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Abstract. The paper deals with the aggregation of clas-
sification rules by means of fuzzy integrals, in particular
with the fuzzy measures employed in that aggregation. It
points out that the kinds of fuzzy measures commonly en-
countered in this context do not take into account the di-
versity of classification rules. As a remedy, a new kind of
fuzzy measures is proposed, called similarity-aware mea-
sures, and several useful properties of such measures are
proven. Finally, results of extensive experiments on a num-
ber of benchmark datasets are reported, in which a particu-
lar similarity-aware measure was applied to a combination
of Choquet or Sugeno integrals with three different ways
of creating ensembles of classification rules. In the experi-
ments, the new measure was compared with the traditional
Sugeno λ-measure, to which it was clearly superior.

1 Introduction

Logical formulas of specific kinds, usually called rules,
are a traditional way of formally representing knowl-
edge. Therefore, it is not surprising that they are also
the most frequent representation of the knowledge dis-
covered in data mining.

The most natural base for differentiating between
existing rules extraction methods is the syntax and
semantics of the extracted rules [10]. Syntactical dif-
ferences between them are, however, not very deep be-
cause, principally, any rule r from a ruleset R has one
of the forms Sr ∼ S′

r, or Ar → Cr, where Sr, S′
r, Ar

and Cr are formulas of the considered logic, and ∼, →
are symbols of the language of that logic. The differ-
ence between both forms concerns semantic properties
of the symbols ∼ and →: Sr ∼ S′

r is symmetric with
respect to Sr, S

′
r in the sense that its validity always

coincides with that of S′
r ∼ Sr whereas Ar → Cr is

not symmetric with respect to Ar , Cr in that sense. In
the case of a propositional logic, ∼ and → are the con-
nectives equivalence (≡) and implication, respectively,
whereas in the case of a predicate logic, they are gener-
alized quantifiers. To distinguish the formulas involved
in the asymmetric case, Ar is called antecedent and Cr

consequent of r.

⋆ The research reported in this paper has been sup-
ported by the Czech Science Foundation (GA ČR) grant
P202/11/1368.

More important is the semantic of the rules (cf. [5]),
especially the difference between rules of the Boolean
logic and rules of a fuzzy logic. Due to the semantics of
Boolean and fuzzy formulas, the former are valid for
crisp sets of objects, whereas the validity of the latter
is a fuzzy set on the universe of all considered objects.
Boolean rulesets are extracted more frequently, espe-
cially some specific types of them, such as classification
rulesets [6, 9]. Those are sets of implications such that
{Ar}r∈R and {Cr}r∈R partition the set O of consid-
ered objects, where {·}r∈R stands for the set of distinct
formulas in (·)r∈R. Abandoning the requirement that
{Ar}r∈R partitions O (at least in the sense of a crisp
partitioning) allows to generalize those rulesets also to
fuzzy antecedents [15]. For Boolean antecedents, how-
ever, this requirement entails a natural definition of
the validity of a whole classification ruleset R for an
object x. Assuming that all information about x con-
veyed by R is conveyed by the single rule r covering x

(i.e., with Ar valid for x), the validity of R for x can
be defined to coincide with the validity of Ar → Cr for
that r, which in turn equals the validity of Cr for x.

It is also possible to combine several existing classi-
fication rules into a new one. Such aggregation can be
either static, i.e., the result is the same for all inputs,
or dynamic, where it is adapted to the currently classi-
fied input [11, 19]. In the aggregation of classification
rules, we usually try to create a team of rules that
are not similar. This property is called diversity [14].
There are many methods for building a diverse team
of classifiers [2, 3, 16].

One of popular aggregation operators is the fuzzy
integral [7, 12, 13, 17]. It aggregates the outputs of the
individual classification rules with respect to a fuzzy
measure. The role of fuzzy measures in the aggrega-
tion of classification rules, in particular their role with
respect to the diversity of the rules, was the subject
of the research reported in this paper.

The following section recalls the fuzzy integrals and
fuzzy measures encountered in the aggregation of clas-
sification rules. In Section 3, which is the key section
of the paper, a new fuzzy measure, called similarity-
aware measure, is introduced and its theoretical prop-
erties are studied. Finally, in Section 4, results of ex-
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tensive experiments and comparison with the tradi-
tional Sugeno λ-measure are reported.

2 Fuzzy integrals and measures in

classification rules aggregation

Several definitions of a fuzzy integral exists in the lit-
erature – among them, the Choquet integral and the
Sugeno integral are used most often. The role played in
usual integration by additive measures (such as prob-
ability or Lebesgue measure) is in fuzzy integration
played by fuzzy measures. In this section, basic con-
cepts pertaining to different kinds of fuzzy measures
will be recalled, as well as the definitions of Choquet
and Sugeno integrals. Due to the intended context of
aggregation of classification rules, we restrict attention
to [0, 1]-valued functions on finite sets.

Definition 1. A fuzzy measure µ on a finite set U =
{u1, . . . , ur} is a function on the power set of U ,

µ : P(U) → [0, 1] (1)

fulfilling:

1. the boundary conditions

µ(∅) = 0, µ(U) = 1 (2)

2. the monotonicity

A ⊆ B ⇒ µ(A) ≤ µ(B) (3)

The values µ(u1), . . . , µ(ur) are called fuzzy densities.

Definition 2. The Choquet integral of a function f :
U → [0, 1], f(ui) = fi, i = 1, . . . , r, with respect to
a fuzzy measure µ is defined as:

(Ch)

∫

fdµ =

r
∑

i=1

(f<i> − f<i−1>)µ(A<i>), (4)

where < · > indicates that the indices have been per-
muted, such that 0 = f<0> ≤ f<1> ≤ · · · ≤ f<r> ≤ 1.
A<i> = {u<i>, . . . , u<r>} denotes the set of of ele-
ments of U corresponding to the (r − i + 1) highest
values of f .

Definition 3. The Sugeno integral of a function f :
U → [0, 1], f(ui) = fi, i = 1, . . . , r, with respect to
a fuzzy measure µ is defined as:

(Su)

∫

fdµ =
r

max
i=1

min(f<i>, µ(A<i>)). (5)

To define a general fuzzy measure in the discrete
case, we need to define all its 2r values, which is usually
very complicated. To overcome this weakness, mea-
sures which do not need all the 2r values have been
developed [7, 17]:

Definition 4. A fuzzy measure µ on U is called sym-
metric if

|A| = |B| ⇒ µ(A) = µ(B) (6)

for A,B ⊆ U , (7)

where | · | denotes the cardinality of a set.

Consequently, the value of a symmetric measure de-
pends only on the cardinality of its argument. If a sym-
metric measure is used in Choquet integral, the inte-
gral reduces to the ordered weighted average opera-
tor [17]. However, symmetric measures assume that
all elements of U have the same importance, thus they
do not take into account the diversity of elements.

Definition 5. Let ⊥ be a t-conorm. A fuzzy measure
µ is called ⊥-decomposable if

µ(A ∪B) = µ(A) ⊥ µ(B)

for disjoint A,B ⊆ U (8)

Hence, ⊥-decomposable measures need only the r fuzzy
densities, whereas all the other values are computed
using the formula (8). Particular cases of this kind of
fuzzy measures are additive measures, including prob-
abilistic measures (⊥ being the bounded sum), and the
Sugeno λ-measure.

Definition 6. Sugeno λ-measure [7, 17] on a finite
set U = {u1, . . . , ur} is defined

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B), (9)

for disjoint A,B ∈ U , and some fixed λ > −1. The
value of λ is:

a) computed as the unique non-zero root greater
than −1 of the equation

λ + 1 =
∏

i=1,...,r

(1 + λµ({ui})) (10)

if the densities do not sum up to 1;
b) λ = 0 else.

If the densities sum up to 1, the fuzzy measure is addi-
tive. Sugeno λ measure is a ⊥-decomposable measure
for the t-norm

x ⊥ y = min(1, x + y + λxy). (11)

A serious weakness of any ⊥-decomposable mea-
sure is that the fuzzy measure of a set of two (or
more) classification rules is fully determined by the
formula (8) for a fixed ⊥. Therefore, if interactions
between elements are to be taken into account, then
they have to be incorporated directly into the fuzzy
measure. That fact motivated our attempt to elabo-
rate the concept of similarity-aware fuzzy measures.
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3 Similarity-aware measures and

their properties

Before introducing similarity-aware measures, let us
first recall the notion of similarity [8].

Definition 7. Let ∧ be a t-norm and let ∼: U ×U →
[0, 1] be a fuzzy relation. ∼ is called a similarity on U
with respect to ∧ if the following holds for a, b, c ∈ U :

∼ (a, a) = 1 (reflexivity), (12)

∼ (a, b) =∼ (b, a) (symmetry), (13)

∼ (a, b)∧ ∼ (b, c) ≤∼ (a, c) (transitivity w.r.t. ∧ ).
(14)

In the context of aggregation of crisp classification
rules, we will work with an empirically defined rela-
tion, which, for rules φk, φl, is defined as the propor-
tion of equal consequents on some validation set of
patterns V ⊂ O,

∼ (φk, φl) =

∑

x∈V

I(Cφk
(x) = Cφl

(x))

|V|
. (15)

It is easily seen that the relation (15) is a similarity
with respect to the  Lukasiewicz t-norm

∧L(a, b) = max(a + b− 1, 0), (16)

but it is not a similarity with respect to the standard
(minimum, Gödel) t-norm

∧S(a, b) = min(a, b), (17)

or the product t-norm

∧P (a, b) = ab. (18)

Fuzzy integral represents a convenient tool to work
with the diversity of classification rules: As we are
computing the fuzzy measure values µ(A<i>), we are
considering a single rule φ<i> at each step i, and there-
fore we can influence the increase of the fuzzy measure
based on the similarity of φ<i> to the set of rules
already involved in the integration, i.e., A<i+1> =
{φ<i+1>, . . . , φ<r>}. If φ<i> is similar to the classifiers
in A<i+1>, the increase in the fuzzy measure should
be small (since the importance of the set A<i> should
be similar to the importance of the set A<i+1>), and
if φ<i> is not similar to the classifiers in A<i+1>, the
increase of the fuzzy measure should be large. These
ideas motivated the following definition:

Definition 8. Let U = {u1, . . . , ur} be a set, let ∼ be
a similarity w.r.t. a t-norm ∧, and let S be a an r× r

matrix such that:

S = (si,j)
r
i,j=1 with si,j =∼ (ui, uj). (19)

Let further κi ∈ [0, 1], i = 1, . . . , r denote some kind
of weight (confidence, importance) of ui, and let [·]
denote index ordering according to κ, such that 0 ≤
κ[1] ≤ · · · ≤ κ[r] ≤ 1. Finally, let

µ̃(S) : P(U) → [0,∞) (20)

be a mapping such that for X ⊆ U ,

µ̃(S)(X) =

r
∑

i=1

I(u[i] ∈ X)κ[i](1 −
r

max
j=i+1

s[i],[j]), (21)

where we define maxr
j=r+1 s[r],[j] = 0, and I denotes

the indicator of thruth value, i.e.,

I(true) = 1, I(false) = 0. (22)

Then the mapping

µ(S) : P(U) → [0, 1], defined (23)

µ(S)(X) =
µ̃(S)(X)

µ̃(S)(U)
, (24)

is called a similarity-aware measure based on S.

Proposition 1. µ(S) is a fuzzy measure on U .

Proof. The boundary conditions follow directly from
the definition of µ(S). For the monotonicity, let A ⊆ B;
then

µ̃(S)(A) =

r
∑

i=1

I(u[i] ∈ A)κ[i](1 −
r

max
j=i+1

s[i],[j]) ≤

≤
r

∑

i=1

I(u[i] ∈ B)κ[i](1 −
r

max
j=i+1

s[i],[j]) =

= µ̃(S)(B), (25)

due to I(u[i] ∈ A) = 1 ⇒ I(u[i] ∈ B) = 1.

Proposition 2. For any of the 2r subsets X ⊂ U ,
the value µ(X) can be expressed simply as the sum of
values of µ on singletons

µ(S)(X) =
∑

ui∈X

µ(S)(ui). (26)

Proof. According to (21) and (23), the value of µ on
the singletosn ui, i = 1, . . . , r is

µ(S)(ui) =
1

µ̃(S)(U)
κ[i](1 −

r
max
j=i+1

s[i],[j]). (27)

Then (26) follows directly from (21).

The following propositions show that if for some
i, the i-th classification rule is totally similar to some
other rule in A<i+1>, then µ(S) does not increase, and
if it is totally unsimilar to all classifiers in A<i+1>, the
increase in µ(S) is maximal.
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Proposition 3. Let f : U → [0, 1], and let the ma-
trix S in (19) fulfills

si,j = 1 for i 6= j. (28)

Then:

1. (∀X ⊆ U) u[r] ∈ X ⇒ µ(S) = 1,

2. (∀X ⊆ U) u[r] 6∈ X ⇒ µ(S) = 0,

3. (Ch)
∫

fdµ(S) = (Su)
∫

fdµ(S) = f[r].

Proof. 1. and 2. follow directly from the fact that

r
max
j=i+1

s[i],[j] =

{

0 for i = r,

1 for i < r.
(29)

and therefore

µ̃(S) = I(u[r] ∈ X)κ[r]. (30)

We will prove 3. only for the Choquet integral, the
case of Sugeno integral is analogous. Let j ∈ {1, . . . , r}
such that < j >= [r]; then (∀i > j) u[r] 6∈ A<i>, and

therefore µ(S)(A<i>) = 0; (∀i ≤ j) u[r] ∈ A<i>, and

therefore µ(S) = 1. Using this in the definition of the
Choquet integral, we obtain

(Ch)

∫

fdµ(S) =

=

r
∑

i=1

(f<i> − f<i−1>)µ(S)(A<i>) =

=

j
∑

i=1

(f<i> − f<i−1>) =

= f<j> = f[r]. (31)

Proposition 4. Let f : U → [0, 1], and let the ma-
trix S in (19) fulfills si,j = 0 for i 6= j. Then:

1. (∀X ⊆ U) µ(S) =

∑
i:u[i]∈X

κ[i]
∑

r
i=1 κi

,

2. (Ch)
∫

fdµ(S)µ(S) =
∑r

i=1 κifi∑
r
i=1 κi

,

3. (Su)
∫

fdµ(S) = maxr
k=1(f<k>,

∑
r
i=k κ<i>∑

r
i=1 κi

).

Proof. 1. follows directly from the definition of simi-
larity-aware measure, and 2. and 3. are applications
of 1. to the definition of the Choquet/Sugeno integral.

4 Experimental testing

We have experimentally compared the performance of
the proposed measure with the Sugeno λ-measure for
the aggregation of classification rules by fuzzy inte-
grals (Choquet, Sugeno). The ensembles have been
created as random forests from rules obtained with

classification trees [3], by bagging [2] from rules ob-
tained with k-NN classifiers, and by the multiple fea-
ture subset method [1] from rules obtained with quad-
ratic discriminant analysis.

In this section, we present results of comparing the
measures using 10-fold crossvalidation on 5 artificial
and 11 real-world datasets (the properties of the da-
tasets are shown in Table 1). For the random forests,
the number of trees was set to r = 20, the number
of features to explore in each node varied between 2
and 5 (depending on the dimensionality of the par-
ticular dataset), the maximal size of a leaf was set
to 10 (see [3] for description of the parameters). For
the QDA and k-NN based ensembles, their size was
set also to r = 20, and we used k = 5 as the num-
ber of neighbors for k-NN classifiers. As the weights
κ1, . . . , κr of the classification rules, we used

κi(φ) =

∑

x∈V(Aφ)

I(C′
φ(x) = Cφ(x))

|V(Aφ)|
, (32)

where V(Aφ) ⊆ V is the set of validation patterns
belonging to some kind of neighborhood of Aφ. For
example, if Aφ concerns values of vectors in an Eu-
clidean space, then V(Aφ) is the set of k nearest neigh-
bors under Euclidean metric of the set where the an-
tecedent Aφ is valid. The number of neighbors was set
to 5, 10, or 20, depending on the size of the dataset.

Table 2 shows the results of the performed compar-
isons. We also measured the statistical significance of
the pairwse improvements (using the analysis of vari-
ance on the 5% confidence level by the Tukey-Kramer
method).

We interpret the results presented in Table 2 as
a confirmation of the usefulness of similarity-aware
fuzzy measures proposed in Definition 8.

5 Conclusion

In this paper, we have studied the application of the
fuzzy integral as an aggregation operator for classifica-
tion rules in the context of their similarities. We have
shown that traditionally used symmetric, or additive
and other ⊥-decomposable measures are not a good
choice for combining classification rules by fuzzy inte-
gral and we have defined similarity-aware measures,
which take into account both the confidence / im-
portance and the similarities of the aggregated rules.
We have shown some basic theoretical properties and
special cases of the measures, including the fact that
apart the singletons, the 2r values of µ are obtained us-
ing only summation. In addition, we have experimen-
tally compared the performance of the measures to the
Sugeno λ-measure using Choquet and Sugeno fuzzy in-
tegrals on 16 benchmark datasets for 3 different ways
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dataset nr. of patterns nr. of classes dimension

Artificial

clouds [4] 5000 2 2

concentric [4] 2500 2 2

gauss 3D [4] 5000 2 3

ringnorm [18] 3000 2 20

waveform [18] 5000 3 21

Real-world

glass [18] 214 7 9

letters [18] 20000 26 16

pendigits [18] 10992 10 16

phoneme [4] 5427 2 5

pima [18] 768 2 8

poker [18] 4828 3 10

satimage [4] 6435 6 4

transfusion [18] 748 2 4

vowel [18] 990 11 10

wine [18] 178 3 13

yeast [18] 1484 4 8

Table 1. Datasets used in the experiments.

of obtaining ensembles of classification rules. The ex-
perimental comparison clearly supports our theoreti-
cal conjecture that similarity-aware measures are more
suitable for the aggregation of classification rules than
traditionally used additive and ⊥-decomposable fuzzy
measures.
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dataset Choquet integral Sugeno integral

λ-measure µS λ-measure µS

random forests

clouds 12.40 ± 1.81 12.25± 1.85 12.80 ± 1.64 12.33 ± 1.47

concentric 4.32± 1.25 2.82± 1.30 3.24 ± 1.37 2.98± 1.50

gauss-3D 23.92 ± 2.97 22.76± 1.59 24.60 ± 1.36 23.28 ± 1.58

glass 21.3± 10.3 14.1± 3.5 24.1 ± 7.0 17.5 ± 9.4

letters 7.1± 0.6 7.3± 0.2 8.0 ± 0.6 7.9± 0.8

pendigits 3.1± 0.5 2.7± 0.5 3.2 ± 0.4 3.8± 0.7

phoneme 12.4± 1.2 13.2 ± 1.9 12.7 ± 0.8 13.3 ± 1.6

pima 26.0 ± 4.8 23.8± 2.0 25.0 ± 2.2 23.9 ± 3.6

poker 46.5 ± 3.0 44.4± 1.3 46.5 ± 1.5 45.1 ± 1.9

ringnorm 13.27 ± 2.11 7.69 ± 2.06 12.74 ± 2.08 7.46 ± 1.79

satimage 14.7 ± 1.4 14.3± 1.3 14.9 ± 0.9 14.8 ± 1.4

transfusion 4.8± 1.1 2.3± 0.7 4.9 ± 1.0 2.6± 0.7

vowel 14.5 ± 3.0 13.1± 3.5 17.0 ± 5.3 13.4 ± 3.8

waveform 18.56 ± 2.42 17.93± 1.89 18.24 ± 3.04 18.23 ± 1.58

wine 5.6± 6.0 3.3± 5.5 3.4 ± 4.0 6.6± 5.8

yeast 38.2 ± 4.1 34.8± 2.6 38.5 ± 3.7 36.3 ± 3.4

k-NN classifiers

clouds 11.93 ± 2.29 12.12 ± 1.57 12.64 ± 2.48 12.96 ± 2.26

concentric 1.39± 0.77 1.72 ± 0.57 1.30± 0.80 1.56± 0.64

gauss-3D 26.71 ± 2.55 26.00± 2.88 27.68 ± 3.66 26.28 ± 2.74

glass 22.4 ± 9.8 20.7 ± 10.3 21.7 ± 11.1 19.3± 6.5

letters 17.7 ± 2.7 17.6± 2.9 19.3 ± 3.1 19.1 ± 2.7

pendigits 1.3± 0.8 1.4± 0.8 1.3 ± 0.5 1.3± 0.7

phoneme 14.6 ± 0.9 14.2± 2.4 14.4 ± 1.8 14.5 ± 1.7

pima 29.1± 5.1 30.2 ± 7.2 29.5 ± 4.4 30.3 ± 6.6

poker 45.3 ± 2.4 43.5± 2.3 47.2 ± 2.7 43.9 ± 1.4

ringnorm 36.20 ± 4.41 34.28± 2.59 33.56 ± 3.34 33.48 ± 2.94

satimage 16.5 ± 2.0 15.5± 1.7 16.8 ± 2.4 16.2 ± 2.3

transfusion 24.0 ± 4.0 23.4± 4.7 25.2 ± 3.5 24.0 ± 4.7

vowel 4.8± 2.2 4.0± 1.9 5.6 ± 2.1 7.0± 1.8

waveform 19.40 ± 2.10 18.28± 2.85 19.57 ± 2.20 19.04 ± 2.99

wine 30.0± 10.3 28.6± 14.8 31.2 ± 6.7 33.4± 16.0

yeast 41.8 ± 4.7 40.5± 2.6 42.6 ± 3.7 40.7 ± 3.6
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QDA with multiple subsets

clouds 26.00 ± 2.70 23.14 ± 2.49 25.74 ± 1.92 22.66 ± 1.10

concentric 4.36 ± 1.96 3.68± 1.68 5.72± 1.84 3.40± 0.98

gauss-3D 23.87 ± 1.86 22.06 ± 2.10 23.96 ± 2.03 22.36 ± 2.12

glass 42.3 ± 10.9 38.5± 12.0 43.2± 14.9 32.4± 12.5

letters 17.1 ± 0.7 14.7 ± 0.7 17.2 ± 0.7 14.7 ± 0.8

pendigits 2.8 ± 0.5 2.2± 0.2 2.7± 0.5 2.7± 0.6

phoneme 25.4 ± 2.4 20.8 ± 1.4 24.7 ± 1.0 20.2 ± 2.2

pima 27.9 ± 4.7 25.5± 4.2 28.3 ± 3.3 26.1± 5.1

poker 66.1 ± 2.1 55.1 ± 2.3 66.3 ± 3.9 55.1 ± 2.1

ringnorm 1.94 ± 0.96 2.53± 1.01 1.68± 0.60 3.66± 1.31

satimage 17.0 ± 1.3 15.7± 1.1 17.2 ± 2.0 16.2± 1.3

transfusion 29.6 ± 8.6 22.3± 4.5 29.2 ± 7.1 23.4± 3.4

vowel 16.7 ± 5.4 14.0± 3.8 18.1 ± 4.1 15.6± 3.3

waveform 15.73 ± 2.07 14.52 ± 1.59 15.33 ± 1.72 14.54 ± 1.80

wine 1.2 ± 2.5 2.8± 3.9 0.6± 1.9 3.3± 2.9

yeast 49.0 ± 4.3 39.8 ± 4.3 49.5 ± 4.9 39.1 ± 3.8

Table 2. Mean error rates ± standard deviation of the error rate [%], based on 10-fold crossvalidation. The best result
for each dataset is displayed in boldface, statistically significant improvements (measured by the analysis of variance
using the Tukey-Kramer method at the 5% level) are displayed in italics


