CEUR-WS.org/Vol-993/paperl?7.pdf

On the equivalence of specific control flow and
data flow patterns with use cases

Akos Balasko
Institute for Computer Science and Control
Hungarian Academy of Sciences
Budapest, Kende str. 13-17
Email: balasko@sztaki.hu

Abstract—Although many of workflow languages use work-
flow patterns in various aspects such as control or data, the
implementation of these patterns are quite different, which makes
the workflow language interoperability really difficult. This paper
introduces compositions of specific data and control patterns
and then proves their equivalence, which benefits that control
structures can be replaced by data patterns and vice versa,
independently from the implementation itself. To confirm the ne-
cessity of our results we introduce use cases based on community
workflows that apply data patterns to trigger control structures.
As WS-PGRADE/gUSE workflow management system became a
commonly used general framework for workflow development by
various scientific communities, the use cases are created in there,
to facilitate using our solutions in other workflows.

I. INTRODUCTION

At present workflow management systems are key tools for
scientific communities to be able to do research by defining
problems and algorithms on a higher level. Using workflows
scientists can connect applications to each other to make
them interact automatically. Therefore workflow languages
together their syntax and semantics are quite relevant to have
a clear view, what can be defined in a particular language
and what possibilities are not supported. Unfortunately so
many workflow languages are at service so many difference
are within their expression power. For instance a structured
loop is supported by BPEL[10] or by Taverna[6], but not
by EPC[8]. Van der Aalst et. al. investigated many exist-
ing workflow languages and workflow management systems
identifying many general patterns of workflow structures in
various perspectives, such as control flows [4] or data-flow
concept [5]. Their results are quite important, in many cases
they specify a pattern in a generic way, but in most cases the
investigated workflow languages’ implementation just support
a construct to achieve the behaviour of a pattern, not the pattern
itself directly. Of course this is not really confusing till a
community uses only one workflow language, the scientist can
learn the “dialect” of the patterns implemented. But when they
would like to use more languages, for instance to be able to
create structures that are not supported by the old one, these
implementation differences make the language interoperability
really complicated, if not impossible.

This paper shows that some controls patterns are equiv-
alent with a composition of some data patterns. It benefits
that although a workflow language implementation does not
support a control pattern directly, it can support the equivalent

Peter Kacsuk
Institute for Computer Science and Control
Hungarian Academy of Sciences
Budapest, Kende str. 13-17
Email: kacsuk @sztaki.hu

composition of data patterns, hence in this way the self-
implementations can be decreased that assists the issue of
language interoperability.

Then again, all practical workflow can be constructed by a
very limited number of workflow patterns. Workflow manage-
ment systems usually do not support all possible patterns but
a much smaller subset only. Our work points out that some of
these patterns can be constructed from or converted to each
other and hence, opens a way to enrich the functionality of
workflow systems that support a limited set of patterns.

To demonstrate the importance of our results, we introduce
use cases based on community workflows that apply data
patterns to trigger control structures hence the conversibility
of control- and dataflow patterns is a practically relevant
issue. For instance we can use these recipes we can make
a data-driven workflow management system to . As WS-
PGRADE/gUSE workflow management system[1][2] became
a commonly used general framework for workflow develop-
ment by various scientific communities, the use cases are cre-
ated using this framework to facilitate adapting our solutions
in other workflows.

The paper is organized as it follows. Section II shows
a brief description about how the patterns has been utilized
for design a workflow language. Section III and section IV
investigate two particular control patterns and offer alternative
compositions of data patterns for replacing them, prove their
equivalence and give detailed use cases, where the data patterns
are used instead of control patterns. We summarize the results
and briefly describe our further work in Conclusion and Future
Work. Acknowledgment closes the paper.

II. RELATED WORK

Workflow Patterns Initiative [3] keeps track of scientific
papers citing their work (till 2009 but there are much more)
showing that workflow patterns became a widely accepted way
for designing and for re-factoring them. Taverna used in [7]
to investigate solutions for parallelism and pipeline processing,
others such as YAWL(Yet Another Workflow Language) or [9]
are specified directly using workflow patterns. Patterns play
roles in [11] to set up a taxonomy for workflow structures,
while in [14] they were used as reference models to compare
existing workflow languages. Nevertheless in each case these
patterns were used as they are, the relationship between
particular workflow patterns was not investigated.

Van der Aalst et al. in [12] give a unified framework for
combined data flow and control flow validation but they are
focusing on correctness and failure aspects, not on equivalence
of compositions of control and data patterns

Based on the fact that data flows and control flows are not
independent a model was introduced in [13] in where one can
define a workflow from both aspects. However, it does not take
into count the patterns.

To summarize, field of data flows and control flows is a
highly relevant and intensively investigated part of distributed
process management. The relationship of data and control flow
from validation point of view has been investigated but the
equivalence of composition of patterns and to achieve language
interoperability is still an interesting question.

III. COMPOSING DEFERRED CHOICE PATTERN

In this section we introduce the if-then-else structure as
it is known in programming languages. Then we introduce
Deferred Choice control pattern composing with Simple Merge
to express if-then-else patterns for control-driven workflow
systems. After we show Task Preconditioned Data Value data
pattern and prove that this pattern can express Deferred Choice,
but for data-driven languages. Finally, we construct a mixed
pattern from Task Precondition and Simple Merge to express
if-then-else structure.

A. If-Then-Else structure

In programming languages beside of other basic structures
such as ’sequence’ and ’loop’, if-then-else is the most common
control structure. As is shown in Fig. 1, A can be executed
on the spot, then condition Cond is evaluated, and according
to its value (true or false) one particular statement (B; if the
evaluation returned true, B otherwise) is executed. Next, after
B; or By is finished, statement C is executed independently
from the previous statement.

true B B
\ |
—»‘ (o} ‘

false

\ Y
\ /
o

Fig. 1. if-then-else structure
During the investigation of workflow patterns, the state-
ments are represented by nodes.

B. Deferred Choice

Deferred Choice pattern implements a specific split opera-
tion on one execution line to many branches of nodes. Before
executing any branches (considering If-Then-Else structure
it means the statement A has already been executed), one
particular branch is selected according to an external decision,
others will be withdrawn (condition Cond is evaluated, one
of B; and By can be executed). Therefore using this pattern
the workflow instance will contain several disabled or “dead”
branches in interpretation time, and in design time we cannot

predict which branches will be interpreted and which will be
excluded, since the selection is based on the environment, on
the input data itself and on the user. This aspect must be taken
account when, after interpreting this pattern, the next node is
being evaluated. A pattern called Simple Merge is capable to
deal with disabled branches of previous nodes (by taking into
account which branch is disabled and not waiting for results
from there), since it enables the next process if and only if
one of the previous nodes is processed correctly. Therefore it
is ideal to represent the interpretation of node C in If-Then-
Else composition.

C. Task Precondition - Data Value

After a throughgoing investigation of the available work-
flow languages focusing data-flow concept, N. Russell et.
al[5] identify several data patterns. Among others, “Task
Precondition - Data Value” (hereafter we call it simply Task
Precondition) defines restrictions for task execution depending
on the data value. It means that a task can be enabled if and
only if the precondition is satisfied.

D. Analysis

Comparing Deferred Choice and Task Precondition, as it
is shown in Fig. 2, the difference between them is obvious.

Deferred Choice Simple Merge :

true (B‘

A — Cond c

false B,

/ Task Precondition) Ccﬁd“') Simple Merge

L C'on'd,') B,

Fig. 2. Pattern compositions fitting to if-then-else structure

While Deferred Choice has a particular point in where
the interpreter evaluates the condition (denoted by Cond)
and enables a node depending to result of the evaluation,
Task Precondition pattern evaluates independent conditions
right before both subsequent nodes (B; and By). Hence Task
Precondition pattern does not guarantee that the true-sets of the
conditions establish disjunctive sets. This tiny distinction can
be resolved easily. Let us assume that Cond contains condition
named C. Then we can construct the same structure for Task
Precondition as we have in Deferred Choice pattern with the
following preconditions: C'ond; := C and Conds; := —C.
This solution effects the same structure and conditions with
disjunctive result-set, therefore a Task Precondition pattern
which is equivalent to a Deferred Choice.

E. Use Case - AgroHarvest

As the use case detailed below is quite complex, at first we
show the pure workflow structure (see Fig. 3) that implements
Data Patterns developed in WS-PGRADE/gUSE system.

Btrue

Bfalse

Fig. 3. Task Precondition in WS-PGRADE/gUSE

First, node A can be submitted. Depending to its process,
it can generate one or more outputs associated its output box
denoted by 0 (output ports are). Then, at embranchment
although both Btrue and B false nodes are enabled, data
specific preconditions are set for each input port (input ports
are represented by lighter grey short boxes). As it is shown in
Fig. 4, data preconditions , called "Port dependent condition”
property in WS-PGRADE/gUSE can be set by setting an
operation (it can be = , # and contains) and adding a
particular value or a file. Evaluating a condition means a
comparison of the value (or the file content) and the input file
arrived to this port according to the operation. To guarantee
disjunction of conditions, we must set the same condition
value, but with notequals operation to B false node’s port.

According to the evaluation of the conditions, the nodes
are set to disabled, or are left in enabled state. Enabled nodes
are submitted then, while disabled ones are labelled with ”No
Input” message.

Port Number:0 Port Name: PORTO (channel)
"

Brancinput =
* view Hide
operation == v

* Value: 0

- File:

v

Fig. 4. Configuring preconditions

Then we must apply Simple Merge pattern to implement
a XOR-join, to enable node B either Btrue or Bfalse was
submitted (and the other is disabled). Fig. 5 shows how to
apply this pattern in WS-PGRADE/gUSE using the configu-
ration panel of node B. The key point, as we do not know in
design-time which branch will be executed and which will be

disabled, is to set the same internal file name for each input
port.

Port Number:0 Port Name: PORTO (channel)
"
input =

~ View ° Hide

* View Hide

0

v

Port Number:1 Port Name: PORT1 (channel)

Fig. 5. Configuring Simple Merge pattern

Then we need to set collector property on both ports
("Waiting” row in the Figure is set to ”All”) to allow to enable
node B in the case as well, when it has data dependencies with
disabled nodes only.

The solution is applicable for n generated outputs. In this
case the quantity of Btrue node’s true-set is x, and n — x for
Bfalse. But, because of we set the same internal file name
for both input ports in node B, altogether n input files will be
renamed to this internal name independently from which job
(which branch) resulted it. To resolve overwriting issues, the
file names will be extended by a unique number respectively.

1) about Agro-Know Harvest application: To confirm that
it is necessary to support Deferred Choice structures, as a
real-life application we selected Ariadne application from
Agro-Know Technologies, a project partner involved in ag-
Infra project (see Acknowledgment). Agro-Know is an inno-
vative, research-oriented enterprise focusing on knowledge-
intensive technology for agriculture and rural development.
Mainly research of knowledge-intensive technology aims to
make knowledge, the know-how enable, searchable, reusable
independently from location, format or scope. In this sense
beside the importance of the information stored as data at
least much important the information about the data itself,
namely the metadata. In large scale metadata informations are
stored in datastores, and, of course so many datastores are
available around the world in the field of agriculture. Agro-
Know defines workflows to harvest, manage metadata and
make it interoperable among different formats.

Ariadne process operates on metadata datastores. Once a
datastore is validated (there is a step that checks its validity)
the stored metadata can be harvested, otherwise the workflow
stops and user must be notified about the failure. Harvesting
means downloading all metadata stored in the datastore. Then
all of the metadata is validated one by one against a particular
format (e.q. OAI-LOM), if a metadata is invalid, it must be
converted as a next step. All the valid and the converted
metadata are stored in remote storages in a quickly searchable

folder hierarchy.

Clearly this workflow contains some points, e.g. validating
a metadata, that makes it be ideal to illustrate Deferred Choice
pattern.

The workflow shown in Fig.6 implements Ariadne process.
The following list details the functions of its nodes.

e GenT: Splits a list of datastore URIs, and passes with
the set of format respectively, in which the metadata
of a particular datastore must be stored.

e Target: it validates each datastore target against the
given schema.

e Registrate: registrates the datastore in the remote stor-
age, if the target is valid.

e GetR: gets the results of the registration.

e Harvest: gets all metadata from a particular datastore
target, stores them as local files. It runs in as many
instances concurrently as many datastores splitted by
GenT.

e OAIVal: Validates a metadata against OAI_LOM for-
mat.

e ItsValid: Dummy node for valid metadata.

e OAlTrans: Converts a metadata to the requested for-
mat if and only if the validation fails.

e Upload: uploads metadata to the remote storage.

e Regis: registers each dataset associated to their target
registered before.

In aspect of Deferred Choice patterns, the interesting parts
of the workflow are enclosed by black circles. Within normal
lined circle the process is the following. Both nodes ItsV alid
and O AITrans have disjunctive preconditions, hence accord-
ing to the validity of a given metadata (this information comes
from node O AIV al as output) either ItsValid or OAITrans
will be submitted, but never both. Nevertheless nodes within
the dashed circle do not fit directly to the pattern since the
datastore must be registered and harvested in the same case,
when the datastore is valid. In other words the true-sets of the
preconditions adjusted to node Regis and Harvest are not
disjunctive.

IV. COMPOSING MULTIPLE INSTANCES WITH MULTIPLE
INDEXES

A. Multiple instances with a priori Run-Time Knowledge

This pattern(Multilnstance in short) defines that one node
created at design-time can generate several node instances at
run-time depending on various conditions such as resource
availability or data. Since during the interpretation of the
workflow these conditions can change and can be evaluated
time-by-time, the number of instances created is known only
right before interpreting the node definitely. All instances are
independent and they are submitted and executed concurrently.
Then the branches may be synchronized at completion if it
is necessary. Let us assume a workflow containing 3 nodes,
A, PS and B connected respectively. Run-time view of this

\

—

Itsvalid

Harvester Workflow

Fig. 6.

pattern is shown in Fig. 7. after processing node A, PSSy, PSa,
PS3 are going to be created, none the less only one, P.S was
defined at design-time.

Although it has not been described explicitly in [4], we
assume that all nodes contains by patterns can be replaced by
an other, or the same pattern. In this scenario we assume to ha
2 workflows, both contains 3 nodes, A PS and B, connected
respectively, and both PS nodes implements Multilnstance
pattern. Let us denote the first workflow by index 0 and
the second by index 1, all the nodes are labeled with these
indexes. Then we embed workflow 2 to the first’s middle node
(PSy). Fig. 8 illustrates this structure during enactment. After
processing A, the subsequent node is going to be replaced
by n copy of it. Then, as this node not a real node, just a
container to an other workflow, the other workflow will be
enacted in as many copy as many container nodes we have.
The enactment is done separately and parallel and shown
as Aj, PS11..B1 nodes in the Fig. 8. As the embedded
workflow implements Multilnstance pattern as well, processing
its middle node means processing n copies of it in parallel.
Finally the last node (Bp)is going to be processed.

Fig. 7. Simple Multiple Instances pattern

Fig. 8. Recursive Multiple Instances pattern

B. Multiple Instance Task Data Pattern

While Multilnstance pattern introduced in the previous
paragraph implements the ability to create more instances from
one node, this pattern focuses on the data aspects of this
issue. According to how the data can be passed to the multiple
instances, this pattern contains three sub-patterns:

1) Instance Specific Data Passed by Value
2) Instance Specific Data Passed by Reference
3) Shared Data Passed by Reference pattern

While the first one passes the data as is to the multiple
instances, the others just passes the reference of the data.
Other difference is while first and second works with instance
specific data allowing to pass different data for each instance,
the third do not allow it, this patterns works with shared data
only. In all case the data passing occurs when the multiple
instance task is enabled. Since our work does not take into
account these aspects, any of them can be chosen. In the
followings by mentioning MultiDatalnstance pattern will mean
the Multiple Instance Task - Instance Specific Data Passed by
Value pattern. This pattern is illustrated by the following figure.

(A — —{ & |

F
e

Fig. 9. Data Interaction to Multiple Instance Task - Instance Specific Data
Passed by Value pattern

C. Sub-Workflow Decomposition

Sub-Workflow Decomposition pattern deals with data as-
pects of embedding a workflow into a node. It allows that
any data, that is accessible by the node may be passed to the
workflow embedded and vice versa, all output generated during
the interpretation of the embedded workflow can be passed
back to the upper level of execution. Usually this pattern is

implemented to allow embedding in concept of black-boxes,
namely the embedded workflow has one particular entry and
exit points, during its interpretation all outputs generated are
inaccessible from the external nodes. The concept of this

pattern is shown in Fig. 10.
= HT° |

Fig. 10. Data Interaction - Block Task to Sub-Workflow Decomposition -
Explicit Data Passing via Data Channels pattern

To summarize we can say that the simple Multilnstance
pattern and MultiDatalnstance patterns are equivalent (disre-
garding that Multilnstance as a Control Pattern can be affected
by several circumstances, while process of MultiDatalnstance
as a Data Pattern is restricted to the availability of the data),
but as we shown in Fig. 8, Multilnstance pattern can be
applied recursively, while MultiDatalnstance not. Nevertheless
in composition with Sub-Workflow Decomposition we can
achieve the same functionality.

D. Analysis

After introducing the control and data pattern components,
we prove their equivalence using formal description of graphs.

Let us define concept of Double Tree as follows:

Definition 1: DT := (D,p) , where A denotes the set of
nodes, and p denotes set of pairs or nodes representing arcs.

D :={s,t,{A°...A""'}} and

Va € A :'3(s,a) € p

Va € AP Ad' € AL :13(a,d’) € p(i € [0,n — 2))
Va € A" :13(a,t) €p

and Vi € [1..n] : |AY| = |A™77]

Technically it means that Double Trees have one entry
and one exit points, and between them levels are defined (A®)
according to the arcs among the nodes. The last restriction says
that the number of the nodes and their degrees are symmetric
to the medial level of nodes.

It can be seen clearly that none but those structures satisfy
this definition which are applied by Multiple Instance pattern.
Then we have a constructive definition in a point of view,
which is familiar with the Data Flow constructions.

Let us define an initial graph with only three nodes con-
nected respectively. Then repeat the following function against
this graph in any number of times. Every graph constructed in
each iteration will be applied by definition.

Definition 2: size(G) := |A"/?|

Definition 3: BLOW : (DT x DTx) — DT , where both
G and G denote double trees with n=1, but while size of G
is not restricted, size of G is denoted by N in its index. It
follows that each graphs has only one For simplicity we use
their detailed definition in the followings (D,p).

Initially A = A1, p=p;

BLOW ((D1,p1), (D2, p2)) = {(D.p)|¥a; € A/ -
D=D UD2 \ (17;/\

p=pUp2U(s2,51) UP1,02) \ (51,04) \ (@i, p1)}

Theorem 1: function blow is idempotent in Double Trees.

Proof: As it is defined, function BLOW replaces nodes in
the middle level by a complete complete graph(DTy) given
as second parameter. Since DTy has only one level beside its
entry and exit points, the result graph will contain odd number
of the levels. Therefore its middle level can be identified
obviously, which means that the function can be applied again.
As DTy trivially symmetric on its middle level. None the less
|A"/2| nodes are being removed for DT, but the same number
of entry and exit points are being included and connected
accordingly and then, as a new middle level, A% of DTy,
which has N nodes, will be included and connected as well
|A™/2| times, so the new middle level will contain N*|A™/2|
nodes.

As Theorem 1 results that a Double Graph can be derived
from two others by function blow, and the function can be
used iteratively. As its process precisely follows the way
described by Data Flow patterns, and generates the same set of
Double Graphs, it can be taken cognizance of the equivalence
between the composition of specified Data Flow patterns and
the Multiple Instance Control Flow pattern.

E. Use case - Sea Vessel Tracking Application

Correlation Systems provides solutions to process and anal-
yse large sets of geospatial data. They focus on the integration
of open source and geospatial data analysis and implemen-
tation of real time resource allocation method. Correlation
Systems targeted the marine security community developed
WWALIS Vessel Tracker application. WWAIS first, processes
partial event data received from sea vessels Accounting In-
formation System (AIS) transmitters. Next, it extrapolates
this data in order to define vessels activities. Finally, this
data is compared to trends of activities along world sea-trade
routes to be able to define the vessel route and identify any
unexpected activity. The extrapolation process is an essential
part of analysing vessels activities and routes at sea since
AIS receivers are placed in major cities only. As a result,
sufficient data can be collected, if the vessel runs next to
them, and little or no data when vessels far out at sea. The
extrapolation process is very CPU and time intensive because
of three reasons. At first, a large amount of vessel data should
be processed. Currently data is available for more than 200.000
vessels. Secondly, the size of the geographical data is huge.
In order to accurately map a voyage its route must be plotted
based on coastline data. A detailed world coastline map can
contain many complex polygons consisting of several million
coordinate points. Thirdly, a Dijkstras variation compares each
ship event to world shipping route data. The matrix of world
shipping route data contains more than 2 million coordinate
points. Considering that each vessel and its voyages can be
processed separately, this application is an ideal candidate for
parallel processing.

The WWAIS Vessel Tracker application is implemented
as a number of RESTful web services running on several

Tomcat instances. There are web services that prepare the raw
route-data, others analyse the route (different algorithms can be
implemented and used) while further ones finalize and display
the route. Correlation Systems created a workflow which coor-
dinates the route calculation using web services as black-box
applications. In the workflow two processing algorithms should
be executed in parallel to analyse the route using different
models. Outputs of these algorithms are compared and the
best results are selected. Analysing a complete voyage means
splitting it to different routes, executing these two algorithms
to calculate each route and finally collecting and comparing
routes to merge and create the voyage history. Basically each
route analysis can be represented as a parameter sweep step.
Similarly the analysis of a set of vessels follows the same
technique but in a larger scale. First, a set of vessels must be
identified, next, the voyage analysis must be processed on each
vessel and finally results of all vessels should be collected and
evaluated. Thus, the WWALIS application is a parameter sweep
application that contains another parameter sweep application,
which consists of some external web service callings. The use
case is defined in WS-PGRADE/gUSE workflow system. Since
it must be guaranteed that the routes are assigned to groups
according to their vessel ID, parameter sweep executions must
be implemented in two levels by defining Multiple Instance
Task Data Pattern(MITDP in short) and the internal (called
Embedded) and the external (called Master) workflows and
connecting them by Sub-Workflow Decomposition pattern
(SWD in short). The gUSE workflow on the Fig 11 shows
the workflow structure that covers the two parameter sweep
parts: Master and Embedded workflows. The Master workflow
coordinates the voyage calculation of all vessels as a high-
level MITDP. This workflow contains a generator job (VesGen
job) and collector job (VesCol job) to manage the Embedded
workflow instances. The generator jobs input is the set of
vessel IDs. The Embedded workflow (represented by the Emb
job in the Master workflow) calculates and analyses the voyage
of each vessel as a low-level MITDP. This job is executed in
parallel by as many instances as many vessel IDs are in the ID
set. In the figure the dashed line represents the mapping of the
inputs among Master and Embedded workflow, what clearly
used for define SWD among them. In the Embedded workflow
the first job (VoyGen job) splits the vessels voyage into routes
and saves the vessels ID for each route in the configuration file.
Next, the interpreter creates as many instances of the Corr job
as many routes the VoyGen job generated. The Corr instances
are run in parallel. Finally VoyColl collects and frames all the
corrected sub-routes together.

V. CONCLUSION AND FUTURE WORK

In this paper after introducing different data and control
patterns we created compositions from them and we proved
their equivalence. Then we showed their interpretation on use
case community workflows developed in WS-PGRADE/gUSE
system. For further work we are planning to investigate more
data and control pattern compositions and their relationships,
especially for complex control patterns. Decomposing these
patterns, and finding analogous data patterns for each compo-
nent can lead us to new control-inspired complex data patterns.
These complex patterns could extend the opportunities of pure
data flow systems.

Number of vessels Collected voyages

VesGen
Set of vessel IDs
[

/ /
y Vi Emb
/7 Vs
Master workflow [
Embedded workflow / ; N
Vessel D& / Routes gollected for a voyage
o]

m
.y
Configuration file
VoyGen VoyColl

ﬁccordina\es
N Taverna workflow
L

‘g

corr Sub-routes

Fig. 11. WWAIS Workflow

ACKNOWLEDGMENT

The authors would like to thank to Correlation Systems,
which delivered WWALIS application for us to have a real-life
use case for Deferred Choice pattern.

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 283481 (SCI-BUS)
and under grant agreement no 283770(agINFRA).

REFERENCES

[1] P. Kacsuk et. al.: WS-PGRADE/gUSE Generic DCI Gateway Framework
for a Large Variety of User Communities Journal of Grid Computing, 9,
4, 479-499, 2012

[2] P. Kacsuk et. al.:P-GRADE portal family for Grid infrastructures Concur-
rency and Computation: Practice and Experience journal, 23, 3, 235-245,
2011

[3] www.workflowpatterns.com [accessed 27. March 2013]

[4] N. Russell et. al.: Workflow Control-Flow Patterns: A Revised View. BPM
Center Report BPM-06-22 , BPMcenter.org, 2006.

[5S] N. Russell et. al.: Workflow Data Patterns QUT Technical report, FIT-
TR-2004-01, Queensland University of Technology, Brisbane, 2004.

[6] Oinn, T. et. al.: Taverna: a tool for the composition and enactment of
bioinformatics workflows, Bioinformatics, 20(17), 3045-3054.,2004.

[7] P. Missier, et.al. Taverna, reloaded Scientific and Statistical Database
Management, 471-481, 2010.

[8] J. Mendling, et. al. EPC markup language (EPML): an XML-based
interchange format for event-driven process chains (EPC). Information
Systems and e-Business Management, 4(3), 245-263. 2006

[9] T. McPhillips et al. Scientific workflow design for mere mortals Future

Generation Computer Systems - The International Journal of Grid

Computing - Theory Methods and Applications, 25(5): 541-551. 2009

R. Lucchi et. al. A pi-calculus based semantics for WS-BPEL The

Journal of logic and algebraic programming, 70(1), 96-118. 2007

[10]

(11]

Yu, J., Buyya, R. A taxonomy of workflow management systems for grid
computing Journal of Grid Computing, 3, 3-4, 171-200. 2005

N. Trcka et. al.: Analyzing control-flow and data-flow in workflow
processes in a unified way Computer Science Report, (08-31). 2008

(12]

[13] S. Fan Dual workflow nets: Mixed control/data-flow representation for
workflow modeling and verification, Advances in Web and Network

Technologies, and Information Management,433-444 2007

[14]

A. Shiroor Scientific workflow management systems and workflow
patterns International Journal of Business Process Integration and Man-
agement, 5(1), 63-78.2010

