
Introducing The Neuroscience Gateway
Subhashini Sivagnanam, Amit Majumdar,

Kenneth Yoshimoto, Vadim Astakhov,
Anita Bandrowski, MaryAnn Martone

University of California San Diego
La Jolla, CA, USA

Nicholas. T. Carnevale
Yale School of Medicine
New Haven, CT, USA

Abstract— Last few decades have seen the emergence of
computational neuroscience as a mature field where researchers
are interested in modeling complex and large neuronal systems
and require access to high performance computing machines and
associated cyberinfrastructure to manage computational
workflow and data. The neuronal simulation tools, used in this
research field, are also implemented for parallel computers and
suitable for high performance computing machines. But using
these tools on complex high performance computing machines
remain a challenge due to issues with acquiring computer time on
these machines located at national supercomputer centers,
dealing with complex user interface of these machines, dealing
with data management and retrieval. The Neuroscience Gateway
is being developed to alleviate all of these barriers to entry for
computational neuroscientist. It hides or eliminates, from the
point of view of the users, all the administrative and technical
barriers and makes parallel neuronal simulation tools easily
available and accessible on complex high performance computing
machines and handles the running of jobs and data management
and retrieval. This paper describes the architecture it is based on,
how it is implemented, and how users can use this for
computational neuroscience research using high performance
computing at the back end.

Keywords—computational neuroscience, science gateway, high
performance computing

I. INTRODUCTION
Computational neuroscience has seen tremendous growth

in recent years. This is evident from the large number of
publications, in prestigious neuroscience journals, that are
more and more based on modeling. In the last two decades,
this has motivated development of simulation tools such as
NEURON [1], GENESIS3 [2], MOOSE [3], NEST [4], PyNN
[5] and Brain [6] which are mature and written for parallel
computers. Complex neuroscience problems, which involve
network models, optimization or exploration of high
dimensional parameter spaces, require access to high
performance computing (HPC), data storage and complex
workflow. Yet accessing and using HPC resources remain
difficult due to the need to write yearly allocation proposals
for acquiring computer time on national supercomputer
centers, understand complex HPC architecture, learn complex
OS/software, optimally install neuronal software, learn
policies and batch environments, manage data
transfer/retrieval, and understand remote authentication issues.
As a solution to this problem we have developed a community
infrastructure layer, i.e. a science gateway [7], specifically for
computational neuroscientists, that abstracts away technical

and administrative details of underlying hardware. As a result
this allows neuroscience researchers easy access to best
neuroscience simulation and analysis packages running on
large scale HPC resources. The neuroscience gateway (NSG)
[8] started its friendly user phase since December 2012. As a
part of this we introduced some users, to NSG, who were
recruited earlier to help us test the NSG. Since late December,
2012 we consider it to be in production and we continue to
add more neural simulation tools. This paper describes the
NSG software architecture, how it is implemented, the impact
it has had until now, and the future plan.

II. MOTIVATION AND BACKGROUND
Most computational neuronal modeling projects start

"small" and many stay "small," in the sense of being
accommodated by individual desktop systems, but many
eventually outstrip the speed and/or storage capabilities of
local hardware. This is most often the case with projects that
involve complex models (especially large scale networks) or
complex protocols (often involving learning rules), or require
high-dimensional optimization or parameter space exploration.
Such projects have a tremendous potential to use
cyberinfrastructure (CI), but only a very few neuroscientists
have been able to perform simulations on extreme scale HPC
machines [9, 10, 11]. There is a broad consensus that the
wider computational neuroscience community needs access to
complex CI and HPC resources. Those who lack such access
are at a significant disadvantage relative to the very few who
have it. This disparity is particularly telling in light of the fact
that the widely used simulators such as NEURON,
GENESIS3, MOOSE, NEST, Brian and PyNN have been
implemented on and released for parallel hardware, including
HPC machines, for several years now. The typical
neuroscientist - even one who is engaged in computational
modeling - has limited compute resources, usually only a few
desktop machines. The investigator whose project requires
HPC machines must write a yearly proposal for allocation of
supercomputer time. In the US these are peer reviewed for
computer time on National Science Foundation (NSF)’s HPC
machines and there is no guarantee that requested resource
will be made available. If the proposal succeeds, the next task
is to install simulation software (NEURON, GENESIS 3,
MOOSE, NEST, PyNN, Brian) optimally on the
supercomputer, then apply the batch software process to
configure and run the model on the cluster, and finally deal
with output data retrieval and storage issues. These steps
involve many vexing details that are not only time consuming

and requires knowledge of HPC and IT, but also differs
significantly from facility to facility. Investigators who want
to use neuroal software on HPC resources directly, have to
deal with these issues themselves. The entire process
constitutes a barrier that impedes effective utilization of HPC
resources and also distracts neuroscientists from their primary
research goals. We believe that many of issues are
encountered by neuroscientists in other parts of the world such
as in Europe and Asia. Our proposed solution enables the
entire community of computational neuroscientists to access
NSF (and other) funded national HPC resources transparently
through a common, convenient interface that is already
configured for optimal use and operates within a common
spatial and semantic framework. The benefit of this
infrastructure can be extended to many more end users,
allowing investigators to focus on their research and fostering
collaboration.

In recent years user-friendly scientific gateways have been
developed successfully for many research fields and have
resulted in tremendous adoption of CI and HPC by the broader
user community of those fields. A few examples of such
gateways in the US include the nanoHUB gateway [12] for
nanotechnology, the CIPRES gateway for phylogenetics
research [13], the GRIDCHEM [14] gateway for
computational chemistry, and the ROBETTA [15] gateway for
protein structure prediction. Similarly many gateways exist in
Europe and Asia. In the US moust of these gateways are
funded by the NSF for specific scientific domains, and
primarily utilize NSF’s Extreme Science and Engineering
Discovery Environment (XSEDE) [16] or Open Science Grid
(OSG) [17] for accessing HPC resources. In addition to NSF
funded science gateways, there are gateways that are funded
by other organizations such as the US Department of Energy
(DOE) at various DOE laboratories. Similarly outside of US,
there are many e-infrastructures and gateways available for
different domain sciences. Specific to neuroscience there is the
neuGRID [18], which offers a science gateway for
neuroscientists to facilitate the development of image analysis
pipelines using HPC resources aiming at accelerating research
in Alzheimer and other neurodegenerative disease markers.
The Blue Brain project [19] is further developing its own
portal environment.

III. NSG ARCHITECTURE
The NSG architecture design is based on the existing

CIPRES Science Gateway framework [20] which has been
very successful and popular for building the phylogenetics
gateway as well as other gateways such as the PoPLAR
(Portal for Petascale Lifescience Applications and Research)
[21] gateway. CIPRES is very mature framework, and was
implemented at the San Diego Supercomputer Center (SDSC),
by SDSC researchers and programmers, using the open source
Workbench Framework (WF) [22]. Below we describe the
various software architecture components of WF, their
functional adaptation specifically for the NSG and the current
usage monitoring and metrics of the NSG.

A. Underlying Architecture
The WF is a software development kit (SDK) designed to

generically deploy analytical jobs and database searches to a
generic set of computational resources and databases. The WF
contains modules to manage submission of jobs to analytical
tools on various computational resources and modules to
manage queries on data resources. The higher level schematic
of the WF architecture, as described in a diagram by the WF
project [22] developers is shown in Fig. 1. It is the basic
software architecture of the NSG. The modules in the WF are
as follows:

Presentation Layer: The WF Presentation Layer accesses SDK
capabilities through the J2EE front controller pattern, which
involves only two Java Classes. As a result, the WF is neutral
with respect to interface access. The presentation layer
provides lightweight access through a web browser and
preserves flexibility for alternative access routes and adopts an
architecture based on Linux, Apache Tomcat, MySQL, and
Java Struts2. The browser interface is based on the look and
feel of popular email clients and supports data and task
management in user-created folders. The complexity of
gateway layer is hidden from users through this interface that
also allows users to create a login-protected personal account.
Registered users can store their data and records of their
activities for a defined period of time. Uploaded user data is
checked for format compatibility. Users can also manually
specify data types and formats.

User Module: The User Module passes user-initiated queries
and tasks from the interface to the executive portions of the
infrastructure via data and task management modules. It also
stores all user data and task information in a MySQL database.
It supports individual user roles, permitting the assignment of
individual user accounts, the sharing of data between
accounts, and selective access to tools and data sources that
may be proprietary. Mapping user information takes places at
this layer which helps track the individual usage on
computational resources.

Broker Module: The Broker Module provides access to all
application-specific information in a Central Registry. This
Registry contains information about all data types required as
input and output for each application along with the formats
accepted by each tool. Concepts and concept relationships are
formulated in XML files and read by Central Registry API
implementing classes. Defining tools and data types in a single
location allows adding new tools and data types with no
impact on the functioning of the application outside the
Registry.

Tool Module: The Tool Module manages the translation of
tasks submitted by users into command lines and submission
of the command line strings along with user data for execution
by appropriate compute engines. The Tool module handles
data formatting for jobs, and job staging. It also keeps track of
which tools can be run on which computational resources, and
the status of those resources. The design allows great
flexibility in determining what assets the NSG can access for
job execution. Computational resources can be added through
editing the tool resource configuration file, and the application
can send command line scripts and receive output via

essentially any well-defined protocol (e.g. Unix command
line, web services, SSH, DRMMA, GRAM, gsissh, etc.).

External Resources: The generic design of the WF
architecture supports access to a wide variety of computational
resources and databases, whether local or remote. Access can
be accomplished through a combination of individual
mechanisms, including SSH, GRAM/Globus, SOAP, and
ReST services.

B. CIPRES Adaptation for the NSG
The adaptation of CIPRES WF architecture to NSG was

done with the idea of hiding all the complexities associated
with accessing and using a HPC resource such as job
submission, input data transfer, choosing of machine specific
HPC parameters, output retrieval and storage etc. Fig. 2 shows
the high level functional diagram of this adaptation. Though
NSG’s initial software design was based on the CIPRES WF
architecture, our implementation contained enhancement and
modification to the existing software based on the needs of the

neuroscience community. Hardware needed for setting up the
NSG utilizes SDSC’s reference VM server, MySQL, Cloud
storage and webservices. The latest software version of WF
architecture was obtained from SVN maintained by CIPRES
developers. Following is the list of the key adaptations done to
the existing CIPRES code base for the NSG.

1. Addition of uuencode/uudecode functionality to

support upload of input files in zip format
2. Modification of job submission environment to

accommodate compilation of the NEURON code
3. Storing of output file per session in SDSC’s Cloud

storage
4. Automatic deletion of unused user files based on time

length of inactivity
5. Define computational neuronal tools in the PISE

XML format and interface with the portal

Fig. 1. Workbench Framework (from WF [22] project page).

Fig. 2. Functional Diagram of NSG Architecture.

Some of the core functional implementation changes are
discussed below.

Access: A web browser serves as the entry point to the NSG
portal. The web browser offers a simple interface, which
allows users to upload input file or neuronal models, specify
neuronal code specific input files, and specify the job
submission parameters such as number of cores or nodes,
expected wall clock time for job completion. Users are able to
monitor the status of submitted jobs and extract output files
from the user-friendly portal.

Though the community gateway account is used for job
submission, individual user accounts are necessary to keep
track of usage and access. Some of the neuronal simulation
tools, such as NEURON, require that users be able to use the

Higher order calculator (hoc) [23] programming language as a
scripting language for neuronal models. However due to the
possibility of malicious or incorrect use or handling of hoc
codes, which poses a security concern, direct user registration
on the NSG is not allowed. Users are required to fill out a
form with identity information, which allows NSG
administrators to validate the user manually (“vetting”) prior
to creating their account. Once registered, NSG can track each
individual user's access and usage, as well as enforce NSG
specified usage policies. The account information and usage is
stored in the NSG MySQL database at SDSC.

Installation of computational neuroscience tools: Currently
NEURON 7.2, NEURON 7.3, PGENESIS 2.3, NEST, Brian
and PyNN have been installed on SDSC’s Trestles HPC
machine and are being installed on TACC’s (Texas Advanced

Computing Center) [24] Lonestar HPC machine. These codes
are available through the NSG for the neuroscience
community. We are also in the process of installing the
MOOSE tool on the SDSC Trestles machine. Based on input
from users, additional tools will be installed in the future.

User input file and job distribution: Most neuroscience
computational models usually have more than one input file
from sources such as ModelDB [25]. To accommodate this
requirement, we have added capability for NSG users to
upload input file in a zip format. Many other science gateways
use flat text file as input and use precompiled executable to
run their job. Existing WF architecture can only handle input
data that is not binary. For the NSG we had to add and
implement the functionality to uuencode the uploaded zip file
and to uudecode the zip file on the computational resource
during the staging of input. NSG allows compilation and
running of user’s code based on the requirement of the
neuroscience application (e.g. NEURON, GENESIS 3,
MOOSE, NEST, Brian and PyNN). NEURON allows custom
C++ code to be used for new equations within a particular
model. To accommodate this, we created a mechanism to
collect all such code (located in .mod files) and compile them
as a part of the job submission process. Job scripts are
automatically created and submitted. Once a job completes,
the working directory is compressed along with the input files,
job submission scripts and output files, and are transferred to
SDSC’s Cloud storage. The compressed file is also made
available for immediate download through the NSG portal.
File staging is handled via the Java CoG Kit GridFTP API and
Java runtime exec of Globus “gsissh” is used to remotely run
commands. While the job is processing on the HPC cluster, an
intermediate results view option is available in the portal
which gives a snapshot of the working directory that was
created in the backend HPC cluster. Advanced users can look
at the intermediate results folder to see if their job has started
or if any output file has been written. Another notable feature
is the ability to clone a job on the portal. Users are able to
clone their jobs, and this is helpful when they want to submit a
job with the same input file but vary the parameters such as
number of cores or the wall clock time. This is particularly
helpful in parallel scaling performance studies on HPC
machines for neuronal tools.

Storage and data retrieval: The output data is saved as a zip
file and is made available on the portal. Email notification is
sent to the users when a job completes. This is handled by a
curl command in the job submission script, which notifies a
servlet in the web application when the job finishes. In case of
curl failure, two daemon processes named “checkJobsD” and
“loadResultsD” check to see which jobs have finished and
transfer the result to the NSG. The NSG also moves the data
from the HPC resource’s scratch disk space to SDSC’s Cloud
storage for archival storage and employs a storage policy
based on data last accessed.

Fig. 3. User’s View of NSG Flow of Work.

C. Allocation and Policies
Initial allocation, called Startup allocation within the XSEDE
allocation process, was obtained for 50,000 core hours on
SDSC’s Trestles and 50,000 core hours on TACC’s Lonestar
machines. Utilizing the XSEDE allocation process [XRAC]
[26] we obtained community gateway account on NSF high
performance computing resources, which include Trestles and
Lonestar. Additional computational resources will be added
based on user demands.

Users of the community gateway account abide by the policies
set by the NSG administrators. Currently we allow 5000 core
hours per user per year. Based on the total amount of
computer time acquired every year for the NSG and the total
number of NSG users, we will decide what percentage of the
total time can be allocated freely to each user and monitor
their usage. NSG has the capability to allow users to run jobs
with their own allocation. For assessment of impact to
identifiable members of the community, individual gateway
user’s tag will be propagated through the batch system, such
that final job accounting reconciliation process will report
quantitative usage by those individual gateway users. A
ticketing system is in place and is used to keep track of user
questions and provide immediate assistance.

D. User Workflow
Fig. 3 shows at a high level and from a neuroscience user’s
point of view how the flow of work will appear as a simple
environment. It consists of the following steps: User logs into
the NSG -> User uploads input data -> User requests
simulation run on a HPC resource -> NSG frontend sends
input data and job request to the remote HPC machine -> NSG
retrieves output data from the remote machine -> NSG notifies

users of job (completion) status -> NSG provides user
information about output data location and retrieval process.

.
Fig. 4. Distribution of Location of NSG Users.

E. Education and Collaboration
As a part of the NSG education and outreach activity, a high
school student created a tutorial on Multiple Sclerosis using
the NEURON code. The tutorial is now available on nsgportal
website [27]. An undergraduate student from the University of
California San Diego performed parallel scaling study of
various models, available from ModelDB, on HPC resources
located at SDSC. As a part of this study it was shown that
consistency of a model was not affected by running with
different number of processors [28]. Effort is also underway to
make output of parallel models, from ModelDB, available for
educational purposes.

F. Usage
Early users were added, following the “vetting” process, to the
NSG since the beginning of December 2012. Within the first
three months period we have 83 users, out of which 25 are
from outside the US and this distribution is shown in Fig. 4.
45 users attended the first NSG workshop, held at SDSC in
mid-March 2013 and this was simultaneously broadcasted
over the web for remote attendees. The initial allocation of
50,000 core hours on Trestles was fully used up within the
first two months since December, 2012 and as a result, we
acquired additional 200,000 core hours for the NSG on
Trestles. This demonstrates the interest and initial success of
the project. From now on we will continue to write allocations
proposals for XSEDE HPC resources annually and provide the
computer time to NSG users. This alleviates the need for the
NSG users to deal with the allocation process directly.

G. CIPRES Adaptation Experience
From the very outset of developing the NSG we decided to use
the CIPRES WF as our software base. The key reasons for
choosing CIPRES WF and adapting it to create the NSG are:

1. CIPRES WF is well established gateway software
which has been developed over the past 10 years by
experienced software developers and researchers

2. CIPRES WF has been successfully used for building
gateways in other domain sciences

3. CIPRES WF developers are researchers at SDSC and
as a result we were able to get expert help when
needed

4. Reuse of existing NSF funded software was
considered a good practice

5. Any additions or modifications done for NSG will be
contributed back to the CIPRES WF software and
can be adopted by future gateway developers

Bringing up the NSG to early production took about 2 months
of time using approximately 75% effort of a staff person. All
of the IT resources, such as VM servers, SDSC Cloud storage
etc. are located at SDSC and this was beneficial to the project.
Reusability of software played a key role and helped to save
lot of time and effort. As a result we were able to make the
portal available to computational neuroscientists within a
relatively short period of time since the start of the project.

IV. FUTURE WORK
NSG portal occasionally faces issues related to using

GridFTP or the NFS server on the remote HPC cluster. During
file staging from the portal to the remote cluster or while
copying the results back, the task would fail either because
there are too many open GridFTP connections on the remote
cluster or the NFS home directory on the HPC cluster is slow
due to multiple users using it. Addressing this issue requires
restarting autofs by system administrator of the HPC cluster.
To avoid this, we are planning to use our own disk space and
mount the HPC cluster’s home directory on the new disk
space.

We will also integrate a programmatic interface module,
which will provide an interface layer for external neuroscience
frameworks such as ModelDB, NIF [29] etc. and will allow
mapping of user requests from these external frameworks to
the NSG. The module will translate user requirements and
authentication to the NSG interface. The external framework
would format its request in XML for job processing, status
query, and output data retrieval. REST API will also be
incorporated to provide programmatic access to NSG. An
interface for model sharing with data provenance will be
provided. Users who are willing to share their models or
output will be able to do so in a collaborative environment.
Validated data models will be provided for educational
purposes.

ACKNOWLEDGEMENT
This work was supported in part by the National Science
Foundation awards DBI (Division of Biological Infrastructure)
1146949 and DBI 1146830, and by NIH awards NS011613
and DC09977. The work was also supported by computer
allocation time provided by the NSF funded XSEDE
organization on SDSC’s Trestles and TACC’s Lonestar HPC
resources and by XSEDE Extended Collaborative Support

Services (ECSS) program which allowed Terri Schwartz
(SDSC) to collaborate with the NSG team. The authors would
like to thank Mark Miller, PI of the CIPRES software, for
providing advice and guidance as the NSG was implemented.
The authors would also like to thank Nancy Wilkins-Diehr
(SDSC) and Suresh Marru (Indiana University) for helpful
discussions, and UCSD undergraduate student Prithvi Sundar
and West View High School, San Diego student Debleena
Sengupta for their summer internship project work.

REFERENCES

[1] M.L. Hines, and N.T. Carnevale. "Translating network models to

parallel hardware in NEURON." J. Neurosci. Methods, 169, pp. 425-
455, 2008.

[2] http://genesis-sim.org/.
[3] http://moose.sourceforge.net/
[4] http://www.nest-initiative.uni-

freiburg.de/index.php/Software:About_NEST
[5] http://neuralensemble.org/trac/PyNN/
[6] http://brainsimulator.org
[7] N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, S. Pamidighantam,

“TeraGrid Science Gateways and Their Impact on Science,” IEEE
Computer, Vol. 41. Number 11 (November, 2008), pages 32-41.

[8] http://www.nsgportal.org
[9] R. Ananthanarayanan, S. Esser, H. D. Simon, and D. S. Modha, SC09

Proceedings, Nov 14-20, 2009, Portland, Oregon, UCA, 2009 ACM
978-1-60558-744-8/09/112009.

[10] S. Kumar, P. Heidelberger, D. Chen, and M. Hines, “Optimization of
Applications with Non-blocking Neighborhood Collectives via Multi-
sends on the Blue Gene/P Supercomputer,” 24th IEEE International
Parallel and Distributed Processing Symposium, 2010.

[11] H. Markram, “The Blue Brain Project,” Nature Reviews Neuroscience 7,
153-160 (1 February 2006).

[12] http://www.nanohub.org
[13] M. Miller, W. Pfeiffer, and T. Schwartz, “Creating the CIPRES Science

Gateway for Inference of large Phylognetic Trees,” Gateways
Computing Environments Workshop (GC), 2010, PP 1-8, New Orleans,
LA, 14 Nov., 2010.

[14] https://www.gridchem.org
[15] http://robetta.bakerlab.org/
[16] http://www.xsede.org
[17] http://www.opensciencegrid.org
[18] https://neugrid4you.eu/
[19] http://bluebrain.epfl.ch/
[20] M. Miller, W. Pfeiffer, and T. Schwartz, “CIPRES Sceince Gateway: A

Community Resource for Phylogenetic Analyses,” TeraGrid’11, July 18-
21, Salt Lake City, 2011.

[21] poplar.nics.tennessee.edu/locing!input.action
[22] http://www.ngbw.org/wbframework/
[23] Kernighan, Brian W.; Pike, Rob (1984). The Unix Programming

Environment. Prentice Hall.
[24] www.tacc.utexas.edu
[25] http://senselab.med.yale.edu/modeldb
[26] https://www.xsede.org/allocations
[27] http://www.nsgportal.org/ed-index.html
[28] A. E. Bandrowski, S. Sivagnanam, K. Yoshimoto, V. Astakhov, A.

Majumdar, "Performance of parallel neuronal models on the Triton
cluster," Society for Neuroscience Annual Meeting, Washington D.C.,
Nov 12-16, 2011.

[29] www.neuinfo.org

http://genesis-sim.org/
http://moose.sourceforge.net/
http://www.nest-initiative.uni-freiburg.de/index.php/Software:About_NEST
http://www.nest-initiative.uni-freiburg.de/index.php/Software:About_NEST
http://neuralensemble.org/trac/PyNN/
http://brainsimulator.org/
http://www.nsgportal.org/
http://www.nanohub.org/
https://www.gridchem.org/
http://robetta.bakerlab.org/
http://www.xsede.org/
http://www.opensciencegrid.org/
https://neugrid4you.eu/
http://www.poplar.nics.tennessee.edu/
http://www.ngbw.org/wbframework/
http://en.wikipedia.org/wiki/The_Unix_Programming_Environment
http://en.wikipedia.org/wiki/The_Unix_Programming_Environment
http://www.tacc.utexas.edu/
http://senselab.med.yale.edu/modeldb
https://www.xsede.org/allocations
http://www.nsgportal.org/ed-index.html
http://www.neuinfo.org/

	I. INTRODUCTION
	II. MOTIVATION AND BACKGROUND
	III. NSG ARCHITECTURE
	A. Underlying Architecture
	B. CIPRES Adaptation for the NSG
	C. Allocation and Policies
	D. User Workflow
	E. Education and Collaboration
	F. Usage
	G. CIPRES Adaptation Experience

	IV. FUTURE WORK
	ACKNOWLEDGEMENT
	REFERENCES

