
OSLC Resource Shape
A language for defining constraints on Linked Data
Arthur G. Ryman

IBM Rational
DE, Chief Architect, Reporting &

Portfolio and Strategy Management
+1 (905) 413-3077

ryman@ca.ibm.com

Arnaud J Le Hors
IBM

Software Standards
Architect

+1 (720) 396-5228

lehors@us.ibm.com

Steve Speicher
IBM

STSM
OSLC Lead Architect
+1 (919) 254-0645

sspeiche@us.ibm.com

ABSTRACT
IBM has for several years been employing a read/write usage of
Linked Data as an architectural style for integrating a suite of
applications. [1]

We are encouraged by the work done by the W3C Linked Data
Platform Working Group which is chartered to produce a W3C
Recommendation for HTTP-based (RESTful) application
integration patterns using read/write Linked Data .

The Linked Data Platform Recommendation will provide the
industry with a solid foundation to build on. Yet, more work will
need to be done to address in a standard way the needs of
enterprise solutions that use Linked Data as an application
integration platform. One such need is a type definition language
that can be used to communicate and validate constraints on RDF
data.

This paper explains the need for such a language, why standards
like RDFS and OWL are not suitable answers and, finally,
introduces OSLC Resource Shapes as a proposed solution.

General Terms
Management, Design, Standardization

Keywords
Linked Data, Type Definition, Integrity Constraints, Validation,
Application Integration, Standards

1. INTRODUCTION
The W3C Linked Data Platform (LDP) Working Group (WG) [2]
is chartered to produce a specification which builds on Tim
Berners-Lee's 4 rules [3] and defines a standard way of
manipulating RDF resources over HTTP [4] in a RESTful manner.
[5]

The LDP specification [6] defines several additional rules LDP
client and servers must comply with. The specification describes
how each HTTP verb is to be handled - what is to be submitted by
the client, what the server must do, and what the client is to expect
as a result.

The LDP specification introduces the notion of LDP Resource
with additional constraints over what RDF [7] requires to increase

interoperability. For instance, LDP requires a resource type to be
set explicitly.

However, the LDP specification falls short of defining how
applications that build on LDP are to find the constraints that
govern these resource types – how an LDP client might discover
which properties are required on a given type and how an LDP
server might validate content submitted by a client.

W3C provides several standards such as RDFS [8] and OWL [9]
to describe vocabularies and ontologies in RDF but these
techniques are not suitable to the problem at hand. Indeed, these
standards are primarily designed to support reconciliation of
different vocabularies to facilitate integration of various data sets
and reasoning engines which have the ability to infer new
information from given information.

Unfortunately, as we will demonstrate, although powerful, this
ability means that reasoning engines function in a way that is
actually contrary to what is necessary to enable the type of
validation robust applications development requires.

For that reason, IBM developed as part of the Open Services for
Lifecycle Collaboration (OSLC) initiative [10] a technique called
Resource Shape [11] which we will briefly present in this paper.
This technique consists of an RDF vocabulary that can be used for
specifying and validating constraints on RDF graphs. Resource
Shapes provide a way for servers to programmatically
communicate with clients the types of resources they handle and
to validate the content they receive from clients.

In some sense Resource Shapes do what naive users expect of
RDFS and OWL.

2. RELATED WORK
There is surprisingly little literature to be found on the subject of
RDF validation and language constraints for RDF. Notable
exceptions include Jiao Tao's Adding Integrity Constraints to the
Semantic Web for Instance Data Evaluation proposal [12] which
provides for good background on the topic and refers to what is
being discussed here as “integrity constraint” validation.
However, the paper proposes to address the need for integrity
constraints validation by reusing OWL with a different semantics.
Validating RDF with OWL Integrity Constraints from Clark &
Parsia, LLC [13] builds on the same idea.

While there is certainly an appeal to reusing existing technology,
using the same syntax with two different semantics isn't without
disadvantages. So, instead, the proposal discussed here chooses a
path that stays clear of OWL which was designed for a different

Copyright is held by the author/owner(s).

LDOW2013, May 14, 2013, Rio de Janeiro, Brazil.

purpose. Other approaches such as that based on the use of a rule
engine like SPIN [14] are also worth considering.

3. THE NEED FOR A CONSTRAINT
LANGUAGE
Linked Data fuses REST and RDF by requiring that resources
should be identified with dereferenceable HTTP URIs and that
HTTP clients should be able to get RDF representations of
resources.

LDP takes this concept further and defines a broadly applicable
RESTful RDF based platform. With this platform developers will
be able to build applications by integrating different components
that function as REST services exchanging data in RDF.

RDF has the happy characteristic that "it can say anything about
anything." This means that, in principle, any RDF resource can
have any property and there is no requirement that any two
resources have the same set of properties, even if they have the
same type or types.

In practice, though, the properties that are set on resources usually
follow regular patterns that are dictated by the uses of those
resources. Although a particular resource might have arbitrary
properties, when viewed from the perspective of a particular
application or use case, the set of properties and property values
that are appropriate for that resource in that application will often
be predictable and constrained.

In this context, it is natural for developers to expect to be able to
define the constraints governing the RDF resources they use in
their application and to be able to validate against those
constraints the content sent by clients to servers.

Defining the content of RDF payloads (HTTP request or response
) is part of the REST service interface.

It is sound engineering practice to define interfaces between
components in a system. The interface definition defines the
contract between the provider and consumer of a component. For
software systems, the main part of the interface definition is a
precise specification of the inputs and outputs.

Type definition languages are used for this purpose, both to
programmatically communicate the data an application can
receive and to validate the data it receives.

LDP resources are represented as RDF graphs around which
REST service interfaces are defined. A type definition language
for LDP would therefore let us describe RDF graphs. Such a
description would help consumers and providers determine if a
given graph satisfies the REST interface contract.

Consider a simple Web application that hosts resources about
change requests. We’ll use the class oslc_cm:ChangeRequest to
define the class of change requests. Assume there is a REST
service where we can POST HTTP requests to create new
oslc_cm:ChangeRequest resources. The REST service looks at the
HTTP request, and if it contains an oslc_cm:ChangeRequest
resource, it will create a new resource and copy the properties
from the HTTP request to it. The following HTTP POST request
body should succeed:

Example 1. HTTP POST changeRequest.ttl

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix oslc_cm: <http://open-services.net/ns/cm#> .

<http://example.com/resource>
 a oslc_cm:ChangeRequest ;
 dcterms:title “Null pointer exception in web ui” ;
 oslc_cm:status “Submitted” .

A type definition language would provide a way of ensuring that
the resource that is submitted is of type oslc_cm:ChangeRequest
and has the necessary properties.

Unfortunately there is currently no such type definition language
for RDF.

4. WHY RDFS AND OWL ARE NOT
SUITED FOR THE TASK
RDF Schema (RDFS) is a language for describing vocabularies
and is often misconstrued as being to RDF what XML Schemas
[15] are to XML. Despite the similar names these two
technologies serve two very different roles. While XML Schemas
are well suited to validate inputs, RDFS is not.

RDFS defines the classes rdfs:Class and rdf:Property which are
used to classify terms as either classes or predicates. This limited
subset of RDFS constitutes a very simple type definition
language.

However, RDFS also contains other terms, such as rdfs:domain,
rdfs:range, rdfs:subClassOf, and rdfs:subPropertyOf, which go
beyond mere vocabulary definition and enter into the world of
ontologies. The primary difference between a vocabulary and an
ontology is that an ontology includes inference rules which let
you infer new information from given information. This is where
RDFS and OWL, which provides augmented capabilities, diverge
from traditional type definition languages such as XML Schemas.
Technically, the inferences are computed by a software component
called a reasoner.

The function of a reasoner is very different from that of a validator
and trying to use a reasoner as a validator can prove to be a very
frustrating exercise.

Considering our example of a Web application handling change
requests, the designer of the service could declare the domain of
the oslc_cm:status property to be oslc_cm:ChangeRequest using
the following RDFS statement:

oslc_cm:status rdfs:domain oslc_cm:ChangeRequest .

However, the semantics of the rdfs:domain assertion is not a
constraint that says you can only use oslc_cm:status on
oslc_cm:ChangeRequest resources. Rather, it is an inference rule
that says if you use oslc_cm:status as a property on any resource,
then that resource is classified as an oslc_cm:ChangeRequest.
More precisely, the meaning of this statement is that if any
statement uses the predicate oslc_cm:status then we can infer that
the subject of the statement is a member of the class
oslc_cm:ChangeRequest.

Similarly to rdfs:domain, RDFS also defines the predicate
rdfs:range which lets us infer the class membership of the object
of any statement that uses a given predicate.

Consider the following HTTP POST request, where the explicit
triple stating that the resource is an oslc_cm:ChangeRequest has
been omitted:

Example 2. HTTP POST changeRequest-implicit.ttl

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix oslc_cm: <http://open-services.net/ns/cm#> .

<http://example.com/resource>
 dcterms:title “Null pointer exception in web ui” ;
 oslc_cm:status “Submitted” .

From the traditional viewpoint, this HTTP POST request should
fail because the server can’t find an oslc_cm:ChangeRequest
resource. However, from the ontology viewpoint, it should
succeed because of the semantics of RDFS.

An RDFS reasoner would infer from the explicit triples in the
HTTP POST request and the service ontology that the HTTP
POST request implied a triple stating that the resource was an
oslc_cm:ChangeRequest.

RDFS contains several other terms, e.g. rdfs:subClassOf,
rdfs:subPropertyOf, that look like common type definition
language constraints, but are in fact inference rules. OWL also
looks like a type definition language but in fact greatly expands
on the set of inference rules and is equally unsuited to validating
inputs to REST services.

OWL is so much more expressive than RDFS that it is possible
for an OWL reasoner to infer mutually contradictory triples from a
given graph, in which case the graph is said to be inconsistent.
This ability looks, at first glance, like a potentially useful
constraint checking mechanism. Unfortunately, an OWL reasoner
will go to great lengths to make some superficially inconsistent-
looking graphs consistent.

For example, consider the following ontology:

Example 3. OWL Ontology hasOwner.ttl

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix ex: <http://example.org/ns#> .

ex: a owl:Ontology .

ex:ChangeRequest a owl:Class ;
 rdfs:isDefinedBy ex: .

ex:Owner a owl:Class ;
 rdfs:isDefinedBy ex: .

ex:hasOwner a owl:ObjectProperty,
 owl:FunctionalProperty ;
 rdfs:isDefinedBy ex: .

ex:Joe a ex:Owner .

ex:Bob a ex:Owner .

ex:MyRequest a ex:ChangeRequest ;
 ex:hasOwner ex:Joe, ex:Bob .

This ontology defines the classes ex:ChangeRequest and
ex:Owner and the property ex:hasOwner. This property is asserted
to be a functional property, which means that it is single-valued,
i.e. for any given subject there must be at most one object. The

ontology also describes two owners, ex:Joe and ex:Bob, as well as
a change request, ex:MyRequest, and asserts that this change
request has two owners, ex:Joe and ex:Bob. This looks like a
contradiction. It would be nice if a type checker could flag this.

An OWL reasoner will not say that this ontology is inconsistent
because OWL does not make the “Unique Name Assumption”.
This is a fundamental aspect of Web architecture [16] since there
is no requirement that every resource have a unique URI. In fact,
it is common for synonyms to be defined in different vocabularies.
Given the above ontology, an OWL reasoner will find no
inconsistency.

An OWL reasoner will judge an ontology to be consistent if there
is some world in which the ontology makes sense. In this case, the
ontology makes sense when ex:Joe and ex:Bob identify the same
resource. The ontology is said to entail this implication. OWL has
the property owl:sameAs which asserts that its subject and object
identify the same resource. Thus the following triple is entailed by
the ontology.:

ex:Joe owl:sameAs ex:Bob .

Although logical, this entailment makes reasoners unsuitable to
the task of validating RDF content sent to an LDP server.

5. OSLC RESOURCE SHAPES
Linked Data programmers have a legitimate need to be able to
specify constraints on data, e.g. as preconditions in REST APIs.
OO programmers are used to specifying constraints on data with a
variety of traditional type definition languages such as Java,
UML, and XML Schema. As previously discussed RDFS and
OWL are very different from traditional type definition languages
and are therefore not the solution. The OSLC Resource Shape
specification is a proposed solution for specifying constraints on
RDF data.

A resource shape is a set of grammar rules, expressed in RDF, an
RDF graph must comply with to be correct. A resource shape lists
the properties that are expected or required in a graph, their
occurrence, range, allowed values, etc.

A resource shape lets you determine if a given graph is valid or
invalid. A resource shape checker could be implemented as a set
of SPARQL ASK queries [17] on the graph. A SPARQL ASK
query is a query whose result is either true or false. If all the
SPARQL ASK queries return true then the graph is valid,
otherwise it is invalid.

To briefly illustrate shapes, suppose that in our
oslc_cm:ChangeRequest example we require that when a new
resource is created, it must have exactly one dcterms:title property
and zero or one oslc_cm:status property. These constraints are
expressed in the following simplified resource shape:

Example 4. OSLC Resource Shape changeRequest-shape.ttl

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix oslc: <http://open-services.net/ns/core#> .

@prefix oslc_cm: <http://open-services.net/ns/cm#> .

@base <http://example.com/shape/oslc-change-request> .

<> a oslc:ResourceShape ;
 dcterms:title "Creation shape of OSLC Change Request" ;
 oslc:describes oslc_cm:ChangeRequest ;
 oslc:property <#dcterms-title>, <#oslc_cm-status> .

<#dcterms-title> a oslc:Property ;
 oslc:propertyDefinition dcterms:title ;
 oslc:occurs oslc:Exactly-one .

<#oslc_cm-status> a oslc:Property ;
 oslc:propertyDefinition oslc_cm:status ;
 oslc:occurs oslc:Zero-or-one .

This resource shape specifies constraints governing an
oslc_cm:ChangeRequest resource. It uses the property oslc:occurs
to specify the occurrence constraints of the dcterms:title and
oslc_cm:status properties. Specifying the occurence of a property
as either oslc:Exactly-one or oslc:Zero-or-one constrains the
property to be functional, which is what we were trying to achieve
through the use of owl:FunctionalProperty in Example 3. OWL
Ontology hasOwner.ttl.

As mentioned above, each constraint can be expressed as a
SPARQL ASK query. For example, the following query checks the
occurrence of the oslc_cm:status property:

Example 5. SPARQL Query ask-oslc_cm-status-occurs.rq

prefix oslc_cm: <http://open-services.net/ns/cm#>

ask {
 select ?resource
 where {
 ?resource a oslc_cm:ChangeRequest.
 ?resource oslc_cm:status ?status
 }
 group by ?resource
 having (count(?status) <= 1)
}

This query uses SPARQL aggregation to count the occurrence of
the oslc_cm:status property and compare it to the constraint
specified in the shape document.

Running this query on the HTTP POST body in Example 1. HTTP
POST changeRequest.ttl returns true. This result confirms that the
shape is valid with respect to this occurrence constraint.

For a counter-example, consider the following HTTP POST which
has two values for the oslc_cm:status property:

Example 6. HTTP POST changeRequest-2.ttl

@prefix dcterms: <http://purl.org/dc/terms/> .

@prefix oslc_cm: <http://open-services.net/ns/cm#> .

<http://example.com/resource> a oslc_cm:ChangeRequest ;
 dcterms:title "Null pointer exception in web ui" ;
 oslc_cm:status "Submitted", "Working" .

Running the same query returns false, because oslc_cm:status
occurs twice.

OSLC Resource Shapes let you express many other common
constraints in addition to occurrence constraints.

A Resource Shape lists the properties that are allowed or required
for a specific type of resource. For each property, it specifies the
type of its value, the number of times it is expected to occur, and
whether it is required. A default value as well as a list of possible
values can be provided. In addition, for properties for which the
value is a resource, a shape can be provided for that resource,
allowing for a recursive model.

The following table lists some of the property constraints that can
be specified. See OSLC 2.0 Appendix A: Common Properties [11]
for the complete specification.

Name Description

valueType The type of value the property can have. This can
be one of the following:
 Literal value-types:
• Boolean
• DateTime
• Decimal
• Double
• Float
• Integer
• String
• XMLLiteral
 Resource value-types:
• Resource
• Local Resource
• AnyResource
When omitted, the value type is unconstrained.

range When valueType is a resource value-type, this
can be used to specify the resource type allowed.
The default is Any.

valueShape When valueType is a resource value-type, this
can be used to specify the Resource Shape for the
value.
Note that this allows various shapes to be
associated with the same type.

allowedValues Specifies an oslc:AllowedValues resource which
lists the allowed values for the property.

allowedValue A value allowed for the property. If there are both
allowedValue elements and an allowedValue
resource, then the full-set of allowed values is the
union of both.

defaultValue A default value for the property.

maxSize For String properties only, this specifies as an
integer the maximum number of characters
allowed. If not set, then there is no maximum or
maximum is specified elsewhere.

occurs Either Exactly-one (the property is required),
Zero-or-one (the property is optional), Zero-or-
many (the property is optional), or One-or-many
(the property is required)

http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA?sortcol=0;table=8;up=0#sorted_table

Name Description

readOnly A Boolean specifying whether the property is
read-only. If omitted, or set to false, then the
property is writable.

Although implementations of the specification are not required to
use SPARQL to check constraints the meaning of each constraint
can be expressed in terms of a suitable SPARQL ASK query in a
way similar to what we showed in Example 5. SPARQL Query
ask-oslc_cm-status-occurs.rq.

As part of the OSLC initiative various Resource Shapes have been
developed and successfully used in different application domains
including Application Lifecycle Management (ALM) and
Integrated Service Management (ISM) to describe resources such
as a Change Request [18], a Test Case [19], a Requirement [20],
or a Performance Monitoring Record [21]. We have found this
technique to adequately address the need for describing the data
that application specific Linked Data services expect, and for
these services to validate the data they received from clients.

6. CONCLUSION
Linked Data fuses REST with RDF. Sound software engineering
practices dictate that we clearly specify REST interfaces.
Traditional approaches, such as XML Schema, don’t apply to
RDF, and RDF ontology languages such as RDFS and OWL are
not suitable to the task. We therefore need an RDF-friendly way
to describe Linked Data REST interfaces that we will be able to
use with LDP. Based on our experience in OSLC, we believe
Resources Shapes are a possible solution to this need but more
importantly we believe the industry needs a standard solution to
this problem.

7. ACKNOWLEDGMENTS
This paper contains material and concepts that come from our
work in OSLC and Arthur Ryman's Linked Data Interfaces article
[22].

8. REFERENCES
[1] Arnaud J Le Hors and al. Using read/write Linked Data for

Application Integration. LDOW2012, April 16, 2012.
http://events.linkeddata.org/ldow2012/papers/ldow2012-
paper-04.pdf

[2] W3C Linked Data Platform Working Group
http://www.w3.org/2012/ldp

[3] Tim Berners-Lee. Linked Data Design Issues. 2006
http://www.w3.org/DesignIssues/LinkedData.html

[4] R. Fielding and al. Hyper-text Transfer Protocol (HTTP/1.1),
IETF RFC2616, 1999.
http://tools.ietf.org/html/rfc2616

[5] Fielding, Roy Thomas. Architectural Styles and the Design
of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.

[6] Steve Speicher, John Arwe. Linked Data Platform 1.0. W3C,
2012. http://www.w3.org/2012/ldp/hg/ldp.html

[7] Graham Klyne, Jeremy J. Carroll. Resource Description
Framework (RDF).W3C, 2004
http://www.w3.org/TR/rdf-concepts/

[8] Dan Brickley and al. RDF Vocabulary Description
Language 1.0: RDF Schema. W3C, 2004
http://www.w3.org/TR/rdf-schema/

[9] W3C OWL Working Group. OWL2 Web Ontology Language
Overview. W3C, 2012
http://www.w3.org/TR/owl2-overview/

[10] Open Services for Lifecycle Collaboration (OSLC)
http://open-services.net

[11] Dave Johnson, OSLC 2.0 Appendix A: Common Properties.
OSLC, 2012
http://open-
services.net/bin/view/Main/OSLCCoreSpecAppendixA

[12] Jiao Tao, Adding Integrity Constraints to the Semantic Web
for Instance Data Evaluation, in Proceedings of the 9th
International Semantic Web Conference (ISWC 2010),
Shanghai, China, November 7-11, 2010.
http://www.cs.rpi.edu/%7Etaoj2/2010/iswc2010dc.pdf

[13] Héctor Pérez-Urbina an al. Validating RDF with OWL
Integrity Constraints.Clark & Parsia, LLC. 2010-2012.
http://stardog.com/docs/sdp/icv-specification.html

[14] Holger Knublauch and al, SPIN Member Submission, W3C,
2011. http://www.w3.org/Submission/spin-overview/

[15] Paul Biron, Ashok Malhotra. XML Schema Part 2:
Datatypes, Second Edition, W3C, 2004
http://www.w3.org/TR/xmlschema-2/

[16] Ian Jacobs, Norman Walsh. Architecture of the World Wide
Web, W3C. 2004.
http://www.w3.org/TR/webarch/

[17] Lee Feigenbaum and al. SPARQL 1.1 Protocol, W3C, 2013
http://www.w3.org/TR/sparql11-protocol/

[18] Steve Speicher. Open Services for Lifecycle Collaboration
(OSLC) Change. OSLC, 2010.
http://open-services.net/bin/view/Main/CmSpecificationV2

[19] Paul McMahan. Open Services for Lifecycle Collaboration
(OSLC) Quality Management Version 2.0. OSLC, 2011.
http://open-services.net/bin/view/Main/QmSpecificationV2

[20] Ian Green. Open Services for Lifecycle Collaboration (OSLC
) Requirements Management Version 2.0, OSLC, 2012.
http://open-services.net/bin/view/Main/RmSpecificationV2

[21] Julianne Bielski, John Arwe. Open Services for Lifecycle
Collaboration (OSLC) Performance Monitoring Version 2.0.
OSLC, 2013.
http://open-services.net/wiki/performance-monitoring/OSLC-
Performance-Monitoring-Specification-Version-2.0/

[22] Arthur Ryman. Linked Data Interfaces. developerWorks, 19
March 2013
http://www.ibm.com/developerworks/rational/library/linked-
data-oslc-resource-shapes/index.html

http://www.w3.org/TR/webarch/Arnaud
http://open-services.net/wiki/performance-monitoring/OSLC-Performance-Monitoring-Specification-Version-2.0/
http://open-services.net/wiki/performance-monitoring/OSLC-Performance-Monitoring-Specification-Version-2.0/
http://open-services.net/
http://open-services.net/
http://open-services.net/
http://open-services.net/
http://open-services.net/
http://open-services.net/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/Submission/spin-overview/
http://stardog.com/docs/sdp/icv-specification.html
http://www.cs.rpi.edu/~taoj2/2010/iswc2010dc.pdf
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA
http://open-services.netIan/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-concepts/Dublin
http://www.w3.org/2012/ldp/hg/ldp.html
http://tools.ietf.org/html/rfc2616
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/2012/ldp
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-04.pdf
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-04.pdf
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA?sortcol=6;table=8;up=0#sorted_table

	ABSTRACT
	1. INTRODUCTION
	2. RELATED WORK
	3. THE NEED FOR A CONSTRAINT LANGUAGE
	4. WHY RDFS AND OWL ARE NOT SUITED FOR THE TASK
	5. OSLC RESOURCE SHAPES
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

