
Conformal sets in neural network regression?

Radim Demut1 and Martin Holeňa2

1 Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague

demut@seznam.cz
2 Institute of Computer Science

Academy of Sciences of the Czech Republic
martin@cs.cas.cz

Abstract. This paper is concerned with predictive regions
in regression models, especially neural networks. We use
the concept of conformal prediction (CP) to construct re-
gions which satisfy given confidence level. Conformal pre-
diction outputs regions, which are automatically valid, but
their width and therefore usefulness depends on the used
nonconformity measure. A nonconformity measure should
tell us how different a given example is with respect to
other examples. We define nonconformity measures based
on some reliability estimates such as variance of a bagged
model or local modeling of prediction error. We also present
results of testing CP based on different nonconformity mea-
sures showing their usefulness and comparing them to tra-
ditional confidence intervals.

1 Introduction

This paper is concerned with predictive regions for re-
gression models, especially neural networks. We often
want to know not only the label y of a new object, but
also how accurate the prediction is. Could the real la-
bel be very far from our prediction or is our prediction
very accurate? It is possible to use traditional confi-
dence intervals to answer this question but they do not
work very well with highly nonlinear regression models
such as neural networks. We use conformal prediction
to solve this problem and construct some accurate and
useful prediction regions.

We introduce conformal prediction (CP) in chap-
ter 2. Conformal prediction does not output single la-
bel but a set of labels Γ ε. The size of the prediction
set depends on a significance level ε which we want
to achieve. Significance level is under some conditions
the probability that our prediction lies outside the set.
The set is smaller for larger ε. If we have some predic-
tion rule, we will call it simple predictor and we can
use it to construct conformal predictor. We introduce
transductive conformal predictors where the predic-
tion rule is updated after a new example arrives. But

? This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS12/157/OHK4/2T/14 and the Czech Science Foun-
dation grant 201/08/0802.

these predictors are not suitable for neural network
regression, therefore, we also introduce inductive con-
formal predictors where the prediction rule is updated
only after a given number of new examples has arrived
and a calibration set is used.

In order to define a conformal predictor we need
a suitable nonconformity measure. A nonconformity
measure should tell us how different a given example
is with respect to other examples. In chapter 3, we in-
troduce two reliability estimates: variance of a bagged
model and local modeling of prediction error. We use
these reliability estimates in chapter 4 to define nor-
malized nonconformity measures. Some other reliabil-
ity estimates could be used, e.g. sensitivity analysis or
density based reliability estimate.

In chapter 5, we use CP, based on nonconformity
measures defined in chapter 4, on testing data to com-
pare our conformal regions with traditional confidence
intervals and with conformal intervals where these tra-
ditional confidence intervals are used to construct the
nonconformity measure.

2 Conformal prediction

We assume that we have an infinite sequence of pairs

(x1, y1), (x2, y2), . . . , (1)

called examples. Each example (xi, yi) consists of an
object xi and its label yi. The objects are elements of
a measurable space X called the object space and the
labels are elements of a measurable space Y called the
label space. Moreover, we assume that X is non-empty
and that the σ-algebra on Y is different from {∅,Y}.
We denote zi := (xi, yi) and we set

Z := X×Y (2)

and call Z the example space. Thus the infinite data se-
quence (??) is an element of the measurable space Z∞.

Our standard assumption is that the examples are
chosen independently from some probability distribu-
tion Q on Z, i.e. the infinite data sequence (??) is
drawn from the power probability distribution Q∞ on

18 Radim Demut, Martin Holeňa

Z∞. Usually we need only slightly weaker assumption
that the infinite data sequence (??) is drawn from a
distribution P on Z∞ that is exchangeable, that means
that every n ∈ IN, every permutation π of {1, . . . , n},
and every measurable set E ⊆ Z∞ fulfill

P{(z1, z2, . . .) ∈ Z∞ : (z1, . . . , zn) ∈ E} =

P{(z1, z2, . . .) ∈ Z∞ : (zπ(1), . . . , zπ(n)) ∈ E}

We denote Z∗ the set of all finite sequences of ele-
ments of Z, Zn the set of all sequences of elements of Z
of length n. The order in which old examples appear
should not make any difference. In order to formalize
this point we need the concept of a bag. A bag of size
n ∈ IN is a collection of n elements some of which may
be identical. To identify a bag we must say what ele-
ments it contains and how many times each of these
elements is repeated. We write \z1, . . . , zn/ for the bag
consisting of elements z1, . . . , zn, some of which may
be identical with each other. We write Z(n) for the
set of all bags of size n of elements of a measurable
space Z. We write Z(∗) for the set of all bags of ele-
ments of Z.

2.1 Confidence predictors

We assume that at the nth trial we have firstly only
the object xn and only later we get the label yn. If we
want to predict yn, we need a simple predictor

D : Z∗ ×X→ Y . (3)

For any sequence of old examples x1, y1, . . . , xn−1,
yn−1 ∈ Z∗ and any new object xn, it gives
D(x1, y1, . . . , xn−1, yn−1, xn) ∈ Y as its prediction for
the new label yn.

Instead of merely choosing a single element of Y
as our prediction for yn, we want to give subsets of Y
large enough that we can be confident that yn will fall
in them, while also giving smaller subsets in which we
are less confident. An algorithm that predicts in this
sense requires additional input ε ∈ (0, 1), which we
call significance level, the complementary value 1 − ε
is called confidence level. Given all these inputs

x1, y1, . . . , xn−1, yn−1, xn, ε (4)

an algorithm Γ that interests us outputs a subset

Γ ε(x1, y1, . . . , xn−1, yn−1, xn) (5)

of Y. We require this subset to shrink as ε is increased
that means it holds

Γ ε1(x1, y1, . . . , xn−1, yn−1, xn) ⊆
Γ ε2(x1, y1, . . . , xn−1, yn−1, xn) (6)

whenever ε1 ≥ ε2.

Formally, a confidence predictor is a measurable
function

Γ : Z∗ ×X× (0, 1)→ 2Y (7)

that satisfies (??) for all n ∈ IN, all incomplete data se-
quences x1, y1, . . . , xn−1, yn−1, xn and all significance
levels ε1 ≥ ε2.

Whether Γ makes an error on the nth trial of the
data sequence ω = (x1, y1, x2, y2, . . .) at significance
level ε can be represented by a number that is one in
case of an error and zero in case of no error

errεn(Γ, ω) :=


1 if yn /∈ Γ ε(x1, y1, . . . ,

xn−1, yn−1, xn) ,
0 otherwise ,

(8)

and the number of errors during the first n trials is

Errεn(Γ, ω) :=

n∑
i=1

errεi (Γ, ω) . (9)

If ω is drawn from an exchangeable probability
distribution P , the number errεn(Γ, ω) is the realized
value of a random variable, which we may designate
errεn(Γ, P). We say that confidence predictor Γ is con-
servatively valid if for any exchangeable probability
distribution P on Z∞ there exist two families

(ξ(ε)n : ε ∈ (0, 1), n = 1, 2, . . .) (10)

and
(η(ε)n : ε ∈ (0, 1), n = 1, 2, . . .) (11)

of {0, 1}-valued variables such that

– for a fixed ε, ξ
(ε)
1 , ξ

(ε)
2 , . . . is a sequence of indepen-

dent Bernoulli random variables with parameter
ε;

– for all n and ε, η
(ε)
n ≤ ξ(ε)n ;

– the joint distribution of errεn(Γ, P), ε ∈ (0, 1), n =
1, 2, . . ., coincides with the joint distribution of

η
(ε)
n , ε ∈ (0, 1), n = 1, 2,

2.2 Transductive conformal predictors

A nonconformity measure is a measurable mapping

A : Z(∗) × Z→ IR . (12)

To each possible bag of old examples and each possible
new example, A assigns a numerical score indicating
how different the new example is from the old ones.
It is sometimes convenient to consider separately how
a nonconformity measure deals with bags of different
sizes. If A is a nonconformity measure, for each n =
1, 2, . . . we define a function

An : Z(n−1) × Z→ IR (13)

Conformal sets 19

as the restriction of A to Z(n−1) × Z. The sequence
(An : n ∈ IN), which we abbreviate to (An) will also
be called a nonconformity measure.

Given a nonconformity measure (An) and a bag
\z1, . . . , zn/ we can compute the nonconformity score

αi := An(\z1, . . . , zi−1, zi+1, . . . zn/, zi) (14)

for each example zi in the bag. Because a nonconfor-
mity measure (An) may be scaled however we like, the
numerical value of αi does not, by itself, tell us how
unusual (An) finds zi to be. For that we define p-value
for zi as

p :=
|{j = 1, . . . , n : αj ≥ αi}|

n
. (15)

We define transductive conformal predictor (TCP)
by a nonconformity measure (An) as a confidence pre-
dictor Γ obtained by setting

Γ ε(x1, y1, . . . , xn−1, yn−1, xn) (16)

equal to the set of all labels y ∈ Y such that

|{i = 1, . . . , n : αi(y) ≥ αn(y)}|
n

> ε , (17)

where

αi(y) := An(\(x1, y1), . . . , (xi−1, yi−1),

(xi+1, yi+1), . . . , (xn−1, yn−1), (xn, y)/,

(xi, yi)) , ∀i = 1, . . . , n− 1 ,

αn(y) := An(\(x1, y1), . . . , (xn−1, yn−1)/, (xn, y)) .

We now remind an important property of TCP.
The proof of the following theorem can be found in [?].

Theorem 1. All conformal predictors are conserva-
tively valid.

If we are given a simple predictor (??) whose out-
put does not depend on the order in which the old
examples are presented, than the simple predictor D
defines a prediction rule D\z1,...,zn/ : X → Y by the
formula

D\z1,...,zn/(x) := D(z1, . . . , zn, x) . (18)

A natural measure of nonconformity of zi is the devi-
ation of the predicted label

ŷi := D\z1,...,zn/(xi) (19)

from the true label yi. We can also use the deleted
prediction defined as

ŷ(i) := D\z1,...,zi−1,zi+1,...,zn/(xi) . (20)

A discrepancy measure is a measurable function

∆ : Y ×Y → IR . (21)

Given a simple predictor D and a discrepancy mea-
sure ∆ we define functions (An) as follows: for any
((x1, y1), . . . , (xn, yn)) ∈ Z∗, the values

αi = An(\(x1, y1), . . . , (xi−1, yi−1),

(xi+1, yi+1), . . . , (xn, yn)/, (xi, yi)) (22)

are defined according to (??) and (??) by the formula

αi := ∆(yi, D\z1,...,zn/(xi)) (23)

and the formula

αi := ∆(yi, D\z1,...,zi−1,zi+1,...,zn/(xi)) , (24)

respectively. It can be easily checked that in both
cases (An) form a nonconformity measure.

2.3 Inductive conformal predictors

In TCP, we need to compute the p-value (??) for all
labels y ∈ Y to determine the set Γ ε. In the case of
regression, we have Y = IR and it is not possible to
try each y ∈ Y. Sometimes it is possible to generally
solve equations αi(y) ≥ αn(y) with respect to y, and
therefore determine the set Γ ε. But if we use neural
networks as simple predictor, we do not know the gen-
eral form of the simple predictor, i.e. we do not know
a functional relationship between the training set and
the trained network, because random influences en-
ter the training algorithm. Hence, we cannot solve the
equations αi(y) ≥ αn(y), and it is not possible to use
TCP. Even if the equations can be solved, it can be
very computationally inefficient.

To avoid this problem we can use inductive confor-
mal predictor (ICP). To define ICP from a nonconfor-
mity measure (An) we fix a finite or infinite increasing
sequence of positive integers m1,m2, . . . (called update
trials). If the sequence is finite we add one more mem-
ber equal to infinity at the end of the sequence. We
need more than m1 training examples. Then we find
k such that mk < n ≤ mk+1. The ICP is determined
by (An) and the sequence m1,m2, . . . of update trials
is defined to be the confidence predictor Γ such that
the prediction set

Γ ε(x1, y1, . . . , xn−1, yn−1, xn) (25)

is equal to the set of all labels y ∈ Y such that

|{j = mk + 1, . . . , n : αj ≥ αn(y)}|
n−mk

> ε , (26)

20 Radim Demut, Martin Holeňa

where the nonconformity scores are defined by

αj := Amk+1(\(x1, y1), . . . , (xmk
, ymk

)/, (xj , yj)) ,

for j = mk + 1, . . . , n− 1 (27)

αn := Amk+1(\(x1, y1), . . . , (xmk
, ymk

)/,

(xn, y)) . (28)

The proof of the following theorem can be found
in [?].

Theorem 2. All ICPs are conservatively valid.

For ICP combining (??) with (??) and (??) we get

Al+1(\(x1, y1), . . . , (xl, yl)/, (x, y))

= ∆(y,D\(x1,y1),...,(xl,yl),(x,y)/(x)) (29)

and

Al+1(\(x1, y1), . . . , (xl, yl)/, (x, y))

= ∆(y,D\(x1,y1),...,(xl,yl)/(x)) , (30)

respectively. When we define A by (??), we can see
that the ICP requires recomputing the prediction rule
only at the update trials m1,m2, We will use the
simplest case, where there is only one update trial m1,
therefore, we compute the prediction rule only once.

3 Reliability estimates

In this chapter we are interested in different ap-
proaches to estimate the reliability of individual pre-
dictions in regression.

3.1 Variance of a bagged model

We are given a learning set L = {(x1, y1), . . . , (xn, yn)}
and take repeated bootstrap samples L(i), i = 1, . . . ,m
of size d from the learning set, i.e. for i = 1, . . . ,m
we randomly choose d points from the original learn-
ing set L with the return and put them in L(i). The
number of points d can be chosen arbitrary. We in-
duce a new model on each of these bootstrap sam-
ples L(i). Each of the models yields a prediction Ki(x),
i = 1, . . . ,m for a considered input x. The label of the
example x is predicted by averaging the individual pre-
dictions

K(x) :=

∑m
i=1Ki(x)

m
. (31)

We call this procedure bootstrap aggregating or bag-
ging. The reliability estimate of a bagged model is de-
fined as the prediction variance

BAGV(x) :=
1

m

m∑
i=1

(Ki(x)−K(x))2 . (32)

3.2 Local modeling of prediction error

We find k nearest neighbors of an unlabeled exam-
ple x in the training set, therefore, we have a set
N = {(x1, y1), . . . , (xk, yk)} of nearest neighbors. We
define the estimate denoted CNK for an unlabeled ex-
ample x as the difference between the average label of
the nearest neighbors and the example’s prediction y
(using the model that was generated on all learning
examples)

CNK(x) :=

∑k
i=1 yi
k

− y . (33)

The dependence on x on the right hand side of the
previous equation is implicit, but both the prediction y
and the selection of nearest neighbors depends on x.

4 Normalized nonconformity
measures

We will follow a similar approach as is used in the
article [?], but we will incorporate the reliability es-
timates from previous chapter and use it for neural
network regression.

We will use ICP with only one update trial. Let us
have training set of size l, where l > m1. We will split
it into two sets, the proper training set T of size m1

(we will further write m) and the calibration set C of
size q = l − m. We will use the proper training set
for creating the simple predictor D\(x1,y1),...,(xm,ym)/.
The calibration set is used for calculating the p-value
of new test examples. It is good to first normalize the
data (i.e. subtract the mean and divide data by sample
variance).

We will denote ri any of the previously defined re-
liability estimates in the point xi with given simple
predictor D. We compute ri for all points in the cali-
bration set and define Ri for any given point xi as

Ri :=
ri

median{rj : rj ∈ C}
. (34)

We define a discrepancy measure (??) as

∆(y1, y2) :=

∣∣∣∣y1 − y2γ +Ri

∣∣∣∣ , (35)

where parameter γ ≥ 0 controls the sensitivity to
changes of Ri. Then, we get the nonconformity score

αi(y) =

∣∣∣∣ y − ŷiγ +Ri

∣∣∣∣ . (36)

We sort nonconformity scores of the calibration ex-
amples in descending order

α(m+1) ≥ . . . ≥ α(m+q) , (37)

and denote
s = bε(q + 1)c . (38)

Conformal sets 21

Proposition 1. The prediction set Γ ε of the new test
example xl+g (where xl+g is from the infinite se-
quence (??)) given the nonconformity score (??) is
equal to the interval

〈ŷl+g − α(m+s)(γ +Rl+g), ŷl+g + α(m+s)(γ +Rl+g)〉 .
(39)

Proof. To compute the prediction set Γ ε of the new
test example xl+g we need to find all y ∈ Y such that
for the p-value it holds

p(y) =

|{i = m+ 1, . . . ,m+ q, l + g : αi ≥ αl+g(y)}|
q + 1

> ε . (40)

We multiply the inequality by q + 1 and then it is
equivalent to

|{i = m+ 1, . . . ,m+ q, l + g : αi ≥ αl+g(y)}| >
bε(q + 1)c (41)

and this inequality holds if and only if

α(m+s) ≥ αl+g(y) =

∣∣∣∣ y − ŷl+gγ +Rl+g

∣∣∣∣ . (42)

From (??) follows the assertion of the proposition.

5 Simulation

We carried out a simulation to test the normalized
nonconformity measures based on different reliability
estimates. We used neural networks with radial ba-
sis functions (RBF networks) as our regression models
with Gaussian used as the basis function. Therefore,
the output of the RBF network f : IRn → IR has the
form

f(x) =

N∑
i=1

πi exp
{
−βi||x− ci||2

}
, (43)

where N is the number of neurons in the hidden layer,
ci is the center vector for neuron i, βi determines the
width of the ith neuron and πi are the weights of the
linear output neuron. RBF networks are universal ap-
proximators on a compact subset of IRn. This means
that a RBF network with enough hidden neurons can
approximate any continuous function with arbitrary
precision.

We used a benchmark function similar to some em-
pirical functions encountered in chemistry to carry out
our experiment. This function was introduced in [?].

The value of this function ϑ in the point (x1, x2, x3,
x4, x5) can be expressed as

ϑ(x1, x2, x3, x4, x5) = −A(x1, x2)

−B(x2, x3)C(x3, x4, x5) , (44)

where

A(x1, x2) = 0.6g(x1 − 0.35, x2 − 0.35)

+0.75g(x1 − 0.1, x2 − 0.1)

+g(x1 − 0.35, x2 − 0.1)

B(x2, x3) = 0.4g(x2 − 0.1, x3 − 0.3)

C(x3, x4, x5) = 5 + 25[1− {1 + (x3 − 0.3)2

+(x4 − 0.15)2 + (x5 − 0.1)2}1/2]

g(a, b) = 100−
√

(100a)2 + (100b)2

+50
sin
√

(100a)2 + (100b)2√
(100a)2 + (100b)2 + (0.01)2

.

Moreover, the input vectors must satisfy following con-
ditions

5∑
i=1

xi = 1 and xi ∈ [0, 1], for i = 1, . . . , 5 . (45)

We repeated the following procedure five times for
region with significance level 0.1 and five times for
region with significance level 0.05.

– Randomly generate 600 points satisfying the con-
ditions (??).

– Compute the function values of function ϑ in these
points.

– Normalize data (i.e. subtract the mean and divide
data by sample variance)

– Split this set of points into a training set of
500 points and a testing set of 100 points.

– Split the training set into a proper training set of
401 points and a calibration set of 99 points (then,
we divide the p-value in (??) by 100).

– Split the proper training set on training set for fit-
ting the RBF network and the validation set. Fit
the RBF network with 1, 2, 3, 4 and 5 hidden neu-
rons ten times using the Matlab function lsqcurve-
fit.

– Choose the RBF network with the smallest error
on the validation set for each number of hidden
neurons.

– Compute the prediction sets for each of the
100 testing points for each number of hidden neu-
rons.

– Transform data and predictive regions back to the
original size (i.e. multiply by the original sample
variance and add the original mean)

– Determine if the original point lies in our predic-
tion sets.

22 Radim Demut, Martin Holeňa

The initial values of parameters πi were set as mean of
the response vector, initial values of βi were set as the
mean of the standard deviation of the components of
training data points. The centers ci were set randomly.

We also computed confidence intervals using Mat-
lab function nlpredci (denoted Conf Int). The Jaco-
bian can be computed exactly, because the form of the
RBF network is known and differentiable. Therefore,
we supply the function nlpredci with this Jacobian. We
also use the width of this interval as another reliability
estimate for our normalized nonconformity measure.

We compare normalized nonconformity measures
based on the following reliability estimates: the local
modeling of prediction errors using nearest neighbors
(CNK), the variance of a bagged model (BAGV) and
the width of confidence intervals (CONF).

The variance of a bagged model was computed for
number of different models m = 10 and the bootstrap
samples were as big as the original sample.

The CNK estimates were computed for number of
neighbors k = 2, 5, 10.

We present the results of testing CP based on dif-
ferent nonconformity measures in Figures ??, ?? and
??. There is a boxplot of all labels in Figure ?? to com-
pare the range of all labels with the width of different
predictive regions. Figures ?? and ?? show boxplots of
the width of prediction regions for significance levels
ε = 0.1 and ε = 0.05, respectively. It is not only in-
teresting whether the intervals are small enough, but
they should also be valid. The percentage of labels in-
side the predictive regions are in Tables ?? and ?? for
significance levels ε = 0.1 and ε = 0.05, respectively.

The results for traditional confidence inter-
vals computed by Matlab function nlpredci are not
shown in the figures, because these results are very
different from the others. The median width for these
intervals lies between 1010 and 1014 for all counts of
neurons. This is probably because of the highly non-
linear character of neural nets, while nlpredci is based
on linearization. Moreover, during the computation of
these intervals a Jacobian matrix must be inverted but
this matrix was very often ill conditioned, therefore,
the results for confidence intervals are not too reliable.

Despite what was said in the previous paragraph,
the predictive regions based on the width of confidence
intervals produce sensible results. But these prediction
regions show highest inconsistency between different
neuron counts and have highest number of very large
intervals. These regions produce sometimes very good
results, but they are probably very dependent on the
actual fit of the neural network and their results are
not as consistent as the results of the other methods.
However, we can see in Tables ?? and ?? that these
intervals are valid as the percentage of labels inside

predictive regions is always slightly higher than the
confidence level.

Results for predictive regions based on the local
modeling of prediction errors depend a little bit on the
count of nearest neighbors. These intervals are valid
for all numbers of neighbors, but the tightest inter-
vals were achieved for two neighbors. The difference
between using five or ten neighbors is not too big but
lower number of neighbors works better in our model.
This is probably caused by our data and it seems that
only a few neighbors are relevant to our prediction.
These regions are also the easiest and fastest to com-
pute.

The best results among all predictive regions are
achieved by those based on a variance of a bagged
model. These regions are the tightest of all tested and
they do not vary as much as those based on confidence
intervals. These regions also maintain the validity. The
drawback of these regions is that we need to fit a lot of
additional models which takes a lot of time in the case
of neural network regression. But if time and compu-
tational efficiency is not a problem then this method
produces best regions.

50

100

150

200

250

300

350

400

450

1

Fig. 1. Boxplot of all labels.

Neurons CNK2 CNK5 CNK10 BAGV CONF

2 91.0 91.2 90.0 91.4 92.4
3 92.6 92.4 92.6 94.0 93.6
4 92.2 90.4 90.0 90.4 90.2
5 94.6 92.6 90.0 90.2 90.8
6 92.8 89.8 91.8 91.6 91.8

Table 1. Percentage of labels inside predictive regions for
ε = 0.1.

Conformal sets 23

0

100

CNK2 CNK5 CNK10 BAGV CONF

Neurons: 2

0

100

CNK2 CNK5 CNK10 BAGV CONF

Neurons: 3

0

100

CNK2 CNK5 CNK10 BAGV CONF

Neurons: 4

0

100

CNK2 CNK5 CNK10 BAGV CONF

Neurons: 5

Fig. 2. Interval widths for ε = 0.1.

0

200

400

CNK2 CNK5 CNK10 BAGV CONF

Neurons: 2

0

200

400

CNK2 CNK5 CNK10 BAGV CONF

Neurons: 3

0

200

400

CNK2 CNK5 CNK10 BAGV CONF

Neurons: 4

0

200

400

CNK2 CNK5 CNK10 BAGV CONF

Neurons: 5

Fig. 3. Interval widths for ε = 0.05.

24 Radim Demut, Martin Holeňa

Neurons CNK2 CNK5 CNK10 BAGV CONF

2 95.8 96.8 96.8 96.2 95.6
3 97.2 96.8 96.8 97.8 95.6
4 96.2 96.4 96.6 97.4 97.0
5 97.2 97.6 96.4 96.4 97.6
6 97.2 98.0 96.4 97.4 96.8

Table 2. Percentage of labels inside predictive regions for
ε = 0.05.

6 Conclusion

We presented several methods for computing predic-
tive regions in neural network regressions. These meth-
ods are based on the inductive conformal prediction
with novel nonconformity measures proposed in this
paper. Those measures use reliability estimates to de-
termine how different a given example is with respect
to other examples. We compared our new predictive
regions with traditional confidence intervals on test-
ing data. The confidence intervals did not perform
very well, the intervals were too large, it was probably
caused by the high nonlinearity of radial basis neu-
ral networks. Predictive regions which used the width
of confidence intervals as the nonconformity measure
gave much better results. But those results were not as
consistent as the results of the other methods. Predic-
tive regions based on the local modeling of prediction
errors gave us good results and the computation of the
regions was very fast. A smaller number of neighbors
gave better results for these regions. The best results
were achieved by the regions based on the variance of
a bagged model. The only drawback of this method is
that a lot of models must be fitted and it is, therefore,
computationally very inefficient.

References

1. Z. Bosnic, Kononenko, I.: Comparison of approaches
for estimating reliability of individual regression predic-
tions. Data & Knowledge Engineering, 2008, 504–516.

2. A. Gammerman, G. Shafer, V. Vovk: Algorithmic learn-
ing in a random world. Springer Science+Business Me-
dia, 2005.

3. E. Uusipaikka: Confidence intervals in generalized re-
gression models. Chapman & Hall, 2009.

4. H. Papadopoulos, V. Vovk, A. Gammerman: Regression
conformal prediction with nearest neighbours. Journal of
Artificial Intelligence Research 40, 2011, 815–840.

5. S. Valero, E. Argente, et al.: DoE framework for catalyst
development based on soft computing techniques. Com-
puters and Chemical Engineering 33(1), 2009, 225–238.

