
Evolutionary optimization with active learning of surrogate models
and fixed evaluation batch size?

Viktor Charypar1 and Martin Holeňa2

1 Czech Technical University
Faculty of Nuclear Sciences and Physical Engineering

Břehová 7, 115 19 Praha 1, Czech Republic
charyvik@fjfi.cvut.cz

2 Institute of Computer Science
Academy of Sciences of the Czech Republic

Pod vodárenskou věž́ı 2, 182 07 Praha, Czech Republic
martin@cs.cas.cz

Abstract. Evolutionary optimization is often applied to
problems, where simulations or experiments used as the fit-
ness function are expensive to run. In such cases, surro-
gate models are used to reduce the number of fitness eval-
uations. Some of the problems also require a fixed size
batch of solutions to be evaluated at a time. Traditional
methods of selecting individuals for true evaluation to im-
prove the surrogate model either require individual points
to be evaluated, or couple the batch size with the EA gener-
ation size. We propose a queue based method for individual
selection based on active learning of a kriging model. Indi-
viduals are selected using the confidence intervals predicted
by the model, added to a queue and evaluated once the
queue length reaches the batch size. The method was tested
on several standard benchmark problems. Results show that
the proposed algorithm is able to achieve a solution using
significantly less evaluations of the true fitness function.
The effect of the batch size as well as other parameters is
discussed.

1 Introduction

Evolutionary optimization algorithms are a popular
class of optimization techniques suitable for various
optimization problems. One of their main advantages
is the ability to find optima of black-box functions –
functions that are not explicitly defined and only their
input/output behavior is known from previous evalu-
ations of a finite number of points in the input space.
This is typical for applications in engineering, chem-
istry or biology, where the evaluation is performed in
a form of computer simulation or physical experiment.

The main disadvantage for such applications is the
very high number of evaluations of the objective func-
tion (called fitness function in the evolutionary op-
timization context) needed for an evolutionary algo-
rithm (EA) to reach the optimum. Even if the simu-

? This work was supported by the Grant Agency of
the Czech Technical University in Prague, grant No.
SGS12/196/OHK3/3T/14 as well as the Czech Science
Foundation grant 201/08/0802.

lation used as the objective function takes minutes to
finish, the traditional approach becomes impractical.
When the objective function is evaluated using a phys-
ical experiment, in the evolutionary optimization of
catalytic materials [1] for example, an evaluation for
one generation of the algorithm takes between several
days and several weeks and costs thousands of euros.

The typical solution to this problem is perform-
ing only a part of all evaluations using the true fit-
ness function and using a response-surface model as
its replacement for the rest. This approach is called
surrogate modeling. When using a surrogate model,
only a small portion of all the points that need to be
evaluated is evaluated using the true objective func-
tion (simulation or experiment) and for the rest, the
model prediction is assigned as the fitness value. The
model is built using the information from the true fit-
ness evaluations.

Since the fitness function is assumed to be highly
non-linear the modeling methods used are non-linear
as well. Some of the commonly used methods include
artificial neural networks, radial basis functions, re-
gression trees, support vector machines or Gaussian
processes [3].

Furthermore, some experiments require a fixed
number of samples to be processed at one time. This
presents its own set of challenges for adaptive sampling
and is the main concern of this paper. We present an
evolutionary optimization method assisted by a vari-
ant of a Gaussian-process-based interpolating model
called kriging. In order to best use the evaluation bud-
get, our approach uses active learning methods in se-
lecting individuals to evaluate using the true fitness
function. A key feature of the approach is support
for online and offline batch evaluation with arbitrary
batch size independent of the generation size of
the EA.

The rest of the paper is organized as follows: in the
following section we introduce the kriging surrogate
model and its properties, in section 2 the methods of

34 Viktor Charypar, Martin Holeňa

coupling a model to the evolutionary optimization are
discussed, section 4 provides details of the proposed
method and finally, the results of testing the method
are presented and discussed in section 5.

2 Model-assisted evolutionary
optimization

Since the surrogate model used as a replacement for
the fitness function in the EA is built using the re-
sults of the true fitness function evaluations, there are
two competing objectives. First, we need to get the
most information about the underlying relations in the
data, in order to build a precise model of the fitness
function. If the model does not capture the features of
the fitness function correctly, the optimization can get
stuck in a fake optimum or generally fail to converge to
a global one. Second, we have a limited budget for the
true fitness function evaluations. Using many points
from the input space to build a perfect model can re-
quire more true fitness evaluations than not employing
a model at all.

In the general use of surrogate modeling, such as
design space exploration, the process of select-
ing points from the input space to evaluate and build
the model upon is called sampling [3]. Traditionally,
the points to sample are selected upfront. Upfront
sampling schemes are based on the theory of design
of experiments (DoE), e.g. a Latin hypercube design.
When we don’t know anything about the function we
are trying to model, it is better to use a small set of
points as a base for an initial model, which is then it-
eratively improved using new samples, selected based
on the information from previous function evaluations
and the model itself. This approach is called adaptive
sampling [3].

Using the surrogate model in an evolutionary op-
timization algorithm, the adaptive sampling decisions
change from selecting which points of the input space
to evaluate in order to improve the model to whether
to evaluate a given point (selected by the EA) with
the true fitness function or not. There are two gen-
eral approaches to this choice: the generation-based
approach and the individual-based approach. We will
discuss both, with emphasis on the latter, a variant of
which is used in the method we propose in section 4.

2.1 Generation-based approach

In the generation-based approach the decision whether
to evaluate an individual point with the true fitness
function is made for the whole generation of the evo-
lutionary algorithm. The optimization takes the fol-
lowing steps.

1. An initial Ni generations of the EA is performed,
yielding sets G1, . . . ,GNi

of individuals (x, ft(x)),
ft being the true fitness function.

2. The model M is trained on the individuals
(x, ft(x)) ∈

⋃Ni

i=1 Gi.
3. The fitness function ft is replaced by a model pre-

diction fM .
4. T generations are performed evaluating fM as the

fitness function.
5. One generation is performed using ft yielding

a set Gj of individuals. (initially j = Ni + 1)
6. The model is retrained on the individuals

(x, ft(x)) ∈
⋃j

i=1 Gi
7. Steps 4–6 are repeated until the optimum is

reached.

The amount of true fitness evaluations in this ap-
proach is dependent on the population size of the EA
and the frequency of control generations T , which can
be fixed or adaptively changed during the course of
the optimization [6]. For problems requiring batched
evaluation this approach has the advantage of evalu-
ating the whole generation, the size of which can be
set to the size of the evaluation batch. The main dis-
advantage of the generation-based strategy is that not
all individuals in the control generation are necessarily
beneficial to the model quality and the expensive true
fitness evaluations are wasted.

2.2 Individual-based approach

As opposed to the generation-based approach, in the
individual-based strategy, the decision whether to
evaluate a given point using the true fitness function
or the surrogate model is made for each individual
separately.

In model-based optimization in general, there are
several possible approaches to individual-based sam-
pling. The most used approach in the evolutionary
optimization is pre-selection. In each generation of the
EA, number of points, which is a multiple of the popu-
lation size, is generated and evaluated using the model
prediction. The best of these individuals form the next
generation of the algorithm. The optimization is per-
formed as follows.

1. An initial set of points S is chosen and evaluated
using the true fitness function ft.

2. Model M is trained using the pairs (x, ft(x)) ∈ S
3. A generation of the EA is run with the fitness

function replaced by the model prediction fM and
a population Oi of size qp is generated and eval-
uated with fM , where p is the desired population
size for the EA and q is the pre-screening ratio.
Initially, i = 1.

Evolutionary optimization 35

4. A subset P ⊂ O is selected according to a selection
criterion.

5. Individuals from P are evaluated using the true
fitness function ft.

6. The model M is retrained using S ∪ P, the set S
is replaced with S ∪ P, and the EA resumes from
step 3.

Another possibility, called the best strategy [5], is
to replace S with S ∪ O instead of just P in step 6
after re-evaluating the set O \ P with fM (after the
model M has been re-trained). This also means using
the population size qp in the EA.

The key piece of this approach is the selection crite-
rion (or criteria) used to determine which individuals
from set O should be used in the following generation
of the algorithm. There are a number of possibilities,
let us discuss the most common.

An obvious choice is selecting the best individuals
based on the fitness value. This results in the region of
the optimum being sampled thoroughly, which helps
finding the true optimum. On the other hand, the re-
gions far from the current optimum are neglected and
a possible better optimum can be missed. To sample
the areas of the fitness landscape that were not ex-
plored yet, space-filling criteria are used, either alone
or in combination with the best fitness selection or
other criteria.

All the previous criteria have the fact that they
are concerned with the optimization itself in common.
A different approach is to use the information about
the model, most importantly its accuracy, to decide
which points of the input space to evaluate with the
true fitness function in order to most improve it. This
approach is sometimes called active learning.

2.3 Active learning

Active learning is an approach that tries to maxi-
mize the amount of insight about the modeled function
gained from its evaluation while minimizing the num-
ber of evaluations necessary. The methods are used
in the general field of surrogate modeling as an ef-
ficient adaptive sampling strategy. The terms adap-
tive sampling and active learning are often used inter-
changeably. We will use the term active learning for
the methods based on the characteristics of the sur-
rogate model itself, such as accuracy, with the goal of
minimizing the model prediction error either globally
or, more importantly, in the area of the input space
the EA is exploring.

The active learning methods are most often based
on the local model prediction error, such as cross-
validation error. Although some methods are inde-
pendent of the model, for example the LOLA-Voronoi

method [2], most of them depend on the model used.
The kriging model used in our proposed method offers
a good estimate of the local model accuracy by giv-
ing an error estimate of its prediction. It is possible
to use the estimate itself as a measure of the model’s
confidence in the prediction, or base a more complex
measure on the variance estimate. The measures that
were tested for use in our method will be described in
detail in section 4.1.

3 Kriging meta-models

The kriging method is an interpolation method origi-
nating in geostatistics [9], based on modeling the func-
tion as a realization of a stochastic process [11].

In the ordinary kriging, which we use, the function
is modeled as a realization of a stochastic process

Y (x) = µ0 + Z(x) (1)

where Z(x) is a stochastic process with mean 0 and
covariance function σ2ψ given by

cov{Y (x + h), Y (x)} = σ2ψ(h), (2)

where σ2 is the process variance for all x. The corre-
lation function ψ(h) is then assumed to have the form

ψ(h) = exp

[
−

d∑
l=1

θl|hl|pl

]
, (3)

where θl, l = 1, . . . , d, where d is the number of dimen-
sions, are the correlation parameters. The correlation
function depends on the difference of the two points
and has the intuitive property of being equal to 1 if
h = 0 and tending to 0 when h →∞. The θl param-
eters determine how fast the correlation tends to zero
in each coordinate direction and the pl determines the
smoothness of the function.

The ordinary kriging predictor based on n sample
points {x1, . . . ,xn} with values y = (y1, . . . , yn)′ is
then given by

ŷ(x) = µ̂0 + ψ(x)′Ψ−1(y − µ̂01), (4)

where ψ(x)′ = (ψ(x − x1), . . . , ψ(x − xn)), Ψ is an
n× n matrix with elements ψ(xi − xj), and

µ̂0 =
1′Ψ−1y

1′Ψ−11
. (5)

An important feature of the kriging model is that
apart from the prediction value it can estimate the
prediction error as well. The kriging predictor error in
point x is given by

s2(x) = σ̂2

[
1− ψ′Ψ−1ψ +

(1− ψ′Ψ−1ψ)2

1′Ψ−11

]
(6)

36 Viktor Charypar, Martin Holeňa

where the kriging variance is estimated as

σ̂2 =
(y − µ̂01)Ψ−1(y − µ̂01)

n
. (7)

The parameters θl and pl can be estimated by maxi-
mizing the likelihood function of the observed data.

For the derivation of the equations 4 - 7 as well as
the MLE estimation of the parameters the reader may
consult a standard stochastic process based derivation
by Sacks et al. in [11] or a different approach given by
Jones in [7].

4 Method description

In this section we will describe the proposed method
for kriging-model-assisted evolutionary optimization
with batch fitness evaluation. Our main goal was to
decouple the true fitness function sampling from the
EA iterations based on an assumption that requiring
a specific number of true fitness evaluations in every
generations of the EA forces unnecessary sampling.

In the generation-based approach, some of the
points may be unnecessary to evaluate, as they will
not bring any new information to the surrogate model.
The individual-based approach is better suited for the
task, as it chooses those points from each generation,
which are estimated to be the most valuable for the
model. There is still the problem of performing a given
number of evaluations in every generation, although
there might not be enough valuable points to select
from.

The method we propose achieves the desired de-
coupling by introducing an evaluation queue. The evo-
lutionary algorithm uses the model prediction at all
times and when a point, in which the model’s con-
fidence in its prediction is low, is encountered, it is
added to the evaluation queue. Once there are enough
points in the queue, all the points in it are evaluated
and the model is re-trained using the results. The op-
timization takes the following course.

1. Initial set S of b samples is selected using a chosen
initial design strategy and evaluated using the true
fitness function ft.

2. An initial kriging model M is trained using pairs
(x, ft(x)) ∈ S.

3. The evolutionary algorithm is started, with the
model prediction fM as the fitness function.

4. For every prediction fM (x) = ŷM (x), an estimated
improvement measure c(s2M (x)) is computed from
the error estimate s2M (x). If c(s2M (x)) > t, an im-
provement threshold, the point is added to the
evaluation queue Q.

5. If the queue size |Q| ≥ b, the batch size, all points
x ∈ Q are evaluated, the set S is replaced by S ∪
{(x, ft(x)} and the EA is resumed.

6. Steps 4 and 5 are repeated until the goal is
reached, or a stall condition is fulfilled.

The b and t parameters, as well as the func-
tion c(s2), are chosen before running the optimization.
Note that the evaluation in step 5 can be performed
either immediately, i.e. online, or offline. In offline eval-
uation, after filling the evaluation queue, the EA is
stopped when the current iteration is finished and the
control is returned to the user. After obtaining the fit-
ness values for the samples in the sample queue (e.g.
by performing an experiment), the user can manually
add the samples and resume the EA from the last gen-
eration.

While the choice of the parameters will be dis-
cussed in section 5, let us introduce three different
measures of estimated improvement in the model pre-
diction c(s2(x)) which we tested – the standard devia-
tion, the probability of improvement and the expected
improvement.

4.1 Measures of estimated improvement

To estimate the improvement, which evaluation of
a given point will bring, we can use several measures.
The three measures introduced here are all based on
the prediction error estimate of the kriging model. The
goal of these measures is to prefer the points that help
improve the model in regions explored by the EA.

Each of the measure’s results for a given point are
compared with a threshold and when the estimated
improvement is above the threshold, the point is eval-
uated using the true fitness function.

Standard deviation (STD) is the simplest measure we
tested. It is computed directly from the error as its
square root

STD(x) =

√
ˆs2M (x). (8)

The STD captures only the model’s estimate of the
error of its own prediction (based on the distance from
the known samples). As such, it does not take into
account the value of the prediction itself and can be
considered a measure of the model accuracy.

Probability of improvement (POI) [7] uses the fact,
that the kriging prediction is a Gaussian process and
the prediction in a single point is therefore a normally
distributed random variable Y (x) with a mean and
variance given by the kriging predictor. If we choose a
target T (based on the goal of the optimization), we
can estimate the probability that a given point will
have a value y(x) ≤ T as a probability that Y (x) ≤ T .
The probability of improvement is therefore defined as

POI(x) = Φ

(
T − ŷM (x)

s2M (x)

)
, (9)

Evolutionary optimization 37

where Φ is the cumulative distribution function of
the standard normal distribution. As opposed to the
STD, the POI takes into account the prediction mean
(value) as well as its variance (error estimate). The
area of the current optimum is therefore preferred over
the rest of the input space. When the area of the
current optimum is sampled enough, the variance be-

comes very small and the term T−ŷM (x)
s2
M

(x)
becomes ex-

tremely negative, encouraging the sampling of less ex-
plored areas.

Expected improvement (EI) [7, 8] is based on estimat-
ing, as the name suggests, the improvement we expect
to achieve over the current minimum fmin, if a given
point is evaluated. As before, we assume the model
prediction in point x to be a normally distributed ran-
dom variable Y (x) with a mean and variance given by
the kriging predictor. We achieve an improvement I
over fmin if Y (x) = fmin − I. As shown in [7] the ex-
pected value of I can be obtained using the likelihood
of achieving the improvement

1√
2πs2M (x)

∫ I=∞

I=0

exp

[
− (fmin − I − ŷM (x)2

2s2M (x)

]
(10)

Expected improvement is the expected value of the
improvement found by integrating over this density.
The resulting measure EI is defined as

EI(x) = E(I) = s2M (x)[uΦ(u) + φ(u)], φ(u)], (11)

where

u =
fmin − ŷM (x)

s2M (x)
(12)

and Φ and φ are the cumulative distribution function
and the probability distribution functions of the nor-
mal distribution respectively. The expected improve-
ment has an important advantage over the POI: it does
not require a preset target T , which can be detrimen-
tal to the POI’s successful sample selection when set
too high or too low.

All three measures have an important weakness of
being based on the model prediction. If the modeled
function is deceptive, the model can be very inaccu-
rate while estimating a low variance. A good initial
sampling of the fitness function is therefore very im-
portant. The success of the whole method is dependent
on the model’s ability to capture the response surface
correctly and thus on the function itself.

5 Results and discussion

The proposed method was tested using simulations on
three standard benchmark functions. We studied the
model evolution during the course of the optimization,

the effect of the parameters and also investigated the
optimal choice of batch size for problems where an
upfront choice is possible. In this section we discuss
the tests performed and their results.

For testing, we used the genetic algorithm imple-
mentation from the global optimization toolbox for the
Matlab environment and the implementation of an or-
dinary kriging model from the SUMO Toolbox [4]. The
parameters of the supporting methods, e.g. the genetic
algorithm itself, were kept on their default values pro-
vided by the implementation.

Because the EA itself is not deterministic, each test
was performed 20 times and the results we present are
statistical measures of this sample. As a performance
measure we use the number of true fitness evaluations
used to reach a set goal in all tests. The main reason to
use this measure is that in model-assisted optimization
the computational cost of everything except the true
fitness evaluation is minimal in comparison. We also
track the proportion of the 20 runs that reached the
goal before various limits (time, stall, etc.) took effect.

5.1 Benchmark functions

Since the evolutionary algorithms and optimization
heuristics in general are often used on black-box opti-
mization, where the properties of the objective func-
tion are unknown, it is not straightforward to asses
their quality on real world problems. It has therefore
become a standard practice to test optimization algo-
rithms and their modifications on specially designed
testing problems.

These benchmark functions are explicitly defined
and their properties and optima are known. They are
often designed to exploit typical weaknesses of opti-
mization algorithms in finding the global optimum.
We used three functions found in literature [10]. Al-
though we performed our tests in two dimensions we
give general multi-dimensional definitions of the func-
tions.

First of the functions used is the De Jong’s func-
tion. It is one of the simplest benchmarks, it is contin-
uous, convex and unimodal and is defined as

f(x) =

n∑
i=1

x2i (13)

The domain is restricted to a hypercube −10 ≤ xi ≤
10, i = 1, . . . , n. The function has one global optimum
f(x) = 0 in point x = 0. The De Jong’s function was
primarily used as a proof of concept test.

As a second benchmark, we used the Rosenbrock’s
function, also called Rosenbrock’s valley. The global
optimum is inside a long parabolic shaped valley,
which is easy to find. Finding the global optimum in

38 Viktor Charypar, Martin Holeňa

true fitness

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
initial model and samples

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
final model

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

generation

be
st

 tr
ue

 fi
tn

es
s

optimization progressFig. 1. The original fitness function, the initial model and the final model.

that valley however is difficult [10]. The function has
the following definition

f(x) =

n∑
i=1

[100(xi+1 + x2i)2 + (1− xi)2] (14)

The domain of the function is restricted to a hyper-
cube −2 ≤ xi ≤ 2, i = 1, . . . , n. It has one global
optimum f(x) = 0 in x = 1.

Finally, the third function used as a benchmark is
the Rastrigin’s function. It is based on the De Jong’s
function with addition of cosine modulation, which
produces a high number of regularly distributed local
minima and makes the function highly multimodal.
The function is defined as

f(x) = 10n+

n∑
i=1

[x2i − 10 cos(2πxi)] (15)

The domain is restricted to −5 ≤ xi ≤ −5, i =
1, . . . , n. The global optimum f(x) = 0 is in x = 1.

5.2 Model evolution

As the basic illustration of how the model evolves dur-
ing the course of the EA, let us consider an example
test run using the Rosenbrock’s function. For this ex-
periment we set the batch size of 15, used the STD
measure of estimated improvement with a threshold
of 0.001 and set the target fitness value of 0.001 as well.
The target was reached at the point (0.9909, 0.9824)
using 90 true fitness evaluations. A genetic algorithm
without a surrogate model needed approximately
3000 evaluations to reach the goal in several test runs.

The model evolution is shown in figure 1. The true
fitness function is shown on the left, the initial model
is in the middle and the final model on the right. The
points where the true fitness function was sampled are
denoted with circles an the optimum is marked with
a star.

function ev (1q) ev (med) ev (3q) goal reached

De Jong 60 60 120 0.01 1

Rosenbrock 60 125 310 0.1 1

Rastrigin 260 370 580 0.1 0.85

Table 1. GA performance on benchmark functions with-
out a model.

5.3 Measures of estimated improvement
comparison

In order to compare the measures of estimated im-
provement, we performed simulations on each bench-
mark using each improvement estimate measure with
different values of the threshold. The batch size was
set to 40 – generally found to be the ideal batch size
– for these experiments. For comparison, we also per-
formed tests with the standard genetic algorithm with-
out a model. Results of these simulations are shown in
the table 1.

The De Jong’s function proved to be simple to op-
timize and the threshold setting did not have almost
any effect. Only when using the standard deviation,
setting the threshold too low lead to an increase in the
number of evaluations, as too many points were eval-
uated, although the model prediction in those points
was accurate enough.

The same is true for the STD measure used on the
Rosenbrock’s function, where setting the threshold too
low leads to a big increase in variance of the results.
Interestingly, setting the threshold too high leads to
a decrease in the number of evaluations, but also in
the success rate of reaching the goal. The POI and EI
are more stable in terms of true fitness evaluations,
but have worse overall success rate. The results are
shown in figure 2

The Rastrigin’s function proved difficult to opti-
mize. This is probably due to the locality of the krig-
ing model and the high number of local minima of the
function. Overall the STD measure is the most suc-

Evolutionary optimization 39

0.0001 0.001 0.01 0.1 1 10
0

50

100

150

200

250

300

350

400

threshold

tru
e

ev
al

ua
tio

ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

go
al

 re
ac

he
d

(a) STD

0.001 0.01 0.1 0.2 0.3 0.5 0.8
0

50

100

150

200

250

300

350

400

threshold

tru
e

ev
al

ua
tio

ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

go
al

 re
ac

he
d

(b) POI

median value interquartile range goal reached

Fig. 2. STD measure on the Rosenbrock’s function - true
fitness evaluations and proportion of runs reaching goal.

cessful. POI and EI lead to bad sampling of the model
and failure to reach the optimum.

An interesting general result is that the more com-
plex measures of estimated improvement perform
worse than the simple standard deviation estimate.
This indicates that the goal of active learning selec-
tion criteria in the evolutionary optimization should
be the best possible sampling for overall model accu-
racy, as opposed to trying to improve the accuracy in
the best regions of the input space. Both the POI and
EI are design to select next best points to reach the
optimum. Since in our case, this is handled by the EA
itself, the measures bring an unnecessary noise to the
estimate of the model accuracy. The results also show
that the best measure selection is dependent on the
optimized function.

5.4 Batch size

In order to study the batch size effect on the opti-
mization, a number of experiments were performed
with different batch sizes. The only option to achieve

5 10 15 20 25 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

batch size

tru
e

ev
al

ua
tio

ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

go
al

 re
ac

he
d

(a) No model

5 10 15 20 25 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

batch size

tru
e

ev
al

ua
tio

ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

go
al

 re
ac

he
d

(b) STD

5 10 15 20 25 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

batch size

tru
e

ev
al

ua
tio

ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

go
al

 re
ac

he
d

(c) POI

median value interquartile range goal reached

Fig. 3. Batch size effect on Rosenbrock’s function opti-
mization - true fitness evaluations and proportion of runs
raching the goal.

a given batch size is to set the population size in a stan-
dard GA, in our method however, the settings are in-
dependent so a population size of 30, which proved
efficient, was used in all of the tests.

The results on the De Jong’s functions show that
apart from small batch sizes (up to 10), the opti-
mization is successful in all runs. Our method helps
stabilize the EA for small batch sizes and for batch
sizes above 15 the algorithm finds the optimum using

40 Viktor Charypar, Martin Holeňa

a single batch. For a standard GA this strong depen-
dence arises for batch sizes above 40 and the algorithm
reaches the goal in the second generation, evaluating
twice as many points.

For the Rosenbrock’s function we get the intuitive
result that setting the batch size too low leads to more
evaluations or a failure to reach the goal, while large
batch size do not improve the results and waste true
fitness evaluations. For this function the POI proved
to be the most efficient measure. The comparison is
shown in figure 3. Overall the method reduces the
number of true evaluations from hundreds to tens for
the Rosenbrock’s function, while slightly reducing the
success rate of the computation.

The Rastrigin’s function proved difficult to opti-
mize even without a surrogate model. With the model,
the STD achieved the best results reducing the number
of true fitness evaluations approximately three times
in the area of the highest success rate with batch size
of 70. The other two measures were ineffective. We at-
tribute the method’s difficulty optimizing the Rastri-
gin’s function to the fact that the kriging model is local
and thus it requires a large number of samples to cap-
ture the function’s complicated behavior in the whole
input space. When the initial sampling is misleading,
which is more likely for the Rastrigin’s function, both
the model prediction and estimated improvement are
wrong.

The results suggest that best batch size and best
estimated improvement measure are highly problem-
dependent. The proposed method is also very sensi-
tive to good initial sample selection, which is the most
usual reason for it to fail to find the optimum. The ex-
perimental results support the intuition that batches
too small are bad for the initial sampling of the model
and batches too large slow down the model improve-
ment by evaluating points that it would not be nec-
essary to evaluate with smaller batches. This suggests
using a larger initial sample and a small batch for the
rest of the optimization.

6 Conclusions

In this paper we presented a method for model-assisted
evolutionary optimization with a fixed batch size re-
quirement. To decouple the sampling from the EA iter-
ations and support an individual-based approach while
keeping a fixed evaluation batch size, the method uses
an evaluation queue. The candidates for true fitness
evaluations are selected by an active learning method
using a measure of estimated improvement of the
model quality based on the model prediction error es-
timate.

The results suggest using simple methods for im-
provement estimate in active learning, which only cap-

ture information about the model accuracy improve-
ment expected by sampling a given point. In the ex-
periments with the batch size we found that small
batch sizes perform better when the objective function
is simple, while causing bad initial sampling of more
complex functions, suggesting using a larger initial
sample. The future development of this work should
include experiments using different batch sizes for ini-
tial sampling and comparison of the method with other
ways of employing a surrogate model in the optimiza-
tion as well as other model-assisted optimization
methods.

The method brings promising results, reducing the
number of true fitness evaluations to a large degree
for some of the benchmark functions. On the other
hand, its success is highly dependent on the optimized
function and its initial sampling.

References

1. M. Baerns, M. Holeňa: Combinatorial development of
solid catalytic materials: design of high-throughput ex-
periments, data analysis, data mining. Catalytic Sci-
ence Series. Imperial College Press, 2009.

2. K. Crombecq, L. De Tommasi, D. Gorissen,
T. Dhaene: A novel sequential design strategy for global
surrogate modeling. In Winter Simulation Conference,
WSC ’09, Winter Simulation Conference, 2009, 731–
742.

3. D. Gorissen: Grid-enabled adaptive surrogate modeling
for computer aided engineering. PhD Thesis, Ghent
University, University of Antwerp, 2009.

4. D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene,
K. Crombecq: A surrogate modeling and adaptive sam-
pling toolbox for computer based design. The Journal
of Machine Learning Research 11, 2010, 2051–2055.

5. L. Gräning, Y. Jin, B. Sendhoff: Efficient evolutionary
optimization using individual-based evolution control
and neural networks: A comparative study. In ESANN,
2005, 273–278.

6. Y. Jin, M. Olhofer, B. Sendhoff: Managing approxi-
mate models in evolutionary aerodynamic design op-
timization. In Evolutionary Computation, 2001. Pro-
ceedings of the 2001 Congress on, vol. 1, IEEE, 2001,
592–599.

7. D.R. Jones. A taxonomy of global optimization meth-
ods based on response surfaces. Journal of Global Op-
timization, 21:345–383, 2001.

8. D. R. Jones, M. Schonlau, W.J. Welch: Efficient global
optimization of expensive black-box functions. Journal
of Global Optimization 13, 1998, 455–492.

9. G. Matheron: Principles of geostatistics. Economic
Geology 58(8), 1963, 1246–1266.

10. M. Molga, C. Smutnicki: Test functions for optimiza-
tion needs. Test Functions for Optimization Needs,
2005.

11. J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn: De-
sign and analysis of computer experiments. Statistical
Science 4(4), 1989, 409–423.

