
Introducing Catch Arcs to Java Reference Nets

Lawrence Cabac, Michael Simon

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics
{cabac,9simon}@informatik.uni-hamburg.de

http://www.informatik.uni-hamburg.de/TGI

Abstract. Modeling plays an important role during design and develop-
ment of systems and processes. Petri nets allow for well-defined models
that can be executed. For the implementation of these systems, how-
ever, still normal programming languages are used. In contrast, mod-
eling languages – also if executable, such as Petri net formalisms – are
not deemed fit for implementation. Besides the pragmatic power, one
thing that modern programming languages offer and which Petri net
formalisms are missing, is exception handling.
In this paper we present an approach that includes exception handling
for Java reference nets. Our goal is to make the designed systems more
robust and reliable. As a consequence, such executable models can be
cleanly integrated into real execution environments.
Our approach provides the information of an exception being thrown to
the level of modeling. We are thus able to model the exception handling
explicitly within the model as it is done in many modern programming
languages. This extension is conservative and does not alter the normal
behavior of the model, leaving the Petri net semantics untouched. We
discuss several possible extensions to our approach with respect to the
modeling possibilities, the ease of implementation and their pragmatic
usefulness.

Keywords: High-Level Petri Nets, Reference Nets, Exceptions, Catch Arcs,
Renew

1 Introduction

High-level Petri net formalisms have often been extended by new primitives.
This has been done mostly to improve modeling possibilities. The aim has been
to increase comprehensiveness and compactness as in the case of test arcs and
inhibitor arcs (see [2]) or flexible arcs (see [8]). We introduce a catch arc as a
new primitive, in order to raise the tightness of integration with the inscription
language. By this we improve the robustness of our executable models. With
the new construct we are able to handle exceptions that might occur during
execution of the model.



Renew1 has been missing the possibility to handle exceptions on the model
level, since it has been created. In this paper, we introduce a new kind of arc
– the catch arc – which fills that gap. Its functionality is straight forward: if
an exception is thrown during the execution of a transition inscription (in our
case Java code) while firing, the exception object is put into the connected place.
From this point, the exception can be treated in the model in an appropriate way.
This is the reason why we call this arc a catch arc. The arc initiates a sequence
of code that – in analogy to a catch statement in Java – follows the catch
statement. If no exception occurs, the normal Petri net semantics is followed
and the catch arc does not produce any token. We discuss in detail why this
arc is suitable for handling exceptions and how the firing of a transition should
be aborted on encountering an exception. Furthermore, we discuss a way to
implement handling of exceptions that are thrown in one net without having to
catch them all separately.

The structure of the paper is as follows: we introduce the catch arc and
discuss its behavior by the means of Petri net modeling in Section 2. This is the
central concept of this paper. Section 3 presents the complex process of the firing
of a transition in Renew. It shows the inability to fully abort a transition firing
and the consequent limitations on extensions of the Java reference net formalism.
These limitations motivate the try arc as a solution. Section 4 introduces the
try arc and discusses how a transition firing can be reverted after an exception.
Section 5 presents ways to isolate the tokens involved in an erroneous firing
for exception handling. Using the catch arc alone is compared to using it in
combination with a try arc. Section 6 discusses the (conservative) extension of the
catch arc by an expression whose result gets returned on catching an exception.
In Section 7 we extend the notion of exception handling from transitions to net
instances.

2 The Catch Arc

We extend reference nets [6] by adding catch arcs that put an exception into a
place as object reference, if one occurred. Avoiding uncaught exceptions in action
inscriptions is very complicated: the modeler would need to make sure that all
action inscriptions only call Java methods that do not throw exceptions. This
is not feasible, as the standard Java methods and well-written Java classes rely
heavily on throwing exceptions. We do not want to worry about exceptions in
every action inscription, but would rather prefer to have a simple way to handle
those in general without having to consider each possible error case.

Up until now, the possibility of an exception being thrown was simply not
covered by the reference net formalism. Thus, such an event was outside the
scope of well-defined behavior of the simulator. On encountering an exception,
the ingoing arcs would consume the bound tokens, but no token would be put
out by the outgoing arcs. The simulator would log the incident, but ignore it
1 Renew: The Reference Net Workshop [7], http://www.renew.de

156 PNSE’13 – Petri Nets and Software Engineering



in any other regard. By adding the possibility to catch and handle exceptions
we pull this behavior into the model level. The behavior of the Petri net models
itself is not changed as long as no exception occurs.

Unfortunately, there is no easy and clean way to completely reset a transition
that has already begun to fire, as we will discuss in Section 4.

Fig. 1. Usage example.

Fig. 1 shows a typical use-case where catch arcs enable the modeler to express
safe code with a few simple net elements, instead of modeling complex structures
or exporting the error handling functionality to Java helper code. The catch arc
can be identified by the catch inscription. The tokens in the places on the left
are given, but they may also be dynamically derived by other net segments,
for example through a user input dialogue. It is very difficult to ensure that
all input tokens to the transition are valid. In this case, there are also external
factors that determine the outcome of the action inscription as dbUrl is the
URL of a database to open, which might not be available. In a scenario like this,
catching exceptions is unavoidable to have a stable system. As already mentioned
above, usually the handling of the possibly thrown exceptions is implemented in
Java helper code that encapsulates the opening of the connection and catches
exceptions on that level. With the catch arc we are not only able to pull the
exception handling up to the model level, we also reduce the implementation of
wrapper code. In fact, we are able to treat the exceptions as first order concepts
within our models.

The reference net depicted in Fig. 2 illustrates the operational semantics of
catch arcs. The transition holds an action inscription which converts a String
into an Integer object. Naturally, this operation throws an exception, if the con-
version cannot be achieved due to an invalid argument. Fig. 3 shows the result
of executing the net in Fig. 2. The String 6 can be converted to an Integer which
is put into output, while the attempt to convert foo throws NumberFormatEx-
ception which is put out by the catch arc.

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 157



Fig. 2. Example of a safe String to Integer conversion with a catch arc.

Fig. 3. Executed instance of the net in Fig. 2.

Fig. 4 is a conceptual model showing the execution semantics of the catch
arc, simulated by a reference net model and some possible Java code. This model
illustrates the implementation of the catch arc.

The
ExHandler.wrap(String) method returns the same result as the expression given as

String, if no exception is thrown. Otherwise, it returns the thrown exception.

Fig. 4. Net without catch arcs behaviorally equivalent to Fig. 2.

The transition String to Integer conversion in Fig. 4 is a refinement of
the one in Fig. 2. The ExHandler.wrap(String) method is not implemented, but
serves to illustrate how a wrapper that catches any error and returns it, or the
result would be used to emulate the behavior of catch arcs.

The catch arc itself serves as a clear identifier of where the control flow for
exception handling starts. All transitions that are dependent on the exception
output token, are part of the exception handling control flow. By directing a

158 PNSE’13 – Petri Nets and Software Engineering



catch arc to a place that is only used for exceptions, it is easy to separate the
control flow. Even though it is made easy, it is up to the modeler to separate
the exception handling parts of a reference net from the rest, like any other
software architecture design decisions. This is analogous to the catch block of a
try-catch-construct in a textual programming language: what is done inside is
up to the programmer. There is no difference between code that can be executed
inside the catch block or outside. Still it is good practise to separate exception
handling code from other code. The place to which a catch arc leads should be
regarded in the same way as a catch block in a textual programming language.

We implemented an extension to the catch arc, allowing it to be accompanied
by an expression. This is further discussed in Section 6.

Another possible improvement of the catch arc would be the ability to de-
clare the class of the exception to catch. This would deepen the analogy with
the common try-catch programming language construct and would simplify the
implementation of different ways to handle different exceptions. On the other
hand, this behavior is easy to achieve with guards that check the exception
types. These would be inscribed to the transitions which handle the exceptions.
Because of the flexibility that guard inscriptions offer, there is no need to catch
only some types of exceptions. This refinement of the catch arc could be imple-
mented by an expression that is given as an argument to the catch inscription. It
has to evaluate to a (sub)class of java.lang.Throwable (the exception rootclass).

A finally statement is not needed in the extended Java reference net formal-
ism. In Java it represents a section of code that is inserted into the control flow
of the erroneous as well as the normal execution. It is executed in all cases. In
the Java reference net formalism the control flow is explicitly modeled. The catch
arcs start the control flow of the erroneous case and the normal output arcs start
the control flow of the normal case. In Fig. 2 there is either one token put out
to output, or to exception. To introduce some code that gets executed as a
finally statement, we introduce a transition that is fired for every token in both
places. This can be done using only classic Java reference net elements.

3 Firing a Transition in Renew

Table 1 provides an overview of the different steps of Renew’s internal algorithm
which fires transitions (compare with [6, Sec. 14.7]). We did not change this
algorithm in any arc implementations presented in this paper. Before a transition
is fired, a valid binding has to be found in phase 0. During the actual firing, the
early executables are applied first. In phase 1 the early executables which mostly
represent the ingoing arcs and test arcs, need to lock the associated places. This
ensures that the tokens can not be taken by another transition firing. Then they
verify that they can still be applied, as concurrent changes to the net instance
state could have invalidated the found binding (phase 2). After this, the early
executables can finally be executed (phase 3). Then the locks are unlocked again
(phase 4) and the firing of the transition is already reported as successful, since
the firing can not be aborted anymore (phase 5). In the end, the late executables

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 159



0 Binding search (before firing)
1 Lock early executables
2 Verify possibility of applying early executables
3 Execute early executables
4 Unlock early executables
5 Report success
6 Execute late executables

Table 1. Order of steps when successfully firing a transition in Renew.

can be executed (phase 6). They mostly represent outgoing arcs and action
inscriptions.

If an exception is thrown while searching for a valid binding of a transition,
the corresponding search branch is discarded and the transition will never fire
that binding. Phase 0 from Table 1 is never left. If an early executable leads to
an exception in phase 2 or 3, the firing of the transition is aborted. In a case
where Java code is in an action inscription, on the other hand, it is not evaluated
in the binding search (phase 0), but in a late executable (phase 6) after a valid
binding was found. The firing can not be reverted and the exception has to be
thrown.

Early executables are designed to model actions that can be aborted and
reverted. They are executed first, so that as much error cases as possible lead to
a rollback. Late executables, on the other hand, model actions that can not be
reverted. Semantically these can not fail, but they can in practice, if they are not
modeled safely, e.g., if an action inscription throws exceptions. Safe modeling is
very complex and almost never achieved in practice. Thus, it might be tempting
to move as much unsafe actions as possible into the early executables, so that the
classic reference net semantics are never violated. However, a transition firing
attempt should only be reverted, if the current binding can not be found again.
This is possible, if the state of the net instance has evolved after the binding
search. An example is a token that is consumed by another thread between the
binding search and the current attempt to fire. In this case, the early executable
representing the input arc will fail and cause a rollback. On the other hand, if
there would be a case, where the current binding can be found again, the Renew
simulator would attempt to fire it in an infinite loop. Since in the existing Renew
implementation without any new arc implementations all changes of this firing
are reverted, this firing itself can not change the net instance’s state.

For a modeler who wants to use catch arcs, only action inscriptions are of
concern. The exceptions thrown by all other inscribed Java code are already
dealt with in the binding search. Renew does not fire bindings that lead to
exceptions in the binding search.

160 PNSE’13 – Petri Nets and Software Engineering



4 Resetting a Transition Firing after an Exception

It is possible to avoid infinite loops when resetting a transition. One way to
achieve this, is to have a special token which is consumed if an exception occurs.
If only one such token existed, this binding can not be found again until another
transition returns it.

We created an experimental implementation of this exception input arc,
called the try arc. The existence of a try arc does not change the behavior
of the classic late executables after an exception has been thrown. This includes
that no tokens are put out. Thereafter, the early executables are rolled back, as
if the exception had been thrown inside one of them. The try arc does noth-
ing when executed normally, but consumes the bound token when rolled back.
This behavior is the reverse of the normal input arcs. With this extension of the
simulator the late executables behave like the early executables, because we have
implemented a way to revert them.

Unfortunately, the possibilities of the try arc have their limits. Action in-
scriptions with side effects are not handled correctly. In this case, the transition
would look reverted, but the side effects could still have occurred.

Fig. 5. Net in Fig. 2 extended by a try arc.

Fig. 6. One possible executed instance of the net in Fig. 5.

Fig. 5 extends the net in Fig. 2 by a try arc. Fig. 6 shows one of two possible
executions of this net. In this execution the transition String to Integer con-
version was first fired with the string 6 as input. Then foo was tried and the
exception has been put out by the catch arc. The corresponding exception class
token has been consumed and the rest of the transition firing has been reverted.

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 161



For this reason, the foo token is put back. The other possible execution of this
net is that foo is tried first. In that case, the exception class is removed before
6 can be tried.

Fig. 7. Net without try arcs behaviorally equivalent to Fig. 5.

In Fig. 7 you can see that the behavior of try arcs can be emulated in the
classic Java reference net formalism, extended only by catch arcs. In contrast
to the net in Fig. 4, which was used to illustrate the semantics of catch arcs,
we do not need any special, difficult to implement wrapper functionality in the
Java inscriptions. In fact, this net is executable. First, one of the two strings
is taken from input by store backup and passed on as str. The same string
is put to the place below as strBak. The places in the triangle between store
backup, inner String to Integer conversion and no ex can only hold one
token in total at any time. The transition inner String to Integer conversion
takes the string, attempts to convert it to an integer and returns the integer to
output, or the thrown exception to exception. On the inside, it either returns
a generic token to the white place in the lower left, or the catch arc returns
another Java reference of the exception to the lower red place. Depending on
this outcome, either no ex fires, consumes the just processed input string as
strBak and returns the generic token to the place in the triangle, where it was
originally, or ex handling fires and puts the input string back to input. In
this process, it consumes the class token in try class. If this token is no longer
present, store backup can not fire, because of the test arc to try class. This
models the inability of String to Integer conversion in Fig. 5 to fire, if the
try arc can not bind to an exception class token. Like no ex, ex handling also
puts back the generic token. This would enable store backup to fire again, if
try class contained another exception class token.

The model in Fig. 7 is only behaviorally equivalent to Fig. 5, if there are only
Java references to one exception class in try class. It is more flexible, if we want

162 PNSE’13 – Petri Nets and Software Engineering



to use more than one class of exceptions as possible token for the try arc. In our
current experimental try arc implementation, the try arc is first bound to an
exception class token, before the transition starts firing (in phase 0 of Table 1).
In every firing the try arc is bound to only one exception class. Thus, the try arc
may not reset the transition, even if the class of the thrown exception exists as a
token. One scenario, where this problem occurs, is a modification of Fig. 5 with
a number of exception classes in try class. In Fig. 7, on the other hand, the
ex handling transition can try every class in try class. The Renew simulator
would need to be changed considerably to implement this behavior for try arcs.

5 Handling Exceptions

In this chapter, we compare using the catch arc alone and along with a try arc
to model exception handling. We show that the try arc does not provide a real
advantage in this situation.

Fig. 8. Net in Fig. 7 modified to print out error.

Fig. 7 illustrates the behavior of the try arcs in Fig. 5. The fact that it is very
complex, suggests that try arcs simplify error handling greatly. However, when
handling the exception, one would normally want to ensure that it does not occur
again. For this purpose, the involved tokens usually need to be identified and
separated from the rest for special treatment. An example would be to generate
feedback to calling code or the user. In Fig. 7 there is already a transition for
exception handling present: ex handling. In order to generate feedback, instead
of resetting the firing, we need to remove the output arc from ex handling to
input, so no token is put back. We also need to change the arcs from try class
to prevent the class token from being consumed. The Java code generating the
output can be inscribed to ex handling. This is demonstrated in Fig. 8.

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 163



If we change the net in Fig. 5 to give feedback, we have more work to do. A
possible implementation is presented in Fig. 9, which is very similar to Fig. 8.
In both models it is important to reconstruct which input string has induced an
exception. For this purpose, the capacity of the input place is restricted to 1. In
Fig. 8 there can only be one token in the triangle between store backup, inner
String to Integer conversion and no ex. In Fig. 9 there can only be one token
in the input place and the place below. In contrast to Fig. 8, there is no need to
store another Java reference of the input token, because this token is returned if
an exception occurs. For this reason, a transition such as no ex, which is fired
if no exception has occurred, is also not needed. Another difference is that the
exception class token in try class gets consumed in the event of an exception
and has to be replaced by ex handling when the exception is handled.

Fig. 9. Net with try arc modified to print out error (behaviorally equivalent to Fig. 8).

6 Catch Arc with an Expression

In order to further the expressiveness and thus simplify the scenarios, in which
we would like to retain the tokens involved in an erroneous transition firing, we
extended the catch arc by an expression whose result is produced alongside the
exception. Similar to input arc inscriptions, this expression has to be fully bound
before firing, and can thus not be dependent on any action inscriptions.

Fig. 10 emulates the try arc from Fig. 5. Unlike the model in Fig. 7, there
is no need to limit the capacity of the input place of the transition, which can
throw an exception. The involved input token can be reconstructed from the
result of the catch arc’s expression, which gets returned to exception as tuple
alongside the exception.

164 PNSE’13 – Petri Nets and Software Engineering



Fig. 10. Net without try arcs, but with a catch arc with an expression, behaviorally
equivalent to Fig. 5 and 7.

Fig. 11. Net in Fig. 10 modified to print out error (behaviorally equivalent to Fig. 8).

Fig. 12. Instance of the net in Fig. 11 after firing.

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 165



Fig. 11 prints out an error message, exactly like the nets in Fig. 8 and 9.
The token put out by the catch arc can be seen in Fig. 12, which shows an
executed instance of the former net after firing the transition String to Integer
conversion twice. It is a 2-tuple that consists of the thrown exception and the
result of the expression.

ex handling is a transition that fires after String to Integer conversion
in the event of an exception. Because the transition ex handling takes in the
string together with the exception, it behaves as if it had the same preset as
String to Integer conversion and took the same token. If one wanted to fire
a exception handling transition with all the same input token as the original
transition, one could accompany the catch arc with a tuple of all input arc
inscriptions.

7 Uncaught Exceptions and Exception Propagation

In classic programming languages exceptions propagate outward and escape all
code sections, until they are finally caught and handled. If they are not handled
in program code, the program crashes on the occurrence of an exception. In Re-
new’s classic Java reference net formalism exceptions are logged, but otherwise
ignored. All ingoing tokens are consumed and no tokens are written out. Since
dependency is explicitly modeled in reference nets, it is reasonable to allow those
parts of the simulation that are not dependent on the part where the exception
occurred, to continue to run.

However, a concept of propagating exceptions upwards through a net hierar-
chy, can be realised. One step of this propagation can be achieved by a transition
that binds exception tokens to an uplink, so another net instance which knows
the current instance, can extract the exception. Binding to a downlink would
also be possible, but then the exception handling net instance must be known to
the current instance. (This would more accurately be described as propagating
downwards.)

It is also possible to have a specific uplink channel to pass on exceptions
that are not caught locally (for example :catch(e)). This can be done through
a normal net channel that gets bound to all these unhandled exceptions. To
achieve this, there can be one place in every net for unhandled exceptions and
one transition that binds every token of this place to the uplink of the channel.
All transitions without a catch arc receive one to this place. The only exception
from this rule is at a transition with an uplink. The exceptions thrown by a firing
that involves this transition, can be caught at the transition with the downlink.
The place and the transition for unhandled exceptions could be hidden to the
modeler, so they are only accessible through the channel. The catch arcs could
be created automatically, where there does not already exist one in the model.
If the modeler would like to manually mark an exception as unhandled (maybe
because the class is not expected), she can add an uplink transition to the channel
herself.

166 PNSE’13 – Petri Nets and Software Engineering



8 Related Work
There are many attempts to model the behavior of exceptions with various mod-
eling languages. This kind of exception modeling includes concepts for express-
ing the behavior of exceptions that occur in systems. We call these exceptions
model intrinsic. Examples are the exception handler in current versions of UML
(Unified Modeling Language, current version 2.4.1, see [9, Sec. 12.3.23]) and the
attempts to include exception handling to (hierarchical) Petri net formalisms
(cf. [3] and [4]). While the above mentioned examples model the behavior of
exceptions or errors, we strive for the treatment of exceptions that occur during
execution of these models. We call these (execution) extrinsic exceptions.

Jannach and Gut [5] discuss the possibilities of exception / error handling in
current modeling languages in detail and also point out the difference between
modeled exception behavior (intrinsic) and exception handling during model
execution (extrinsic). On the side of exception handling of executable models
they discuss (among others) the possibilities in workflow execution (e.g., offered
by YAWL, compare also with [1]) and WS-BPEL. The focus lies in both cases
on the cancellation of processes / workflows and the compensation of undesired
results. Cancellation of processes (or process regions) as by the cancel arc in
YAWL is tightly related to clear arcs (reset arcs) in Petri net formalisms (i.e.
Reset Nets). However, the cancellation / exception trigger comes from within
the model – a cancel task has to be modeled explicitly and triggered. In our
approach we tighten the integration of the executed model and the underlying
expression language.

9 Conclusion and Future Works
We presented an approach and a first implementation of the exception handling
as an extension of the Java reference net formalism and the Renew simulation
engine. The catch arc behavior can be expressed by a combination of net re-
finement and code wrapper implementation. Our first approach which has been
implemented within Renew, constitutes already a powerful and also conserva-
tive extension to the execution semantics of Java reference nets. The try arc was
discussed as a possible further extension. It was introduced and motivated by
the idea of resetting a erroneous transition firing. We have shown that it does
not add much to the expressiveness of the formalism in the context of exception
handling. We do not plan to incorporate it in our practical implementation. The
possibility of adding an expression to a catch arc whose result is returned along-
side the exception, is a conservative extension of the original catch arc concept.
In difference to the try arc, it greatly adds to the expressive power. It can be used
to provide relevant details of the binding, in which a firing of a transition failed
and allows for concise net models for detailed exception handling. This concept
can also effectively emulate the resetting of an erroneous transition firing and
thus, supersedes the try arc concept. Especially the questions of exception prop-
agation in reference net systems and the adequate compensation modeling is,
however, not satisfyingly resolved and needs to be further investigated.

L. Cabac and M. Simon: Introducing Catch Arcs to Java Reference Nets 167



References

1. Michael James Adams. Facilitating dynamic flexibility and exception handling for
workflows. PhD thesis, Queensland University of Technology, 2007.

2. Søren Christensen and Niels Damgaard Hansen. Coloured petri nets extended with
place capacities, test arcs and inhibitor arcs. In Marco Ajmone Marsan, editor,
Application and Theory of Petri Nets, volume 691 of Lecture Notes in Computer
Science, pages 186–205. Springer, 1993.

3. W.L.A. de Oliveira, N. Marranghello, and F. Damiani. Exception handling with
petri net for digital systems. In Integrated Circuits and Systems Design, 2002.
Proceedings. 15th Symposium on, pages 229–234, 2002.

4. M. Doligalski and M. Adamski. Exceptions handling in hierarchical petri net based
specification for logic controllers. In Systems Engineering (ICSEng), 2011 21st
International Conference on, pages 459–460, 2011.

5. Dietmar Jannach and Alexander Gut. Exception handling in web service processes.
In Roland Kaschek and Lois M. L. Delcambre, editors, The Evolution of Concep-
tual Modeling, volume 6520 of Lecture Notes in Computer Science, pages 225–253.
Springer, 2008.

6. Olaf Kummer. Referenznetze. Logos Verlag, Berlin, 2002.
7. Olaf Kummer, Frank Wienberg, Michael Duvigneau, and Lawrence Cabac. Renew

– the Reference Net Workshop. Available at: http://www.renew.de/, March 2012.
Release 2.3.

8. Wolfgang Reisig. Elements of Distributed Algorithms: Modeling and Analysis with
Petri Nets. Springer-Verlag New York, October 1997.

9. UML. Unified modeling language: Superstructure. http://www.omg.org/spec/UML/
2.4.1/Superstructure/PDF, August 2011.

168 PNSE’13 – Petri Nets and Software Engineering


