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Abstract— Scientific workflow managers are powerful tools 
for handling large computational tasks.  Domain scientists find it 
difficult to create new workflows, so many tasks that could 
benefit from workflow automation are often avoided or done by 
hand.  Two technologies have come together to bring the benefits 
of workflow to the masses.  The Pegasus Workflow Management 
System can manage workflows comprised of millions of tasks, all 
the while recording data about the execution and intermediate 
results so that the provenance of the final result is clear.  The 
HUBzero platform for scientific collaboration provides a venue 
for building and delivering tools to researchers and educators.  
With the press of a button, these tools can launch Pegasus 
workflows on national computing infrastructures and bring 
results back for plotting and visualization.  As a result, the 
combination of Pegasus and HUBzero is bringing high-
throughput computing to a much wider audience. 

Keywords—computation; workflow; collaboratories; user 
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I.  INTRODUCTION 
Computation has brought about a revolution in science.  As 

software was created to analyze large amounts of data, 
researchers found they could gather even more data, which 
necessitated even more software and more computing power.  
Today, many analysis tasks require not just a single program or 
computer, but dozens of different programs running across 
thousands of computational nodes.  Handling any one of those 
tasks requires a complex orchestration of moving data to 
appropriate nodes, finding or staging the executables, starting 
jobs, handling data flow dependencies, and overcoming job 
failures. 

Over the past decade, several frameworks have been 
created to support the execution of such large computational 
tasks.  The Pegasus Workflow Management System (Pegasus 
WMS) [1] and its workflow engine, the directed acyclic graph 

manager (DAGMan) within HTCondor [2], were built to 
manage thousands of jobs in a high-throughput computing 
environment. Taverna [3] graphically connects bioinformatics 
web services together into a coherent flow. Kepler [4] also 
provides graphical user interfaces for workflow composition 
and supports different workflow execution models. The 
SHIWA simulation platform uses the WS-PGRADE/gUSE 
technology to provide workflow interoperability across a 
number of systems [5].  Recently, Galaxy [6] is also gaining 
popularity in the bioinformatics domain, particularly because it 
tailors its environment to their community. 

Once a particular workflow has been established, it is 
relatively easy for others to execute it.  However, creating new 
workflows has proven to be an enormous challenge—
especially for domain scientists with very little background in 
computer science.  Creating a workflow is a lot like writing a 
program that calls standard library functions.  The author not 
only must have a deep understanding of the science but also 
must understand the interface for each component of the 
workflow, including the data files required and the output files 
produced.  The output of one component may need format 
conversions or additional processing before it can be used by 
another component.  The author must know what programs are 
available to perform conversions, or in some cases, the author 
must write little conversion programs (often called “shims”) to 
complete the workflow.  Components of the workflow may 
have limitations or may fail when given certain combinations 
of input parameters.  The author must understand that too, and 
work around such issues. 

Several projects have tried to simplify the creation of 
workflows by building drag-and-drop editors.  Taverna [3], 
Kepler [4], Galaxy [6], and GridNexus [7] all allow users to 
drag blocks onto a canvas and connect inputs and outputs 
together in a flow.  But while these applications simplify the 
task of expressing a workflow, they do not solve the inherent 

This work was supported by the US National Science Foundation through 
grants CBET-0941302, CMMI-0927178, OCI-1148515, and OCI-0943705. 



problems of understanding components, building shims, or 
working around limitations.  The Taverna project has taken one 
step further and created a web site at MyExperiment.org for 
publishing and sharing workflows [8]. 

Our approach takes workflow yet another step further by 
delivering live simulation tools embodying workflows to the 
masses via a web browser.  These tools are powered by 
Pegasus WMS running on Open Science Grid [9], DiaGrid 
[10], and XSEDE resources [11].  The tools are created by the 
few skilled users within a community, but wrapped in graphical 
user interfaces with integrated plotting and visualization, and 
delivered to the masses via the HUBzero software platform.  
There are now more than 40 hubs covering a wide range of 
scientific disciplines, including nanotechnology, earthquake 
mitigation, manufacturing, healthcare, pharmaceuticals, 
volcanoes, and climate change.  There is also a hub for the 
HUBzero community at http://hubzero.org, which includes a 
list of known hubs.  All together, these hubs have served more 
than 850,000 visitors from 172 countries worldwide—not over 
all time, but during the calendar year 2012 alone.  Pegasus and 
HUBzero act as a conduit for these users, giving them fingertip 
access to national Grid computing infrastructures. 

II. THE PEGASUS WORKFLOW MANAGEMENT SYSTEM 
The Pegasus Workflow Management System (or Pegasus) 

manages the execution of scientific workflows on desktops, 
private clusters, campus clusters, grids, and academic and 
commercial clouds. It automatically locates the necessary input 
data and computational resources needed for workflow 
execution; thus, it allows scientists to specify their workflows 
at a high-level of abstraction (devoid of resource information) 
and then maps/plans this description onto the available 
execution resources. Next, Pegasus reliably executes this plan.  
As a result, Pegasus workflows are easy to compose and are 
portable across heterogeneous cyberinfrastructure. 

Pegasus is capable of executing workflows on a single 
resource or across resources. Even a single workflow 
description can be distributed and executed across the 
cyberinfrastructure. Pegasus has been used to run workflows 
ranging from just a few computational tasks up to millions. 
When errors occur, Pegasus tries to recover when possible by 
retrying tasks, by retrying the entire workflow, by providing 
workflow-level checkpointing, by re-mapping portions of the 
workflow, by trying alternative data sources for staging data, 
and, when all else fails, by providing a rescue workflow 
containing a description of only the work that remains to be 
done [1].  Thus, it tries what it can to shield the user from 
errors and intermittent issues with the computing resources. It 
cleans up storage as the workflow is executed so that data-
intensive workflows have enough space to execute on storage-
constrained resources [12]. Pegasus keeps track of what has 
been done (provenance) including the locations of data used 
and produced, and which software was used with which 
parameters [13],[14]. 

In order to support the abstract workflow specifications, 
which let scientists concentrate on their science rather than on 
the operational aspects of the cyberinfrastructure, mapping 
technologies are needed to automatically interpret and map 
user-defined workflows onto the available resources. The 

workflow mapping process involves finding the appropriate 
software, data, and computational resources required for 
workflow execution. The mapping process can also involve 
restructuring the workflow to optimize performance and adding 
transformations for data management and provenance 
information generation. DAGMan, Pegasus’s workflow engine, 
relies on the resources (compute, storage and network) defined 
in the executable workflow to perform the necessary actions. 
Individual workflow tasks are managed by a task scheduler 
(Condor), which supervises their execution on local and remote 
resources. 

III. HUBS FOR SCIENTIFIC COMMUNITIES 

A. Building a Community on nanoHUB.org 
In 2002, the US National Science Foundation created the 

Network for Computational Nanotechnology (NCN), a 
collection of universities engaged in simulation and modeling 
for the nanotechnology community [15].  NCN established a 
web presence at nanoHUB.org and offered an array of 
simulation and modeling tools, along with seminars, tutorials, 
courses, and other supporting materials.  Over the years, 
nanoHUB.org evolved into a software platform supporting 
collaboration in private group areas, discussion forums, ratings 
and reviews, and most importantly, deployment of new 
simulation tools via its unique middleware.  In 2007, the 
underlying software for nanoHUB.org was spun off as a 
separate project, the HUBzero® Platform for Scientific 
Collaboration [16].  Since then, it has been used to create 
similar hubs for many other scientific areas—all supported by 
the same underlying middleware and content management 
system. 

nanoHUB grew from 10 tools and 1,000 users in 2002 to 
more than 260 tools and 250,000 users today [17].  User 
contributions were key to that growth.  Each new tool, seminar, 
or tutorial brought new users to the site, some of whom 
contributed their own new content.  This virtuous cycle was 
fueled by an open content management system that enabled 
users to upload and deploy their own content according to their 
own schedule, with minimal intervention from the nanoHUB 
team. 

Uploading and publishing a single document or PowerPoint 
presentation is one thing; uploading and deploying a simulation 
tool is quite another.  Tools have hundreds of individual source 
code files; they must be compiled and tested within the hub 
environment; and all of this must be done by untrusted users 
with minimal intervention. The HUBzero infrastructure was 
designed to support this activity. Researchers upload their code 
into private project areas with a Subversion [18] repository for 
source code control; they compile, test, and modify their code 
within a secure execution container managed by OpenVZ [19] 
running on a cloud of execution hosts; and they approve tools 
for deployment via a Web-based content management system.  
All of this enables their code to be separated from the system 
and from other users, and yet deployed in a secure and scalable 
manner. 

 End users find a tool on a hub and press a button to launch 
it.  The tool is launched in a Linux/X11 environment within a 
secure container on the “cloud of execution hosts,” and the 



graphical output from the session is piped through the Web to 
the user’s browser via VNC [20].  The result is a live, 
interactive simulation tool running in a secure environment, 
capable of running workflows on national computing 
infrastructure, and accessible to any user via a Web browser 
without any special software installation. 

There are many other gateway frameworks, including the 
Distributed Application Runtime Environment [21], Open Grid 
Computing Environments [22], and WS-PGRADE/gUSE [5], 
but none provide direct access to interactive tools and scientific 
visualization.  This is a distinct advantage of the HUBzero 
platform. 

There are many different users that work together within 
each hub community, and their interactions are mediated by the 
HUBzero platform.  A hub owner creates a new hub and 
engages others in the community to seed the site with initial 
content.  Users browse the site and take advantage of 
interesting content, perhaps by watching a seminar or running a 
simulation tool. Users also contribute their own content to the 
site, including new workflows and simulation tools.  Hub 
administrators help to compile and stage new simulation tools 
and ultimately approve all content before it is released. 

B. NEES.org and OpenSees Laboratory 
Other hubs leverage the same HUBzero infrastructure to 

support different toolsets for their own community.  In 2009, 

the NSF George E. Brown Network for Earthquake 
Engineering Simulation (NEES) moved operations to Purdue 
and created a hub for the civil engineering community.  Today, 
NEES.org offers more than 65 simulation and data analysis 
tools used to understand the damage caused by earthquakes and 
improve building design.  One of these tools leverages an open 
source code, the Open System for Earthquake Engineering 
Simulation (OpenSees) [23], to provide a collection of utilities 
for structural and geotechnical engineers. 

One of the utilities within this OpenSees Laboratory tool 
[24] is the Moment Frame Earthquake Reliability Analysis. 
This tool is intended to demonstrate to engineers the 
importance of uncertainty in their models and the need to use 
probabilistic methods when determining important response 
measures. The tool prompts the user for the material properties 
including probability distributions, building layout, and then a 
list of earthquake ground motion records. On submission, the 
tool automatically builds and executes a Pegasus workflow.  
The workflow manages several hundred to tens of thousands of 
separate OpenSees jobs on the Open Science Grid (OSG), 
which together perform a reliability analysis of the building 
frame under seismic loads, as shown in Fig. 1.  The resulting 
plots will show the variation in roof displacement, interstory 
drift, and base shear given the uncertainty in the materials for 
each of the earthquake motions specified. A single dot in red 
for each earthquake shows the engineer what would happen if 

 
Fig. 2. The BLASTer tool on DiaGrid.org manages the execution of BLAST programs on DiaGrid.  NCBI sequence databases are kept up to date on shared 

storage, so they do not need to be transferred for each run. 

 
Fig. 1. The OpenSees Laboratory on NEES.org, like all tools managed by HUBzero, uses a graphical user interface to prompt for input values and plot 

results.  Tool sessions run within secure containers on an execution host, and can submit individual runs or Pegasus workflows out to remote sites. 



only the mean value had been used for the material properties 
for that earthquake. The advantage of using Pegasus and the 
OSG for such a workflow is that Pegasus recognizes that most 
of the computation can be performed in parallel and the OSG 
permits concurrent job submission and execution. As a 
consequence, the resulting time spent obtaining these results 
can be a few minutes and hours instead of many hours, weeks 
and even months that would be required if the results were 
obtained from a series of sequential analyses. 

To date, OpenSees Laboratory has served 950 simulation 
users from the US, China, Canada, Italy, Japan, and other 
countries all over the world.  About a third of these users are 
coming from academic institutions.  All of them are driving 
OpenSees through a graphical user interface, perhaps without 
even knowing if and when they are launching complex 
workflows. 

C. DiaGrid.org and BLASTer, SubmitR 
DiaGrid is a high-throughput computing resource utilizing 

the Condor system, with more than 50,000 cores from 
machines at Purdue University and 9 other campuses.  Since its 
inception in 2005, DiaGrid has handled more than 90,000,000 
simulation jobs. 

In 2011, Purdue established a hub at DiaGrid.org to provide 
more widespread access to the underlying DiaGrid execution 
pool.  DiaGrid.org offers a tool called BLASTer [25], which 
can be used to run BLAST (Basic Local Alignment Search 
Tool) [26], a bioinformatics tool for analyzing DNA sequence 
data.  Users upload a query file containing one or more 
nucleotide sequences and search against standard databases 
from the National Center for Biotechnology Information 
(NCBI), or against their own custom databases.  The run for a 
single sequence may take anywhere from 10 seconds to 30 
minutes.  But many researchers bundle thousands of searches 
into a single request.  Performed linearly, such a search might 
take several days or weeks of computation. BLASTer 
automatically divides the query file into chunks and creates a 
Pegasus workflow to distribute the search over hundreds of 
DiaGrid nodes, so the end-to-end execution time can be 
shortened from weeks to a matter of hours. Shared storage 
allows the NCBI standard databases, updated regularly, to be 
available to all users without requiring file transfer, as shown in 
Fig. 2, thereby further reducing the time to results. 

DiaGrid.org offers a similar tool for statistical analysis 
scripts written in the R programming language [27].  It is quite 
common for researchers to run a particular script over a wide 
range of input parameters to explore the parameter space or to 
perform a sensitivity analysis.  The SubmitR tool [28] takes a 
script, data files, and a specification of parameter values, and 
automatically builds and executes the Pegasus workflow to run 
a large number of R jobs in parallel on DiaGrid.  Again, this 
appeals to the domain scientist who is quite familiar with R, 
but knows nothing about workflows, Condor, or DiaGrid. 

IV. CREATING SCIENTIFIC WORKFLOWS 

A. Job Submission via “submit” 
The integration of Pegasus and HUBzero certainly makes it 

easier for end users to launch workflows, but also makes it 
easier for tool developers to build and test new workflows.  
Each hub comes with one tool called a Workspace, which is a 
full-featured Linux desktop accessible via the Web.  Tool 
developers use this to upload, compile, and test their code 
before deploying a tool.  Experienced researchers also use this 
to get past the constraints of a graphical interface—to edit files, 
write simple scripts, and dispatch computational jobs. 

HUBzero provides a command called “submit,” which is 
used within the Workspace to dispatch jobs, as shown in Fig. 3.  
In this example, the command line “spice3 –b circuit” 
represents the research code that is being executed.  Electrical 
engineers will recognize this as the SPICE3F4 program created 
back in the 1970’s at UC Berkeley and still in use today [29].  
But the approach we describe would apply to any such research 
code amenable to command line execution.  The command 
spice3 is the executable, the flag –b means to execute in 
batch mode, and the file circuit contains the netlist 
representing the electrical circuit being simulated. 

When invoked directly on the command line as in Fig. 3(a), 
the spice3 program runs locally within the execution host 
managing the tool session (see Fig. 1).  However, prefixing the 
usual command line with submit will send the job off to 
remote execution venues, such as DiaGrid or the Open Science 
Grid.  The “-v DiaGrid” arguments shown in Fig. 3(b) 
request that the job be sent to DiaGrid.  The submit command 
will automatically transfer files such as circuit that are 
required for simulation.  It will speak the appropriate 
protocol—currently Condor, Condor-G, Load Leveler, LSF,  

(a)  spice3 –b circuit 

(b)  submit –v DiaGrid spice3 –b circuit 

(c)  submit –p @@res=100,1k,10k spice3 –b @:circuit 

(d)  submit –p @@res=100,1k,10k –p @@cap=1u,10u,100u spice3 –b @:circuit 

(e)  submit –d indata.csv spice3 –b @:circuit 

(f)  submit –p @@num=1:100 spice3 –b circuit@@num 

(g)  submit –p @@file=glob:circuit* spice3 –b @@file 

(h)  submit pegasus-plan --dax myworkflow.dax 
Fig. 3. HUBzero’s submit command makes it easy to send jobs off to remote sites, and includes support for parameter sweeps and Pegasus workflows. 



SGE, PBS, or SLURM—to queue the job.  And, it will monitor 
progress and transfer results back to the execution host once 
the run is complete.  It runs all jobs with a common credential 
owned by the hub, so individual users need not have an account 
or any credentials for the remote venue.  The hub tracks all 
jobs, including those run on remote venues, so that if a security 
incident arises, a complete report can be generated for any 
affected venue.  The same accounting is used to produce 
monthly reports of the overall simulation usage for each hub. 

B. Simple Workflows: Parameter Sweeps 
The submit command can also manage parameter sweeps 

with a very simple command line, as shown in Fig. 3(c).  
The -p flag indicates that the next argument is a parameter 
specification.  In this case, the parameter @@res is taking three 
values:  100, 1k, and 10k.  The @: prefix before the circuit 
file indicates that this file should be processed with parameter 
substitutions.  In other words, the submit command treats 
circuit as a template file, and substitutes all occurrences of 
@@res with a particular parameter value.  In this case, it 
produces three separate input files—one for each of the 
parameter values. Then, it automatically builds a Pegasus 
workflow to manage the jobs, and dispatches the workflow off 
to an appropriate venue.  Since the optional –v argument was 
not specified in this case, the submit command will 
automatically select a venue that supports Pegasus job 
submission and data transfer interfaces, such as DiaGrid or 
Open Science Grid. 

A simulation run may have multiple parameters.  In 
Fig. 3(d), the parameter @@res is swept through three values, 
and the parameter @@cap is swept through three values.  The 
submit command creates 9 different input files representing 
all possible combinations of these two parameters, builds a 
Pegasus workflow to manage the jobs, and then dispatches the 
workflow to an appropriate venue. 

Instead of specifying input parameters on the command 
line, the values for all combinations of parameters can be 
stored in a comma-separated value (CSV) file.  In Fig. 3(e), the 
arguments “-d indata.csv” indicate that parameter values 
should be loaded from the file indata.csv.  The first line 
should contain the parameter names for the columns, such as 
“@@res,@@cap” in this example.  Each of the remaining lines 
represents the parameter values for a single job, such as 
“100,1u” or “10k,100u” for this example.  Passing 
parameters in this way is useful when the desired values are not 
a simple combination of values, but perhaps a series of values 
generated by a genetic optimization algorithm, or by a Latin 
Hypercube sampler. 

Instead of relying on template files and parameter 
substitutions, the user may generate a series of separate input 
files.  For example, suppose a user has 100 different circuit 
files to evaluate.  The syntax shown in Fig. 3(f) supports this 
scenario.  The arguments “-p @@num=1:100” define a 
parameter @@num that takes on integer values from 1 to 100.  In 
this case, the circuit input file is specified as circuit@@num, 
so the submit command builds a Pegasus workflow with 100 
different command lines, substituting the value of @@num for 
each job to produce commands like “spice3 –b circuit1”, 

“spice3 –b circuit2”, and so forth, referencing the series 
of numbered files that the user created by hand for this run. 

Input files can also be recognized using glob-style pattern 
matching.  The arguments “-p @@file=glob:circuit*” in 
Fig. 3(g) define a parameter named @@file that takes on all 
values matching the glob-style pattern circuit*.  With this 
syntax, the files could be distinguished by different numbers, 
different letters, or other naming conventions, but all files that 
submit can find matching circuit* will be simulated as 
separate cases, with @@file representing the whole name of 
each matching file, such as circuit1, circuit-2b, 
circuitXYZ, etc. 

C. Customized Workflows in Pegasus 
More experienced users can learn how to create their own 

customized Pegasus workflows.  Each workflow is expressed 
as a high-level directed acyclic graph (DAG) called a DAX (for 
DAG XML description).  Each node in the DAX represents a 
job in the workflow, and the edges between nodes represent 
data files that flow from one job to the next.  The DAX is 
similar to the Condor DAGMan file [30] but at a higher level 
of abstraction so that it can be targeted to different execution 
environments. 

Each DAX is ultimately expressed as an XML file.  Writing 
that file by hand, however, can be tedious and impractical. 
Many developers prefer to express their workflow as small 
program written in Python, Java, or Perl. Pegasus provides 
Application Programming Interfaces (APIs) in these languages 
to help construct the needed XML.   The workflow designer 
needs to build up the nodes and edges of a DAX object, and the 
API is used to write out the object in XML format.  Running 
the program, therefore, produces a DAX file expressing the 
entire workflow, suitable for submission. 

The submit command described earlier is also used to 
launch Pegasus workflows, as shown in Fig. 3(h). This time the 
programs being launched (such as spice3) do not appear on 
the command line; instead, they are encoded within the DAX 
description of the workflow, which in this case is a file named 
myworkflow.dax. The submit command invokes another 
program called pegasus-plan which reads the DAX, 
“compiles” the workflow for a specific execution venue, then 
launches the workflow and manages execution. 

For example, the Moment Frame Earthquake Reliability 
Analysis tool, discussed in Section III.B, uses both the Python 
API provided by Pegasus and the submit command. At the 
launch of the simulation by the user, the tool invokes a shell 
script that first invokes a Python script (opensees-dax.py) 
to  create the XML file and then invokes the submit command 
using the pegasus-plan program and the XML file to run the 
workflow on the OSG, as follows: 

 
The workflow compilation or “planning” step is the 

strength of the Pegasus approach.  It optimizes the workflow 
by removing any branches where partial results are in place and 

#!/bin/sh 
python opensees-dax.py –-nMat=$1 –-nMotion=$2 > dax.xml 
submit pegasus-plan --dax dax.xml 

 



where dependencies are already satisfied.  It also augments the 
workflow, adding tasks to stage data files in/out of remote 
resources, and to clean up unnecessary results after execution.  
And, it can partition the workflow and cluster short-running 
jobs together, so that they run more efficiently on a single 
compute node.  It does all of this at a high-level, freeing the 
user from having to request or identify specific resources.  
During execution, Pegasus dispatches jobs, monitors progress, 
and automatically retries failing jobs so that sporadic failures 
do not derail the entire workflow.  If a workflow does fail (for 
example, if the venue goes down, or if a particular job triggers 
a bug in the code), it can be corrected and restarted by the user.  
Pegasus will recognize partial results and pick up where it left 
off to complete the workflow. 

V. BUILDING AND DEPLOYING APPLICATIONS 

A. Graphical User Interfaces and the Rappture Toolkit 
Researchers can build their own graphical user interfaces 

on top of the basic submit capability, so that other (perhaps 
less experienced) users can access a simplified interface and 
launch powerful workflows for targeted applications, as 
described earlier in Section III.  Such tools can be created using 
MATLAB®, Java, Qt, GTK+, wxWidgets, or any other toolkit 
that runs under Linux/X11.  For example, the interfaces for 
BLASTer and SubmitR were both created using Java and 
Python, respectively. 

HUBzero’s Rappture toolkit provides an easy way to create 
such graphical interfaces.  Rappture comes pre-installed within 
the Workspace tool and includes an interactive “builder” 
application for new tools.  Researchers specify the inputs and 
outputs for each new tool by dragging objects from a palette of 
available controls and by dropping them into an interface 
specification tree.  Each object is given a label, description, a 
default value, and other attributes, such as units of measure for 
numeric values.  The builder provides a preview of the 
resulting interface and generates errors and warnings if any 
elements are missing or incomplete.  The builder saves each 
interface in an XML description file, and it can also generate a 
skeleton for the main program of the tool in a variety of 
programming languages, including C/C++, Fortran, MATLAB, 
Octave, Java, Python, Perl, R, Ruby, and Tcl/Tk.  The 
researcher modifies the body of the skeleton code to include 
the core of the tool, then runs the rappture command to 
produce the graphical interface. 

However a graphical interface is created, it acts as an 
intermediary for the user, gathering input values, launching 
simulation runs, and plotting results.  Remote jobs and 
workflow submissions are handled via something like the C 
language system() function, which forks and executes a 
separate shell process to handle a command line string with the 
submit command shown earlier in Fig. 3.  Scripting languages 
are particularly well suited for this task, so it is quite common 
to build an interface tool in Python, for example, which calls 
submit to dispatch a complex workflow built from a series of 
C/C++ and Fortran programs. 

B. Tool Publication Process 
HUBzero includes a powerful content management system 

for uploading and deploying many different types of content, 

including seminars, tutorials, teaching materials, and most 
importantly, computational tools.  Any researcher within a 
particular hub community can click on the Upload link, fill out 
a form describing their new tool, and get immediate access to a 
private project area complete with a Subversion source code 
repository and a wiki area for project notes.  The researcher can 
launch the Workspace tool, check out the latest source code, 
and compile and test within the workspace environment.  The 
researcher can build Pegasus workflows and test them right at 
the command line by typing the command shown earlier in 
Fig. 3(h).  Once that part is working, the researcher can create a 
graphical interface using Rappture or any other toolkit, and 
embed the same submit command within the code of their 
new tool. 

Once the tool is working properly, the researcher can visit 
the page representing their tool contribution and click a link 
saying, “My code is committed, working, and ready to be 
installed.”  This signals the hub administrators to check out the 
latest code, compile it, and install it in the official /apps 
directory under a subdirectory with the tool name and its 
revision number from the source code control system. 

Once a tool is installed, the researcher receives a message 
to begin testing.  Clicking a Launch Tool button brings up a 
preview of the final tool, exactly as other users of the hub 
would see it.  Once the tool has been verified, the researcher 
can click a link saying, “My tool is working properly. I approve 
it.” 

That prompts the hub administrators to take one last look, 
to verify that the tool is indeed functional and has an adequate 
description page, and then move the tool to the “published” 
state, where it becomes available to other users according to the 
restrictions set by the tool authors.  A tool can be open to the 
world, or protected by export control, or accessible only by a 
certain group of users.  If a tool is published as Open Source, 
an archive of the source code is presented for download 
alongside the Launch Tool button, and the terms of the Open 
Source license are clearly displayed on the tool page.  All tools 
have a unique Digital Object Identifier (DOI), so they can be 
cited within academic publications. 

C. Ongoing Tool Support 
The publication of a tool is not the end of the story. Other 

users may encounter a bug in the tool and file a support ticket 
on the hub.  Any ticket filed on a live tool session page is 
automatically routed to the tool authors and becomes their 
responsibility to fix.  The authors receive email about the 
ticket, and they can see it listed on the My Tickets module 
within their My Account dashboard page.  They can update the 
ticket to communicate with the user, check out the code within 
a Workspace, commit a fix, and close the ticket.  When the 
code is ready for another release, the authors click a link 
saying, “I've made changes Please install the latest code for 
testing and approval.”  This takes the tool back to the 
“updated” state, causing hub administrators to stage the latest 
version, letting the tool authors test and approve the latest 
version, leading to an updated tool publication. 

Each tool also has its own question/answer forum for 
community discussion.  Another user might not understand the 



physics within the tool and post a question.  One of the tool 
authors, or perhaps another user, might follow up with an 
answer.  Researchers can have threaded discussions within the 
question/answer area, and they earn points for participation.  
The points can be redeemed for merchandise on some hubs, 
traded for other favors, or used as bragging rights. 

End users may like a tool, but may have requests for 
improvement, such as support for extra model parameters or 
material types.  They can post such ideas on the wish list for 
each tool.  Other users can vote the ideas up or down.  The tool 
authors can evaluate each wish on a scale of importance and 
effort, so that wishes can be sorted in order of priority.  Ideas 
that are deemed important and low effort bubble up to the top 
of the list, while those that are unimportant and high effort sink 
to the bottom.  When any wish is granted, the original user is 
notified and the tool author may earn points for fulfilling the 
request. 

VI. INTEGRATION CHALLENGES 
During the integration work, we encountered some 

challenges including data management, feedback and workflow 
progress in the user interface, and also providing workflow 
metrics from Pegasus to the HUBzero framework. 

When the integration effort started, the most recent Pegasus 
release was version 3. The data management in that version 
was still based on a model of high-performance computing 
(HPC) systems, with assumptions such as a shared parallel 
filesystem being mounted on the compute nodes used for the 
workflow. Under this data management model, when a 
workflow was submitted, a particular compute resource had to 
be chosen, the data had to be transferred in to the shared 
filesystem, and after the jobs were run, the output data had to 
be staged out. These steps were handled by Pegasus, but the 
fact that a resource had to be chosen up-front meant that either 
the hub or the end user would have to select a resource to run 
on. In the case of high throughput workloads, for which it does 
not matter where the jobs run, selecting a resource was not a 
very user-friendly solution, since at any given moment, a 
particular resource might be heavily loaded or broken, while 
other venues might be working fine. This particular integration 
problem went away with the release of Pegasus 4.0. Two new 
data management approaches were added to support workloads 
that could either use Condor IO for file transfers, or a shared 
staging storage element (such a GridFTP or S3 server) for 
storing intermediate data products. Workflows could then span 
multiple compute resources. Today, most of the hub workflows 
are using a simple site catalog describing either DiaGrid or 
Open Science Grid as the target compute resource, and no jobs 
are bound to particular resources of those grids. The result of a 
simpler site catalog, a catalog, which describes the various 
available resources and the services they provide, and the 
improved data management in Pegasus 4.0, is that the 
researcher or workflow developer can more easily hand off 
workflows to the underlying infrastructure and worry less 
about where the jobs will be running. 

Another integration challenge was how to provide better 
feedback to the user about the execution of the workflow. The 
interface to Pegasus is mostly command line tools, and even 
though there are tools like pegasus-status (which provides 

a progress report), the question was how to provide the 
information back through the tool to the end user. In particular, 
we ran into a problem where planning a workflow was taking a 
long time—on the order of 30 minutes! During this time, there 
was no feedback to the user that the system was actually doing 
anything. We are still working on a solution to provide better 
output from the pegasus-plan operation, but once the 
workflow is planned and is running, the hub regularly runs 
pegasus-status and provides feedback to the user. Once the 
workflow has finished, the pegasus-statistics and 
pegasus-analyzer commands are run automatically to 
provide the user with summary statistics, and if something 
failed, a report on what failed. Improving these integration 
points is an ongoing effort for the HUBzero and Pegasus 
developers. 

Some integration issues required just simple code changes. 
One example is how a report generated by the 
pegasus-statistics tool was modified to better match the 
data needed inside HUBzero. The changes included adding a 
few columns to the job/host breakdown, and providing the data 
in comma-separated value (CSV) format so that the HUBzero 
framework could easily import the data at the end of a 
workflow run. 

VII. CONCLUSION 
The integration of Pegasus into the HUBzero framework 

has brought the power of automated workflows to many more 
users.  Expert users can launch a Workspace within a hub and 
gain immediate access to Pegasus and computational 
resources—without having to install or setup the Pegasus 
software, without having to apply for Grid credentials, and 
without having to learn complex Grid protocols.  A simple 
submit command dispatches any single job or complex 
workflow off to remote facilities for execution.  Expert users 
can experiment with such commands, use them in research 
activities, and wrap them into graphical user interfaces that are 
deployed as new tools for the community. 

Without knowing a thing about workflows or high-
throughput computing, others in the community can access 
such tools, enter their own input parameters, and launch a 
complex workflow with the press of a button.  If the users have 
questions, they can post them for the tool authors and the rest 
of the community.  They can post ideas about improving the 
tool, and submit bug reports when a tool fails or produces 
incorrect results.  All of these capabilities are provided not just 
for one community or one site, but for 40+ sites built on the 
HUBzero platform.  This improvement is bringing workflow 
automation and high-throughput computing to thousands of 
users around the world who will benefit from it without ever 
realizing the complexity.   
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