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Abstract. Many today’s engineering tasks use approx-

imation of their expensive objective function. Surrogate

models, which are frequently used for this purpose, can save

significant costs by substituting some of the experimental

evaluations or simulations needed to achieve an optimal

or near-optimal solution. This paper presents a surrogate

model based on RBF networks. In contrast to the most of

the surrogate models in the current literature, it can be di-

rectly used for problems with mixed continuous and discrete

variables – clustering and generalized linear models are em-

ployed for dealing with discrete covariates. The model has

been tested on a benchmark optimization problem and its

approximation properties are presented on a real-world ap-

plication data.

1 Introduction

Optimization of different kinds of empirical objective
functions is included in many of todays engineering
or industrial applications – in situations where the
value of the objective function is obtained through
some measurement, experiment or simulation. High
costs or extensive time demands needed for evaluat-
ing such functions motivate engineers to reduce the
number of such evaluations.

Surrogate modelling [3, 6] is a popular approach
which substitutes an approximating model for some
of the original function evaluations. This concept is
widely used in connection with evolutionary algo-
rithms (EAs). Here, some of the individuals are as-
sessed with not necessary accurate, but much faster
model. This brings an important benefit: a notably
larger population can be evolved in parallel. Even
though the precise evaluation can be made only on
a limited number of individuals, the EA can explore
a larger part of the input space.

Lots of current literature covers optimization in
continuous, or in discrete domains. However, the area
of industrial optimization is often characterized by
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both continuous and discrete variables [16, 7]. This
paper describes a particular surrogate model based
on radial basis function (RBF) networks and gener-
alized linear models (GLMs). Most of the exist-
ing works [22, 17, 9] deal with only continuous do-
mains or combination with integer variables, but the
works dealing with mixed-variables surrogate models
are rather few [21, 19].

In our model, multiple RBF networks are trained
and discrete variables are used either for focusing
training of the networks on the most appropriate data,
or generalized linear model is constructed on this part
of the data.

The paper is organized as follows: in the next sec-
tion, we recall principles of surrogate modelling, RBF
networks and GLMs. Section 3 describes our approach
to constructing a surrogate models and using it in op-
timization. Finally, Section 4 provides the results of
testing on a benchmark function and real-world data.

2 Problem description

For any given objective function f : S → IR,
we consider the mixed-variable optimization problem
(maximization) as finding the global optimum x⋆ =

(x
(C)
1 , . . . , x

(C)
n , x

(D)
1 , . . . , x

(D)
d ) ∈ S such that

f(x⋆) = max
x∈S

f(x). (1)

The search space S has of n continuous and d dis-
crete variables; forming corresponding subspaces S(C)

and S(D). In addition, we suppose that the value sets

Vs(X
(D)
i ), i = 1, . . . , d of the discrete variables are

finite and we do not distinguish between ordinal or
nominal categorical variables – we assume no ordering

on any of the Vs(X
(D)
i ).

2.1 Involved methods

Surrogate modelling. Approximation of the fitness
function with some regression model is a common cure
for tasks when empirical objective function has to be
used. These surrogate models simulate behaviour of
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the original function while being much cheaper and
much less time consuming to evaluate.

As a surrogate model, mainly nonlinear regression
models are used, for example gaussian processes [4]
or artificial neural networks. In connection with evo-
lutionary optimization, neural networks of the type
multilayer perceptrons [10] and networks with radial
basis functions [22, 17] have been particularly popular.
The last mentioned kind of neural networks underlies
also the model reported in this paper.

Combining of the original fitness function and
the surrogate model is determined by evolution con-
trol (EC). In the literature [10], individual and gener-
ation based approaches are distinguished. While the
individual-based EC chooses for evaluation by the
original fitness only part of an enlarged population,
the generation-based approach evaluates in different
generations the whole population by either the origi-
nal, or the model fitness.

RBF networks compute a mapping from the input
space (typically a subspace of IRn) to IR (for simplicity
we will focus on versions with scalar output) [5]. The
mapping can be expressed as

f(x) =

g∑

i=1

πifi(||x− ci||) (2)

where x ∈ IRn is the input, g ∈ IN the number of
components, fi : IR

n → IR are radial basis functions,
πi ∈ IR their weights, ci ∈ IRn radial functions’ cen-
tres, and ||.|| is a norm. As functions fi, Gaussian
functions with scalar width δi and euclidean norm
fi(x; ci, δi) = e−δi||x−ci||

2

are used most commonly.

Generalized linear models are a natural generalization
of classical linear regression models [13]. They con-
sist of three parts: (1) the random component – in-
dependent observed values Y following a distribution
from the exponential family with mean E(Y) = µ and
constant variance σ2, (2) the systematic component
which relates values of explanatory (input) variables
(x1,x2, . . . ,xd) through a linear model with parame-
ters β1, . . . , βd

η =
d∑

j=0

xjβj (3)

to a linear predictor η, and (3) a link function g that
connects the random and systematic components to-
gether: η = g(µ). The explanatory variables are usu-
ally supplemented with the constant vector of ones
corresponding to an intercept parameter β0.

GLMs are particularly useful for our work because
they are able to express a relation between discrete
(integer or after a transformation of values even nom-
inal) input variables and a continuous response.

3 Our strategy for using

surrogate-assisted genetic

optimization

Our version of the surrogate-assisted genetic algorithm
including a detailed pseudo-code has been introduced
in the previous article [1]. This section describes the
construction and using of surrogate models based on
RBF networks.

3.1 Model construction

RBF networks, which were defined in Section 2.1,
enable us to use only continuous variables for their
fitting. Construction of our first surrogate model [1]
starts with clustering of the available training data
according to their discrete values into several clus-
ters in order to focus the RBF networks training
on the most similar datapoints. Let us call this
model RBF/discrete clustering, or shortly RBF/DSCL
model. Subsequently, separate RBF networks are fit-
ted with the data of each such a cluster using the
datapoints’ continuous variables. The algorithm is the
same as described on the Fig. 1 except the omitted
steps (1)–(3), and the clustering which is made using
discrete values from the training database D in the
step (4).

This approach does not utilize relation between
values of the discrete input variables and the response
variable. As was stated in Section 2.1, such a rela-
tion can be expressed by generalized linear models,
and these models form an important part of our new
RBF/GLM surrogate model.

Training the RBF/GLM model starts with con-
struction of two auxiliary models: the first, global RBF
network f̂RBF : S(C) → IR is fitted on the continuous
input variables while the second, GLM f̂GLM :S(D)→IR
is built using the discrete variables. Both of them make
use of all the available training data and regress the
response-variable values.

Global RBF network. Training of the auxiliary
RBF network works similarly to the training of the
RBF networks in the previous RBF/DSCL model [1]
– the same starting values for centers and weights, and
cross-validation for choosing the best number of com-
ponents g is used. However, instead of clusters, all the
data in the database D are used at once.

GLM model. Generalized linear model is used in its
continuous-response form and responses are supposed
from normal distribution Y ∼ N(µ, σ2). Even though
the latter assumption generally does not hold, GLMs
still provide useful mean of regression expressed on the
basis of the discrete values.
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Before using or fitting the GLM, the discrete values
must be converted to a proper representation. Since we
do not expect any ordering on the discrete values, we
have chosen dummy coding [13] which establishes one
binary indicating variable Iij ∈ {0, 1} for each nomi-

nal value from the value sets Vs(X
(D)
i ), i = 1, . . . , d,

j = 1, . . . , |Vs(X
(D)
i )| of the original discrete variables.

Assignment between the original discrete values and
the dummy coding

dummy : S(D) → {0, 1}|Vs(X1)|+...+|Vs(Xd)| (4)

has to be recorded for evaluation with the surrogate
model.

Final RBF clustered model. Having created the
global RBF network f̂RBF and the GLM model f̂GLM,
we can proceed with the construction of the final RBF
clustered surrogate model f̂ : S(C) → IR. The process
starts with clustering of the training data from the

database D = {x
(D)
i ,x

(C)
i , yi}

N
i=1 according to the dif-

ference between responses of the two auxiliary models
on the corresponding input variables (for i = 1, . . . , N)

diff i = f̂RBF(x
(C)
i )− f̂GLM(dummy(x

(D)
i )). (5)

The sizes of the clusters have to be at least smin

– the minimal number of data needed for fitting one
RBF network. This number is provided by the user
and its best value depends on a particular task. The
higher the smin is, the more components can each RBF

FitTheModel(smin, D, e)
Arguments: smin – min. size of clusters,

D – database, e – type of error estimate:
MSE, AIC, or BIC

Steps of the procedure:

(1) (f̂RBF, rbf GLOB
)← fit the global RBF

(2) (f̂GLM, glm)← fit the GLM

(3) {diff i}
N
i=1 ← differences (f̂RBF − f̂GLM) on D

(4) {Cj}
m
j=1 ← cluster D into clusters of size

at least smin according to {diff i}
N
i=1

(5) for each cluster Cj , j = 1, . . . ,m
(6) for gj = 1, . . . , gmax

j

(7) mse[j, gj ]← average MSECV from
fitting RBF with gj components

(8) g⋆j ← the number of components
of the best RBF

(9) rbf j ← retrained RBF network
with g⋆j components

(10) msej ← mse[j, g⋆j ]
Output: {rbf GLOB, glm, (rbf j ,msej , diff j)

m
j=1}

Fig. 1. Pseudo-code of the fitting procedure.

network have, but the more distinct discrete values are
usually grouped together in one cluster.

One separate RBF network rbf j is trained on the
data of each cluster Cj , j = 1, . . . ,m. The maxi-
mal number of components of each network is upper-
bounded by gmax

j = ⌊(k−1
k

|Cj |)/ρ⌋. Training these net-
works is analogous to training of the global RBF net-
work described in Section 3.1. The only difference is in
the training data: only the data of individual clusters
are used for each network.

3.2 Evaluation with the surrogate model

Once the surrogate model is built, it can be used
for evaluating individuals resulting from the evolu-
tion. The parameters of the model can be summa-
rized as {rbf GLOB, glm, (rbf j ,msej , diff j)

m
j=1}. Here,

rbf GLOB are global RBF network parameters, glm =
(β0, . . . , βr) are parameters of the GLM, rbf j global
RBF network parameters, msej are the MSECV ob-
tained from cross-validation, and diff j are the differ-
ence diff (5) averaged on the j-th cluster’s data.

Given a new individual (x̃(C), x̃(D)), evaluation
with the surrogate model starts with computing
the difference between responses of the global RBF
network and GLM with corresponding parameters
rbf GLOB and glm

d̃iff = f̂RBF(x̃
(C); rbf GLOB)

−f̂GLM(dummy(x̃(D)); glm). (6)

Based on this value, the index c of the cluster with
the average difference most similar to the individual’s
difference is obtained

c = arg min
j=1,...,m

|diff j − d̃iff |. (7)

Finally, the response of the c-th final RBF network is
used as a return value of the surrogate model

ỹ = f̂(x̃(C); rbfc) =

g⋆

c∑

i=1

πicfic(||x̃
(C) − cic||). (8)

If more than one cluster is at the same distance
from the individual, the RBF network with the lowest
MSECV is chosen.

4 Implementation and results of

testing

Our algorithms were implemented in the MATLAB
environment. We have been utilizing the Global Opti-
mization Toolbox which provided us with a platform
for testing the model on a benchmark optimization
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task. Similarly, our hierarchical clustering method
extends the cluster analysis from the Statistical Tool-
box which provide us with GLM fitting procedure, too,
and we employ a nonlinear curve-fitting from the
Optimization Toolbox for fitting RBF networks.

4.1 Model fitting

Our models have been tested on three different kinds
of data. The first two datasets (Valero and HCN) are
the same as in our last article [1], the third is the
building1 dataset from Proben1 [18] collection.

Valero’s [20] benchmark fitness function was con-
structed to resemble empirical fitness functions from
chemical engineering. The surrogate models have been
10-times trained on dataset with 2000 randomly
generated data. Using the same settings for fitting,
the average root of the MSE (RMSE) of the new
RBF/GLM model has been only slightly decreased.
(see Table 1 and the top graphs on Fig. 2).

Valero
RBF/GLM 14.046± 1.0435
RBF/DSCL 14.499± 1.518

HCN
RBF/GLM 10.340± 1.866
RBF/DSCL 15.620± 1.519

building1
RBF/GLM 0.06407± 0.00496
RBF/DSCL 0.13618± 0.00455

Table 1. Surrogate-models’ average regression RMSE on
Valero’s benchmark, HCN data and building1 dataset.

The second dataset is from a real application in
chemical engineering (cf. using RBF networks in this
application area e.g. in the work of Jun [11]): the op-
timization of chemical catalysts for Hydrocyanic acid
(HCN) synthesis [14]. Solutions of this task are com-
posed of two discrete and 11 continuous variables, the
whole dataset has 696 items. Fitting results are sub-
stantially different from the benchmark problem (con-
sidering the average response in the dataset ȳ = 31.17,
the measured RMSE’s are relatively much higher:
see middle row of graphs on Fig. 2). RMSE of the
new RBF/GLM model has been decreased by nearly
35 % comparing to the previous model’s error.

Prechelt’s Proben1 [18] is a popular collection of
datasets for data mining, originally intended for neural
networks benchmarking. We have tested our models on
the building1 dataset using the first response variable
indicating electrical energy consumption in a building;
multiple-trained on the first 3156 and tested on the
remaining 1052 data, as suggested by Prechelt. Aver-
age results from ten trainings show that the former
RBF/DSCL model is not able to sufficiently express
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Fig. 2. Scatter plots of the RBF/GLM (left column) and
RBF/DSCL model (right column) on testing data.

the relation between discrete variables and the out-
put. Conversely, the results of the RBF/GLM model
are at least comparable to the results reported
elsewhere [12, 2, 15].

4.2 Genetic algorithm performance on the

benchmark fitness

The benchmark fitness enabled us to test the model
with the GA [1]. As shown in Table 2, the GA with
the surrogate model reaches on this function the same
fitness values as the non-surrogate GA using only less
than 30 per cent of the original fitness function eval-
uations (generation-based EC), or it is able to find
1.1-times better solution with 80 per cent of the orig-
inal fitness evaluations (individual-based EC).
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EC settings of fitness of number of
the surrogate the best found orig. fitness
model individual evaluations

without model 486.38± 56.5 4130± 1546
individual-based 544.73± 3.9 3241± 926
generation-based 490.28± 44.9 1185± 358

Table 2. GA performance without surrogate model and
with the RBF/DSCL-based model; average results from
100 runs of the algorithm

5 Conclusion

Two kinds of surrogate models of expensive objective
functions for mixed-variable continuous and discrete
optimization were presented in this paper. Both of
them make use of RBF networks; the first model fo-
cuses training of the RBF networks using clustering on
the discrete part of the data while the second builds
GLM on the discrete input variables. Detailed algo-
rithms for training the models were provided. Results
of testing on three different datasets showed that espe-
cially the second model is a competitive kind of regres-
sion for costly objective functions. Using the model on
the benchmark fitness function resulted in saving up
to 70 per cent of the original evaluations or 10 per cent
increase of the final solution quality.

One of the most similar works dealing with surro-
gate models is the paper of Zhou [22]. He uses RBF
networks as a local surrogate model in combination
with a global model based on Gaussian processes.
Other literature employs polynomials [8], Gaussian
processes [4], or multilayer perceptron networks [10],
but most publications consider only continuous or con-
tinuous and integer optimization.
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