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Věra Kůrková
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Abstract. Surrogate solutions of Fredholm integral equa-

tions by feedforward neural networks are investigated theo-

retically. Convergence of surrogate solutions computable by

networks with increasing numbers of computational units to

theoretically optimal solutions is proven and upper bounds

on rates of convergence are derived. The results hold for

a variety of computational units, they are illustrated by

examples of perceptrons and Gaussian radial units.

1 Introduction

Surrogate modeling is one of successful applications of
neural networks. Often it has been used for empirical
functions, i.e., functions for which no mathematical
formulas are known and thus their values can only be
gained experimentally. When such experimental eval-
uations are too expensive or time consuming, it can
be useful to perform them merely for some samples
of points of the domains of the empirical functions
and the obtained values use as training data for neu-
ral networks. The networks trained on such data can
play roles of surrogate models of these empirical func-
tions. For example, input-output functions of feedfor-
ward networks have been used in chemistry as surro-
gate models of empirical functions assigning to compo-
sitions of chemicals measures of quality of catalyzers
produced by reactions of these chemicals, in biology
as models of empirical functions classifying structures
of RNA, and in economy as models of functions as-
signing credit ratings to companies [7, 2]. However, it
should be emphasized that results obtained by surro-
gate modeling of empirical functions can only be used
as suggestions to be confirmed by additional exper-
iments as no other than empirical knowledge of the
functions is available. Moreover, no methodology for
choice of suitable network architectures, type of com-
putational units and their number has been developed.

In contrast to the case of empirical func-
tions, analytically described functions, which are sub-
jects of surrogate modeling due to their complicated
and time consuming numerical calculations, provide
a potential for theoretical analysis of quality of their
surrogate models. Available analytic expressions can
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be compared with various surrogate models. One can
investigate mathematical properties of these functions
as well as properties of their surrogate models aim-
ing to estimate speed of convergence of approxima-
tions computable by surrogate models with increasing
model complexity to functions described by the com-
plicated formulas. Mathematical theory of approxima-
tion of functions by neural networks offers some tools
for derivation of such estimates.

A large class of functions described by mathemati-
cal formulas, numerical calculations of which are diffi-
cult, is formed by solutions of Fredholm integral equa-
tions. These equations play an important role in many
problems in applied science and engineering. They
arise in image restoration, differential problems with
auxiliary boundary conditions, potential theory and
elasticity, etc. (see, e.g., [23, 22, 24]). Mathematical de-
scriptions of solutions of Fredholm equations following
from classical Fredholm theorem [27, p.499] involve
complicated expressions in terms of infinite Liouville-
Neumann series with coefficients in the forms of inte-
grals. Thus numerical calculations of these expressions
are time consuming.

Recently, several authors [13, 6] explored experi-
mentally possibilities of surrogate modeling of solu-
tions of Fredholm equations by perceptron and kernel
networks. Motivated by these experimental studies,
in [9] we initiated a theoretical analysis of approxi-
mation of solutions of Fredholm equtions by neural
networks. In [9, 12, 20], estimates of rates of approx-
imation were derived for surrogate modeling by net-
works with kernel units induced by the same kernels
as the kernels defining the equations and extended to
certain smooth kernels.

In this paper, we investigate surrogate solutions
of Fredholm integral equations by networks with gen-
eral computational units. Taking advantage of results
from nonlinear approximation theory and suitable in-
tegral representations of functions in the form of “in-
finite” networks, we estimate how well surrogate so-
lutions computable by feedforward networks can ap-
proximate exact solutions of Fredholm equations. We
apply general results to perceptron and Gaussian ra-
dial networks.
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The paper is organized as follows. In section 2, we
describe surrogate modeling of functions by feedfor-
ward neural networks and in section 3, we introduce
Fredholm integral equations and theoretical approach
to their solutions. In section 4, we recall some results
from nonlinear approximation theory and apply them
to approximation of solutions of Fredholm equations
by feedorward networks. We illustrate our results by
an example of approximation of Fredholm equations
with the Gaussian kernel by networks with percep-
trons and Gaussian radial units.

2 Surrogate modeling by neural

networks

A traditional approach to surrogate modeling of func-
tions has employed linear methods such as polyno-
mial interpolation. For suitable points x1, . . . , xm from
a domainX ⊂ R

d, empirically or numerically obtained
approximations φ̄(x1), . . . , φ̄(xm) of values φ(x1), . . . ,
φ(xm) of a function φ are interpolated by functions
from n-dimensional function spaces. These spaces are
obtained as linear spans

span{g1, . . . , gn} :=

{

n
∑

i=1

wigi |wi ∈ R

}

, (1)

where the functions g1, . . . gn are first n elements from
a set G = {gn |n ∈ N+} with a fixed linear ordering
(we use the standard notation := meaning a defini-
tion). Typical examples of linear approximators are
algebraic or trigonometric polynomials. They are ob-
tained by linear combinations of powers of increasing
degrees or trigonometric functions with increasing fre-
quencies, resp.

Feedforward neural networks have more adjustable
parameters than linear models as in addition to coef-
ficients of linear combinations of basis functions, also
inner coefficients of computational units are optimized
during learning. Thus they are sometimes called
variable-basis approximation schemas in contrast to
traditional linear approximators which are called fixed
basis approximation schemas. In some cases, especially
in approximation of functions of large numbers of vari-
ables, it was proven that neural networks achieve bet-
ter approximation rates than linear models with much
smaller model complexity [11, 10].

One-hidden-layer networks with one linear output
unit compute input-output functions from sets of the
form

spann G :=

{

n
∑

i=1

wigi |wi ∈ R, gi ∈ G

}

, (2)

where the set G is sometimes called a dictionary [14]
and n is the number of hidden computational units.

This number can be interpreted as a measure of model
complexity of the network. In contrast to linear ap-
proximation, the dictionary G has no fixed ordering.

Often, dictionaries are parameterized families of
functions modeling computational units, i.e., they are
of the form

GF (X,Y ) := {F (·, y) : X → R | y ∈ Y } , (3)

where F:X×Y →R is a function of two variables, an
input vector x ∈ X ⊆ R

d and a parameter y∈Y ⊆R
s.

When X = Y , we write briefly GF (X). So one-hidden-
layer networks with n units from a dictionaryGF(X,Y )
compute functions from the set

spann GF (X,Y ) :=

{

n
∑

i=1

wiF (x, yi) |wi ∈ R, yi ∈ Y

}

.

In some contexts, F is called a kernel. However, the
above-described computational scheme includes fairly
general computational models, such as functions com-
putable by perceptrons, radial or kernel units, Hermite
functions, trigonometric polynomials, and splines. For
example, with

F (x, y) = F (x, (v, b)) := σ(〈v, x〉 + b)

and σ : R → R a sigmoidal function, the computa-
tional scheme (2) describes one-hidden-layer percep-
tron networks. Radial (RBF) units with an activation
function β : R → R are modeled by the kernel

F (x, y) = F (x, (v, b)) := β(v‖x − b‖).

Typical choice of β is the Gaussian function. Kernel
units used in support vector machine (SVM) have the
form F (x, y) where F : X × X → R is a symmetric
positive semidefinite function [27].

Various learning algorithms optimize parameters
y1, . . . , yn of computational units as well as coefficients
w1, . . . , wn of their linear combinations so that net-
work input-output functions

n
∑

i=1

wi F (., yi)

from the set spann GF (X,Y ) fit well to training sam-
ples {(xi, φ̄(xi) |i = 1, . . . ,m}.

3 Solutions of Fredholm integral

equations

Solving an inhomogeneous Fredholm integral equation
of the second kind on a domain X ⊆ R

d for a given
λ ∈ R \ {0}, K : X × X → R, and f : X → R is
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a task of finding a function φ : X → R such that for
all x ∈ X

φ(x) − λ

∫

X

φ(y)K(x, y) dy = f(x). (4)

The function φ is called solution, f data, K kernel,
and λ parameter of the equation (4).

Fredholm equations can be described in terms of
theory of inverse problems. Formally, an inverse prob-
lem is defined by a linear operator A : X → Y between
two function spaces. It is a task of finding for f ∈ Y
(called data) some φ ∈ X (called solution) such that

A(φ) = f.

Let TK denotes the integral operator with a kernel
K : X × X → R defined for every φ in a suitable
function space as

TK(φ)(x) :=

∫

X

φ(y)K(x, y) dy (5)

and IX denotes the identity operator. Then the Fred-
holm equation (4) can be represented as an inverse
problem defined by the linear operator IX − λTK . So
it is a problem of finding for a given data f a solution φ
such that

(IX − λTK)(φ) = f. (6)

The classical Fredholm alternative theorem
from 1903 proved existence and uniqueness of solu-
tions of Fredholm equations for continuous one vari-
able functions on intervals. A modern version hold-
ing for general Banach spaces is stated in the
next theorem from [27, p.499]. Recall that an operator
T : (X , ‖.‖X ) → (Y, ‖.‖Y) between two Banach spaces
is called compact if it maps bounded sets to precom-
pact sets (i.e., sets whose closures are compact).

Theorem 1. Let (X , ‖.‖X ) be a Banach space, T :
(X , ‖.‖X ) → (X , ‖.‖X ) be a compact operator, and IX
be the identity operator. Then the operator IX + T :
(X , ‖.‖X ) → (X , ‖.‖X ) is one-to-one if and only if it
is onto.

A straightforward corollary of Theorem 1 guaran-
tees existence and uniqueness of solutions of the in-
verse problem (6) when T is a compact operator and
1/λ is not its eigenvalue (i.e., there is no φ ∈ X for
which T (φ) = φ

λ ).

Corollary 1. Let (X , ‖.‖X ) be a Banach space,
T : (X , ‖.‖X ) → (X , ‖.‖X ) be a compact operator,
IX be the identity operator, and λ 6= 0 be such that 1/λ
is not an eigenvalue of T . Then the operator IX − λT
is invertible (one-to-one and onto).

The following proposition gives conditions guar-
anteeing compactness of operators TK in spaces
(C(X), ‖.‖sup), where X ⊆ R

d, of bounded continu-
ous functions on X with the supremum norm
‖f‖sup = supx∈X |f(x)| and to spaces (L2(X), ‖.‖L2)
of square integrable functions with the norm ‖f‖L2 =
(∫

X
f(x)2 dx

)1/2
. The proof is well-known and easy to

check (see, e.g., [26, p. 112]).

Proposition 1. (i) If X ⊂ R
d is compact and K :

X×X → R is continuous, then TK : (C(X), ‖.‖sup) →
(C(X), ‖.‖sup) is a compact operator.
(ii) If X ⊂ R

d and K ∈ L2(X × X), then TK :
(L2(X), ‖.‖L2) → (L2(X), ‖.‖L2) is a compact oper-
ator.

So by Corollary 1, when the assumptions of the
Proposition 1 (i) or (ii) are satisfied and 1/λ is not
an eigenvalue of TK , then for every f in C(X) or
L2(X), resp., there exists unique solution φ of the
equation (4). It is known (see, e.g, [1]) that the so-
lution φ can be expressed as

φ(x) = f(x)− λ

∫

X

f(y)Rλ
K(x, y) dy , (7)

where Rλ
K : X ×X → R is called a resolvent kernel .

However, the formula expressing the resolvent kernel
is not suitable for efficient computation as it is ex-
pressed as an infinite Neumann series in powers of λ
with coefficients in the form of integrals with iterated
kernels [5, p.140]. So numerical calculations of values
of solutions of Fredholm equations based on (7) are
quite computationally demanding. Thus various meth-
ods of finding surrogate solutions of (4) have been ex-
plored [13, 6]. Some of these methods utilized feedfor-
ward networks. Such networks were trained on samples
of input-output pairs {(x1, φ̄(x1)), . . . , (xm, φ̄(xm)}
where {x1, . . . , xm} are selected points from the do-
main X and {φ̄(x1), . . . , φ̄(xm)} are numerically com-
puted approximations of values {φ(x1), . . . , φ(xm)} of
the solution φ. In these experiments, one-hidden-layer
networks with perceptrons and Gaussian radial units
were used. However, without a theoretical analysis, it
is not clear how to choose a proper number n of net-
work units to guarantee that input-output functions
approximate well the solution and the networks are
not too large to make their implementation unfeasi-
ble.

4 Rates of convergence of surrogate

solutions

Estimates of model complexity of one-hidden-layer
networks approximating solutions of Fredholm equa-
tions follow from inspection of upper bounds on rates
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of decrease of errors in approximation of solutions of
the equation (4) by sets spannG with n increasing.
Approximation properties of sets of the form spann G
have been studied in mathematical theory of neuro-
computing for various types of dictionaries G
and norms measuring approximation errors such as
Hilbert-space norms and the supremum norm (see,

e.g., [4, 8]). Some such bounds have the form ξ(h)√
n
,

where n is the number of network units and ξ(h) de-
pends on a certain norm of the function h to be ap-
proximated.

This norm is tailored to the dictionary of compu-
tation units and can be estimated for functions sat-
isfying suitable integral equations. The norm is de-
fined quite generally for any bounded nonempty sub-
set G of a normed linear space (X , ‖.‖X ). It is called
G-variation, denoted ‖.‖G, and defined for all f ∈ X
as

‖f‖G,X := inf {c > 0 | f/c ∈ clX conv (G ∪−G)} ,

where the closure clX is taken with respect to the
topology generated by the norm ‖.‖X and conv de-
notes the convex hull. So G-variation depends on the
ambient space norm, but when it is clear from the
context, we write merely ‖f‖G instead of ‖f‖G,X .

The concept of variational norm was introduced by
Barron [3] for sets of characteristic functions. Among
them, the set of characteristic functions of half-spaces
forming the dictionary of functions computable by
Heaviside perceptrons. Barron’s concept was general-
ized in [18, 19] to variation with respect to an arbitrary
bounded set of functions and applied to various dictio-
naries of computational units such as Gaussian RBF
units or kernel units [16].

The following theorem on rates of approximation
by sets of the form spannG is a reformulation from [19]
of results by Maurey [25], Jones [15], Barron [4] in
terms of G-variation. For a normed space (X , ‖.‖X ),
g ∈ X and A ⊂ X , we denote by

‖g −A‖X := inf
f∈A

‖g − f‖X

the distance of g from A.

Theorem 2. Let (X , ‖.‖X ) be a Hilbert space, G its
bounded nonempty subset, sG = supg∈G‖g‖X , f ∈ X ,
and n be a positive integer. Then

‖h− spannG‖2X ≤ s2G‖h‖2G − ‖h‖2X
n

.

Theorem 2 guarantees that for every ε > 0 and n
satisfying

n ≥
(

sG ‖h‖G
ε

)2

,

a network with n units computing functions from the
dictionary G approximates the function h within ε. So
the size of G-variation of the function h to be approxi-
mated is a critical factor influencing model complexity
of networks approximating h within a required accu-
racy. Generally, it is not easy to estimate G-variation.
However, the following theorem from [21] shows that
for the special case of functions with integral represen-
tations in the form of “infinite networks”, variational
norms are bounded from above by the L1-norms of
“output-weight” functions of these networks.

Theorem 3. Let X ⊆ R
d, Y ⊆ R

s, w ∈ L1(Y ), K :
X×Y → R be such that GK(X,Y ) = {K(., y) | y ∈ Y }
is a bounded subset of (L2(X), ‖.‖L2), and h ∈ L2(X)
be such that for all x ∈ X, h(x) =

∫

Y w(y)K(x, y) dy.
Then

‖h‖GK(X,Y ) ≤ ‖w‖L1 .

To apply Theorem 2 to approximation of solutions
of Fredholm equations by surrogate models formed by
networks with units from a general dictionary G, we
need upper bounds on G-variation. The next proposi-
tion describes a relationship between variations with
respect to two sets, G and F ; its proof follows easily
from the definition of variational norm.

Proposition 2. Let (X , ‖.‖X ) be a normed linear
space, F and G its bounded subsets such that cG,F :=
supg∈G‖g‖F < ∞. Then for all h ∈ X , ‖h‖G ≤
cG,F ‖h‖F .

Combining Theorems 2, 3, and Proposition 2, we
obtain the next theorem on rates of approximation of
functions which can be expressed as h = TK(w) by
networks with units from a dictionary G.

Theorem 4. Let X ⊆ R
d, K : X × Y → R be

a bounded kernel, and h ∈ L2(X) such that
h = TK(w) =

∫

Y w(y)K(., y) dy for some w ∈ L1(Y ),
where GK(X,Y ) is a bounded subset of L2(X). Let G
be a bounded subset of L2(X) with sG = supg∈G‖g‖L2

such that cG,K = supg∈G‖g‖GK(X,Y ) is finite. Then
for all n > 0,

‖h− spann G‖L2 ≤ sG cG,K ‖w‖L1√
n

.

A critical factor in the estimate given in Theo-
rem 4 is the L1-norm of the “output-weight function”
w in the representation of the function h to be ap-
proximated an “infinite network” with units comput-
ing K(., y) in the form

h(x) = TK(w) =

∫

Y

w(y)K(x, y) dy.



Surrogate solutions of Fredholm equations 53

The solution φ of the Fredholm equation minus the
function f representing the data, φ − f , is the image
of λφ mapped by the integral operator TK , i.e.,

φ− f = TK(λφ) = λ

∫

X

φ(y)K(x, y) dy .

Thus to apply Theorem 4 to approximation of a so-
lution of Fredholm equation, we need to estimate the
L1-norm of the solution φ itself as λφ plays the role
of the “output-weight” function in the infinite network
∫

X λφ(y)K(x, y) dy.

Theorem 5. Let X ⊂R
d be compact, K : X ×X →

R be a bounded kernel such that K ∈ L2(X × X),
ρK :=

∫

X
supy∈X |K(x, y)|dx be finite, G be a bounded

subset of L2(X) with sG = supg∈G‖g‖L2 such that
cG,K = supg∈G‖g‖GK(X) is finite, and λ 6= 0 be such

that 1
λ is not an eigenvalue of TK and |λ| ρK < 1.

Then the solution φ of the equation (4) satisfies for
all n > 0,

‖φ− f − spann G‖L2 ≤ sG cG,K |λ| ‖f‖L1

(1− |λ| ρK)
√
n

.

Proof. As φ− f satisfies the Fredholm equation (4),
we have for every x ∈ X ,

|φ(x)| ≤ |λ| ‖φ‖L1 supy∈X |K(x, y)|+ |f(x)|.

Integrating over X we get

‖φ‖L1 ≤ |λ| ρK ‖φ‖L1 + ‖f‖L1

and so ‖φ‖L1 (1− |λ| ρK) ≤ ‖f‖L1. This inequality is
non trivial only when |λ| < 1

ρK
. Thus we get ‖w‖L1 =

|λ|‖φ‖L1 ≤ |λ| ‖f‖
L1

1−|λ| ρK

. The statement then follows from

Theorem 4. 2

Theorem 5 estimates rates of approximation of the
function φ − f = λ

∫

X f(y)Rλ
K(x, y) dy by functions

computable by networks with units from dictionary G
formed by functions with GK-variations bounded
by cG,K . Numerical computations of values of the func-
tion λ

∫

X
f(y)Rλ

K(x, y) dy are time consuming.

For |λ| < 1
ρK

and any bounded dictionary G with fi-
nite bound cG,K on GK(X)-variations on its elements,
input-output functions of networks with increas-
ing numbers of units from G converge to the function
φ− f . When for a reasonable size of the network mea-
sured by the number n of units, the upper bound from
Theorem 5 is sufficiently small, the network can serve
as a good surrogate model of the solution of Fredholm
equation.

To illustrate our results, consider approximation of
Fredholm equations with the Gaussian kernel

Kb(x, y) = e−b‖x−y‖

with the width b by surrogate solutions in the form
of input-output functions of networks with two types
of popular units: sigmoidal perceptrons and Gaussian
radial units. Note that Fredholm equations with Gaus-
sian kernels arise, e.g., in image restoration problems
[24]. By µ is denoted the Lebesgue measure on R

d and
by P σ

d (X) the dictionary of functions on X computable
by sigmoidal perceptrons.

Corollary 2. Let X ⊂ R
d be compact, b > 0,

Kb(x, y) = e−b‖x−y‖2

, λ 6= 0 be such that 1
λ is not an

eigenvalue of TKb
and |λ| < 1. Then the solution φ

of the equation (4) with f continuous satisfies for all
n > 0

‖φ− f − spann GKb
(X)‖L2 ≤ µ(X) |λ| ‖f‖L1

(1− |λ|µ(X) )
√
n

and

‖φ− f − spann P
σ
d (X)‖L2 ≤ µ(X) 2d |λ| ‖f‖L1

(1− |λ|µ(X) )
√
n
.

Proof. It was shown in [17] that variation of the d-
dimensional Gaussian with respect to the dictionary
formed by sigmoidal perceptrons is bounded from
above by 2d and thus by Proposition 2, cPσ

d
,Kb

≤ 2d.
The statement then follows by Theorem 5, an estimate
sGK

b
≤ µ(X) and equalities sPσ

d
= µ(X) and

ρKb
= µ(X). 2
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