marking them as their images, or by
deleting the multiple ones. Because of the constraints on α-morphisms, and in
particular of the ones on sequential components, point 5e of Def. 1, this construc-
tion does not modify the behaviour of the original system and the corresponding
modified morphism is still an α-morphism.

82 PNSE’13 – Petri Nets and Software Engineering

Fig. 1: An example of composition based on α-morphisms

In the example given in Figure 1 the interface NI is a simple sequence of two
events. The two components, N1 and N2, refine two different local states, b1 and
b0, each one by a subnet, shown on a gray background.

The composed net N = N1〈NI〉N2 contains the refinement of each condition
of the interface as it is in the two components, but for the representation, plus
the condition itself, as we can see for condition b0 and b1 of the example. The
rest of the net, not refined by the components, is taken as it is, but for the
synchronizations of the events in the neighbourhood of the refinements/bubbles.
Such events must be synchronized so that each possible pair composed by one
event of a component and one event of the other component must be created,
as we can see for events mapped on events e0 and e1 of Fig. 1. Then, also arcs
between in- and out-condition of each bubble and its pre and post (synchronized)
events must be created accordingly to the components. The initial marking is
the union of the ones in the components. By construction, N = N1〈NI〉N2 is an
EN System, and it is covered by sequential components [8].

This construction leads to the definition of a map ϕ′i from N = N1〈NI〉N2

ontoNi, i = 1, 2, relating each element local to a component to the corresponding

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 83

representation and projecting synchronized events. In [8] it is proved that this
map is an α-morphism and that the following diagram commutes.

NI

N1

ϕ1

99

N2

ϕ2

ee

N1〈NI〉N2

ϕ′
1

dd
ϕ′

2

::

These results say that the composed system refines both the components,
as well as the interface. The main result relating behavioral properties of the
composed system to behavioral properties of its components is stated in the
following Proposition [8], [2].

Proposition 1. Let Ni = (Bi, Ei, Fi,m
i
0) be an SMD-EN System for i = 1, 2, I.

Let ϕi, with i = 1, 2, be an α-morphism from Ni to NI , and let N = N1〈NI〉N2

be be the composition of N1 and N2 using ϕ1 and ϕ2. If N1 is weakly bisimilar
to NI then N = N1〈NI〉N2 is weakly bisimilar to N2.

Where, the labelling functions are derived from ϕ1 and ϕ′2, respectively, in
such a way that EI and E2 are all observable and the invisible events of E1 and
E are the ones which are mapped to conditions by ϕ1 and ϕ′2, respectively.

This result tells us, in particular, that the composition of refinements N1 and
N2, which are weakly bisimilar to a common interface NI , yields a system N
which is weakly bisimilar to NI ; and then, since bisimulation preserves deadlock-
freeness, it is possible to deduce that N is also deadlock-free by verifying that NI

is deadlock-free. Remember that by p2 it is possible to check weak bisimilarity
between two systems related by an α-morphism by considering their behaviour
only locally, as required by c1, c2, and c3.

5 Distributed private key generation for id-based
cryptography

In an id-based cryptographic system, unlike in the other public key cryptographic
systems, a publicly known string such as e-mail address, domain name, a physical
IP address or a combination of more than one strings is used as public key.
The idea of id-based cryptography was first proposed by Shamir in [14]. The
proposed scheme enables users to communicate securely and to verify signatures
without exchanging any private or public key. Consequently, there is no need for
a certification authority to verify the association between public keys and users.

Basically, in an id- based cryptographic system there is a private key gener-
ator (PKG) which generates private keys for users. A PKG has a key pair which
is referred as master key pair consisting of a master private key and a master

84 PNSE’13 – Petri Nets and Software Engineering

public key. A PKG generates a private key for a user basically by first hashing
its publicly known unique identity string then signing hashed id by the master
private key. Later, the user can verify its key by using the master public key.

Since the PKG can generate private keys for users, it can sign or decrypt
a message for any user or it can make users’ private keys public. This problem
about private key generation is called the key escrow problem. Distributed pri-
vate key generation (DPKG) is one of the effective solutions to the key escrow
problem. In both schemes [5], [6] secret sharing methods are used for distributing
private key generation among multiple PKGs.

In a DPKG there is a number of PKG nodes participating while they share
the responsibility equally. In our work we followed the identity based distributed
private key generation schemes presented in [5] and [6]. For more details about
the algorithms and the terminology it is recommended to refer to these citations.

The components of a DPKG system are divided into two main groups as
PKG nodes and clients. PKG nodes are responsible for generating private keys
for clients in a distributed manner. There is also a third component called bul-
letin board which is responsible for managing the global system variables, col-
lecting the commitments from PKG nodes, calculating the final commitment
and broadcasting these commitments.

We can examine DPKG protocol in three steps: setup, distribution and ex-
traction. Setup is a preparation step to create the system parameters and to get
ready for extracting the master key pair distributively and extraction of private
keys. In this step, bulletin board is given a security parameter and chooses some
system variables according to this given security parameter; it then broadcasts
public system parameters to be used by the other system components. It also
initializes the commitment values to zero in order to set them to the values it
will receive from PKG nodes in the distribution step. Final commitment is also
set to zero which will be calculated using the received commitments and it will
be broadcast later.

Distribution step is illustrated in Figure 2. In this step, n PKG nodes create
a master private key together without using any dealer in a way that the key
cannot be reconstructed without retrieving k shares from these n PKGs. k is the
threshold number of PKG nodes needed to collaborate together in order to con-
struct the key. To do this, an improved version of (n, k) Feldman’s secret sharing
scheme stated in [6] is used. The idea behind secret sharing without a dealer is
to make each PKG node create a secret of their own and calculate subshares to
distribute among other PKG nodes. At the end, each PKG node will have n sub-
shares including the one it calculated for itself. The sum of these subshares will
be the share of the PKG node for the master private key. During the calculation
of the subshares each PKG node also creates commitments corresponding to the
subshares calculated by them. These commitments are sent to the bulletin board
to be used by the PKG nodes for the verification of the received subshares. Note
that, in this DPKG system none of the PKG nodes knows the master secret key
since each of them has only a part of it.

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 85

Fig. 2: Block schema of the distribution step of private key generation.

Fig. 3: Block schema of the extraction step.

86 PNSE’13 – Petri Nets and Software Engineering

In extraction step, as it is illustrated in Figure 3, a client with identity string
ID contacts k available nodes from the PKG nodes pool. Each PKGi signs
hashed identity string of the client with its master private key share and returns
a private key piece as siH(ID) over a secure and authenticated channel. After
receiving k pieces from k available PKG nodes, client constructs its private key.
The client can verify the key by using bilinear pairings as it is stated in [6] and
[7].

6 The model of DPKG

In this section, we present Petri net model of a simplified DPKG system with
three PKG nodes while the threshold number is two. We fixed these numbers
for the simplicity but the generated model is more generic and can easily be
modified for different threshold and PKG node number as it will be discussed
through this section. Our model consists of the following three nets: NI , NPKG

and NC . NI is the common interface between NPKG and NC . It is an abstract
model of the whole system which represents the interaction between the main
components of the system. This model also includes the abstract behavior of
the bulletin board which is basically responsible for managing the global system
variables and commitments. NPKG is the net representing the behavior of PKG
nodes while NC is the net representing the behavior of clients in the DPKG
system. We aim to compose NPKG and NC using NI as the common interface
and prove that the composed net NPKG〈NI〉NC and the interface NI preserve
and reflect some properties presented in Section 3 since there is an α-morphism
both from NPKG to NI and from NC to NI .

NI , which is the net representing the interface, is given in Figure 4. This net
is an abstract model of the behavior of all three system components: bulletin
board, PKG nodes and clients. The system is idle in the beginning. After event
init occurs, system components are initialized and all PKG nodes are ready for
generating a secret key distributedly. The event init includes the setup step of the
protocol which is explained in Section 5. The condition calculate shares repre-
sents the whole process including calculating subshares and exchanging between
PKG nodes in order to calculate their shares for the master private key. During
this, each PKG node chooses a secret polynomial. It calculates the commitment
corresponding to its secret polynomial and sends it to the bulleting board. It also
calculates n subshares using its polynomial where n is the number of PKG nodes
in the system. Each PKG node sends the subshare to the related PKG node.
After exchanging is completed each PKG node will have n− 1 subshares sent by
other PKG nodes and one subshare of its own. By using these n subshares each
PKG node calculates its share. When the condition shares calculated becomes
true, it means that all the PKG nodes finished calculating share and each of
them is holding a share.

Once PKG nodes have their shares, they can verify their shares using the
final commitment value which is already calculated during the abstract event
calculate shares. If all the shares are correctly verified, the condition shares ver-

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 87

Fig. 4: NI , the net representing the interface.

ified becomes true so a client can apply for extracting a private key. In this
model, event apply includes choosing k available PKG nodes, receiving k pieces
and calculating its private key using these pieces. When the condition key is
true, the client has a key but we do not know if the key is correct or not by
looking in this abstract model. In both cases new request event can occur or the
system can continue with a restart which repeats the whole distributed private
key generation. In case of a fail during the verification of shares, the system is
forced to a restart without a key extraction.

NI is a live and reversible net which means that from any reachable marking
one can always get back to the initial state. These two properties are important
because a DPKG system must always be alive to respond to the clients’ key
requests and key generation process must be restartable whenever it is needed.
The net NI is also covered by sequential components which is a requirement in
order to be able to look for an α-morphism. The sequential components covering
the net can be shown as lists of conditions: {idle, ready, shares calculated, shares
verified, key, restart requested }, {idle, client, key}.

Figure 5 shows the net NPKG. This net refines the interface with respect
to PKG nodes’ behavior. All the elements of NPKG are mapped to the element
with the same name in NI but for the subnet circled by dashed line that is

88 PNSE’13 – Petri Nets and Software Engineering

Fig. 5: NPKG, the net representing the PKG nodes.

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 89

mapped to a single condition. This subnet forms a bubble which is a refinement
of the condition shares calculated in NI . The bubble shows the calculation and
exchange of subshares between three PKG nodes and calculation of shares by
each PKG node whereas in NI the occurrence of the whole process is abstracted
by one condition. If we model a system with n PKG nodes instead of three nodes,
only the bubble will grow, the other elements of the net will remain the same.

NPKG is also live, reversible and covered by sequential components like NI .
It is already shown that the conditions outside the bubble are covered by se-
quential components. Thus, here we will only show how the bubble is covered by
sequential components. After event calculate shares the net branches into three
paths and after each event calculate subshares i for i = 1, 2, 3 the net branches
again into three paths. This fact results in having nine sequential components
inside the bubble. Here we present only some of the sequential components as the
lists of conditions that construct the components: {p1, subshare 1-2, subshare
1_2, share 2, shares calculated}, {p1, subshare 1-1, share 1, shares calculated},
{p1, subshare 1-3, subshare 1_3, share 3, shares calculated}. The paths starting
with conditions p2 and p3 can also be constructed in the same way.

In order to prove that there is an α-morphism from NPKG to NI we have to
show that the requirements in Definition 1 are satisfied. To begin with, the initial
states ofNPKG andNI are related. For all the events inNPKG which are mapped
to an event in NI , also the pre-conditions and post conditions of these events are
mapped to the pre and post-conditions of the related events in NI . Moreover,
for all the events in NPKG that are mapped to a condition in NI , all the pre and
post-conditions of that event are also mapped to the same condition in NI . We
see that the nets satisfy the first four requirements of α-morphism. To continue
with, we can see that the bubble in NPKG is acyclic so 5a is satisfied. As seen in
Figure 5 all the in-elements of the bubble are generated by the only one event
entering the bubble which is mapped to the corresponding event in the interface,
calculate shares. It is also seen that post-events of the out-condition of the bubble
are exactly the same post-events of the corresponding condition in the interface.
Thus, 5b and 5c are satisfied. 5d is also satisfied because the conditions that are
internal to the bubble have pre-events and post-events which are all mapped to
the refined condition shares calculated in NI but for in and out-elements. Finally,
as we already listed the sequential components of the net, it is easy to see that
for each condition of the bubble there is a sequential component containing that
condition and all the pre and post-events of the bubble, so requirement 5e is
satisfied. In this way, we proved that there is an α-morphism from NPKG to NI .

The net shown in Figure 6, NC , is the net representing the behavior of a
client. While it includes the whole abstract model, it refines the key extraction
process of a client. The bubble shown with a dashed line is the refinement of the
condition key in the interface NI . In this refinement, receiving two pieces from
chosen PKG nodes, calculating the private key and verification of it is modeled
in more details. In a DPKG system where the threshold number is two, when
a client applies for a private key, it receives two pieces from two available PKG
nodes. The client can verify the pieces it received. If both pieces are verified

90 PNSE’13 – Petri Nets and Software Engineering

Fig. 6: NC , the net representing the clients.

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 91

then the client can extract its private key by using these pieces and the system
reaches a state where extraction is successful. In case at least one of the pieces
are not verified then the condition extraction not successful becomes true. After
both failed or successful extraction, the system reaches a state where extraction
ended is true and a new key can be requested by the same client or by any other
client in the system. Again if we improve the model for threshold value k instead
of two, only the bubble will grow but the other elements of the net will remain
the same.

This net is also live, reversible and covered by sequential components. Here we
give the sequential components which are enough to cover the net as lists of con-
ditions: {idle, ready, shares calculated, shares verified, piece 1, piece 1 verified,
piece 1 not verified, extraction successful, extraction not successful, extraction
ended, restart requested}, {idle, ready, shares calculated, shares verified, piece 2,
piece 2 verified, piece 2 not verified, extraction successful, extraction not success-
ful, extraction ended, restart requested}, {client, idle, piece 1, piece 1 verified,
piece 1 not verified, extraction successful, extraction not successful, extraction
ended}.

It is very easy to see that the first four requirements of α-morphism are
already satisfied so we can continue with checking the rest of the requirements.
The bubble contains no cycles so 5a is satisfied. All the in-elements of the bubble
are generated by the only one event entering the bubble which is mapped to the
corresponding event in the interface, apply. There is also only one post-event of
out-condition of the bubble which empties the bubble and this event is mapped
to the post-event of key. With these observation it is easy to see that 5b and
5c are satisfied. 5d is also satisfied because the conditions that are internal to
the bubble have pre-events and post-events which are all mapped to the refined
condition key in NI but for in and out-elements.

Finally, as we already listed the sequential components of the net, it is easy to
see that for each condition of the bubble there is a sequential component contain-
ing that condition and all the pre and post-events of the bubble, so requirement
5e is satisfied. Considering all the requirements, we can say that there is an α-
morphism between NC and NI . Now that we proved that there is an α-morphism
both from NPKG to NI and from NC and NI , we can prove that the composed
net is weakly bisimilar to the interface by showing that some additional require-
ments which are stated as c1, c2, and c3 in Section 3 are satisfied by NPKG and
NC . Proposition 1 states that if both of the components are weakly bisimilar to
the interface, then the composed net is also weakly bisimilar to the interface.
Thus, here we first show that NC is weakly bisimilar to the interface NI . To
do this, we follow the construction of the two auxiliary nets given in Section 3,
i.e., we consider the bubble in NC and the corresponding condition key in NI

and we add their pre and post-events to the subnets. We also add two more
conditions to each subnet: one condition to be a pre-condition to all pre-events
and another condition to be a post-condition to all post-events. Let us name
these two subnets as SC(key) and SI(key). Finally, we build the unfolding of

92 PNSE’13 – Petri Nets and Software Engineering

Fig. 7: Unf (SC(key)) and SI(key)

SC(key), represented as Unf (SC(key)). The resulting nets are shown in Figure
7.

We follow the same procedure for NPKG and we get two subnets Unf (SPKG

(shares calculated)) and SI(shares calculated) as in Figure 8.
When we examine these subnets, we see that no condition of the bubbles is in

the initial marking. Any condition is refined by a subnet such that, when a final
marking is reached, this one enables events which correspond to the post-events
of the refined condition, so there is an α-morphism both from Unf (SC(key))
to SI(key) and from Unf (SPKG(shares calculated)) to SI(shares calculated).
Thus, c1 and c2 are satisfied. Since there is only one bubble in both NPKG and
NC , c3 is automatically satisfied. Consequently, we can say that the additional
properties p1 and p2 are held. Moreover, considering Proposition 1, we can
conclude that the composed net NPKG〈NI〉NC is weakly bisimilar to NI .

Knowing that our nets satisfy the requirements of α-morphisms and the
other three additional constraints, give us the ensurance that, in addition to
weakly bisimulation, the nets preserve another important property stated in
p1. The property of reflecting reachable markings gives us a big advantage in
performing reachability analysis. Instead of analyzing the big composed net with
respect to reachability of a specific marking we can analyze the interface for the
corresponding marking in the interface. To give an example, we can consider
the existence of the following situation in the composed net NPKG〈NI〉NC : the

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 93

Fig. 8: Unf (SPKG(shares calculated)) and SI(shares calculated)

condition shares verified should not be true while there is at least one token in
any bubble. Performing a reachability analysis on the composed net is complex
in terms of time and space since both the net and the logic formula we have
to use to represent the interested global state are big. Instead, the mentioned
global state can be easily translated into a global state of the interface, NI .
Since each bubble in the composed net is mapped to a condition in the interface,
reachability analysis becomes easier. The previously mentioned critical situation
is reflected in the interface as the following: the condition shares verified cannot
be true while key or shares calculated is true. Performing a reachability analysis
for existence of this situation in NI is easier than analyzing the composed net.
Moreover, we do not even need to build the composed net.

7 Conclusion

We have developed a Petri net model of a protocol for distributed generation
of private keys. The model has been obtained by composing two net models
on a common interface. The first component models the interactions among
PKG nodes, while the second component models clients of the key generator.
Both components refine a common interface, representing the interactions among
components.

94 PNSE’13 – Petri Nets and Software Engineering

We have then discussed behavioural properties of the model, directly deriv-
able from properties of the components without generating the composed net.
In particular, we have shown that some markings are not reachable.

On one hand, we have verified modeling and analysis capacity of the compo-
sitional approach proposed in [2] by means of a real world example. On the other
side, we have proposed a model of distributed private key generation protocol
by using the compositional approach.

We now plan to explore how to extend the approach to other classes of Petri
nets, particularly PT nets and high-level nets. With respect to the model, we
plan to improve it giving a less abstract specification in order to propose a formal
verification of the protocol and to discuss its weak and strong aspects.

Acknowledgements

This work was partially supported by MIUR.

References

1. Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello. Composition of Ele-
mentary Net Systems based on α-morphisms. In Michael Köhler-Bußmeier, editor,
Joint Proc. of LAM’12, WooPS’12, and CompoNet’12, Hamburg, Germany, June
25-26, 2012, volume 853 of CEUR Workshop Proceedings, pages 87–102. CEUR-
WS.org, 2012.

2. Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello. Local state refine-
ment and composition on elementary net systems: an approach based on mor-
phisms. Transactions on Petri Nets and Other Models of Concurrency (ToPNoC),
special issue based on the workshops of Petri nets 2012 (to appear), 2012.

3. Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello. Local State Refine-
ment on Elementary Net Systems: an Approach Based on Morphisms. In Lawrence
Cabac, Michael Duvigneau, and Daniel Moldt, editors, Petri Nets and Software
Engineering. International Workshop, PNSE’12, Hamburg, Germany, June 25-26,
2012. Proceedings, volume 851 of CEUR Workshop Proceedings, pages 138–152.
CEUR-WS.org, 2012.

4. Luca Bernardinello, Elena Monticelli, and Lucia Pomello. On preserving struc-
tural and behavioural properties by composing net systems on interfaces. Fundam.
Inform., 80(1-3):31–47, 2007.

5. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil
pairing. SIAM J. Comput., 32:586–615, 2003.

6. Aniket Kate and Ian Goldberg. Asynchronous distributed private-key generators
for identity-based cryptography. IACR Cryptology ePrint Archive, 2009:355, 2009.

7. Gorkem Kilinc, Igor Nai Fovino, Carlo Ferigato, and Ahmet Koltuksuz. A model
of distributed key generation for industrial control systems. In 11th Workshop on
Discrete Event Systems, volume 11, pages 356–363, Guadalajara, Mexico, 2012.

8. Elisabetta Mangioni. Modularity for system modelling and analysis. PhD thesis,
Università degli Studi di Milano-Bicocca, Dottorato di ricerca in Informatica, ciclo
24, 2013.

L. Bernardinello et al.: Distr. Private Key Generation by Composing PNs 95

9. Robin Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

10. Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event struc-
tures and domains, part i. Theor. Comput. Sci., 13:85–108, 1981.

11. Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Elementary transi-
tion systems. Theor. Comput. Sci., 96(1):3–33, 1992.

12. Lucia Pomello, Grzegorz Rozenberg, and Carla Simone. A survey of equivalence
notions for net based systems. In Grzegorz Rozenberg, editor, Advances in Petri
Nets: The DEMON Project, volume 609 of Lecture Notes in Computer Science,
pages 410–472. Springer, 1992.

13. Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Wolfgang
Reisig and Grzegorz Rozenberg, editors, Petri Nets, volume 1491 of Lecture Notes
in Computer Science, pages 12–121. Springer, 1996.

14. A. Shamir. Identity-based cryptosystems and signature schemes. Advances in
Cryptology: Proceedings of CRYPTO 84, Lecture Notes in Computer Science, 7:47–
53, 1984.

96 PNSE’13 – Petri Nets and Software Engineering

