
Discovering Meaningful Connections between Resources
in the Web of Data

Laurens De Vocht, Sam Coppens, Ruben Verborgh, Miel Vander Sande,
Erik Mannens, Rik Van de Walle

Department of Electronics and Information Systems - Multimedia Lab
Ghent University - iMinds

Ghent, Belgium
{laurens.devocht, sam.coppens, ruben.verborgh, miel.vandersande,

erik.mannens, rik.vandewalle}@ugent.be

ABSTRACT
We will show that semantically annotated paths lead to dis-
covering meaningful, non-trivial relations and connections
between multiple resources in large online datasets such as
the Web of Data. Graph algorithms have always been key
in pathfinding applications (e.g., navigation systems). They
make optimal use of available computation resources to find
paths in structured data. Applying these algorithms to
Linked Data can facilitate the resolving of complex queries
that involve the semantics of the relations between resources.
In this paper, we introduce a new approach for finding paths
in Linked Data that takes into account the meaning of the
connections and also deals with scalability. An efficient tech-
nique combining pre-processing and indexing of datasets
is used for finding paths between two resources in large
datasets within a couple of seconds. To demonstrate our
approach, we have implemented a testcase using the DBpe-
dia dataset.

Copyright held by the author/owner(s)
LDOW2013 May 14, 2013, Rio de Janeiro, Brazil

1. INTRODUCTION
Path finding is a well known issue in graph theory and math-
ematics[4]. It refers to finding a path between two nodes in
a graph. Various algorithms have been described to solve
this issue in graphs. The two most common algorithms are
Dijkstra and A*[13]. The former finds a path by selecting
nodes with the shortest distance to the source. This dis-
tance is calculated using the weight of the edges, resulting
in the optimal path. The latter extends Dijktra’s algorithm
with a minimal approximated distance, based on a provided
heuristic, between a node and the end node. This allows the
algorithm to evaluate less nodes, which increases its perfor-
mance.
Linked Data is a method of publishing structured data so
that it can be interlinked and become more meaningful.
It builds on standard Web technologies such as HTTP. It
does not directly serve pages for human readers, it shares
machine-readable information. This enables data from dif-
ferent sources to be connected and queried. Concepts on the
Web represented as Linked Data are uniquely identified by
a string of characters, a Universal Resource indicator (URI).
Such identification enables interaction with representations
of the resource on the Web. The Resource Description Model
(RDF) is a data model, it is a method for conceptual descrip-
tion or modeling of information on the Web. RDF allows us
to consequently apply pathfinding algorithms on the Linked
Open Data cloud and to find a path between any two re-
sources of the Linked Open Data cloud, given that the in-
formation space is dense enough. Applying path algorithms
on Linked Data has the advantage that the links between
the nodes are annotated, thus introducing semantics. This
allows interpretation of the transitions between nodes and
the meaning of a path. Most implementations of pathfind-
ing algorithms are application specific, for instance routing
in navigation systems for vehicles [20][1]. We introduce a hy-
brid approach for discovering relations between Linked Data
resources. It is not trivial for such Linked Data queries, not
even in the latest RDF (Resource Description Format) stores
like Virtuoso or Graph databases like Neo4J or Allegrograph
[21]. SPARQL (RDF Query Language) is not even able to
query for arbitrary paths, so it would only be possible to
check for the existence of an arbitrary connection (SPARQL
1.1).
First, we start by discussing related work in Section 2. Next,
Section 4 elaborates on the introduced approach, covered in
three parts. Then, we cover the applied optimization tech-



niques in Section 5 and implementation details in Section 6.
The results are evaluated in Section 7. Finally, we end with
conclusions and future work (Section 8).

2. RELATED WORK
Pathfinding is a well studied problem in graph theory. A
pathfinding method searches a graph by starting at one ver-
tex and exploring adjacent nodes until the destination node
is reached, generally with the intent of finding the shortest
route. Numerous algorithms have been designed to solve
this problem. The best-known algorithm for pathfinding is
Dijkstra [9]. This algorithm begins with a start node and
an ”open set” of candidate nodes. At each step, the node
in the open set with the lowest distance from the start is
examined. The node is marked ”closed”, and all nodes adja-
cent to it are added to the open set if they have not already
been examined. This process repeats until a path to the
destination has been found. Since the lowest distance nodes
are examined first, the first time the destination is found,
the path to it will be the shortest path.
Pathfinding in computer games has been investigated for
many years. Various search algorithms, such as Dijkstra’s
algorithm, were created to solve the shortest path problem
until the emergence of A* algorithm [12] as an optimal solu-
tion for pathfinding. A* is a variant of Dijkstra’s algorithm
frequently. A* uses a heuristic to improve on the behavior
relative to Dijkstra’s algorithm. A* is able to find optimal
paths, but examins fewer nodes to find the shortest path
than Dijkstra’s algorthm. Since it was created, many A*-
based algorithms and techniques were generated. The paper
of Xiao Cui and Hao Shi [6] reviews a number of popular A*-
based algorithms and techniques from different perspectives.
Pathfinding on semantic graphs, like RDF graphs, have been
a less popular research topic so far. Pathfinding in large real-
world semantic graphs can be a non-trivial task since such
graphs typically exhibit small-world properties. Eliassi-rad
and Chow [11] use ontological information, probability the-
ory, and heuristic search algorithms to reduce and prioritize
the search space between a source vertex and a destination
vertex. They developed two heuristics for semantic graphs
to be used with the A* algorithm.
In the biomedicine domain, He et all. [15] demonstrate how
graph-theoretic algorithms for mining relational paths can
be used together with Chem2Bio2RDF data resources to ex-
tract new biological insights about the relationships between
such entities. In their paper, they propose a scalable path
finding algorithm that works on RDF to find complex rela-
tionships between biological entities, e.g., genes, compounds,
pathways, diseases. Path finding has been performed in
metabolic graph by searching for one or more paths with
lowest weight. The weights assigned to each compound were
the number of reactions in which it participates. Croes et
al have shown that the average distance between pairs of
metabolites is significantly larger in the weighted graph than
in a raw unfiltered graph, suggesting that irrelevant short-
cuts (very short paths without meaning) could be left out
[5]. Other related work emphasizes more the aspect of the
relationship exploration. As noted by Heim et al. inter-
active exploration is only possible with a human involved,
since only a user can judge whether a found relationship is
relevant in a certain situation or not. In their work they pre-
sented an approach for the interactive discovery of relation-
ships between selected elements via the Semantic Web [16]

and implemented the RelFinder tool as a proof-of-concept.

3. USE CASES
To demonstrate the capabilities of our pathfinding frame-
work, we have developed an application, Everything is Con-
nected1 [25]. This application is able to find a path be-
tween a Facebook user and any concept known on DBpedia,
such as, persons, locations, things, etc. The found path
is presented to the end-user as a short story, which ex-
plains the relation between the searched concept and the
end-user. For this demo application, we indexed DBpedia
and our pathfinding algorithm uses this DBpedia index to
find paths. Once the path is found, a story is composed of
the found path at runtime. For this story, our demo applica-
tion searches Google to find images on all the nodes present
in the found path, YouTube to find movies on these nodes,
and Wikipedia to retrieve abstracts on the nodes. All these
elements are used to compose the story at runtime. Via a
text-to-speech engine, the relations between the nodes and
the found abstracts of the nodes, we are able to tell this
story to the end-user. This is particularly beneficial for ex-
ample in bioinformatics, for instance, where the biologist is
trying to relate a set of genes expressed in one experiment
to another set, implied in a different pathway. [17]
Our method makes it is possible not only to discover relevant
resources but also to filter them personalized and adapted
to a context. Users can control and define which kinds of
connections and types of resources really matter. Further-
more users will not only be presented a ranking of relevant
resources but a full and motivated explanation of why a cer-
tain resource is being considered relevant. The entire path
to each discovered resource has a semantic meaning that can
be traced back to the original configuration of the user and
forms the basis of an explanation rather than a ranking.

4. ALGORITHM
The proposed algorithm, as outlined in Algorithm 1 takes
a start and destination resource as inputs, and returns a
possible path between them. It consist of two parts: Pre-
processing and Graph browsing. Our approach finds paths
in the Linked Open Data cloud [2], making use of the A*
algorithm. For this, we make use of an index to speed up
the information retrieval process.

4.1 Pre-processing
We convert the source Linked Data set to lists of triples
and group them in documents per subject and load those
documents into an index. The index contains references
(URIs) of all the resources we consider in our dataset. An
index is an efficient method to instantly retrieve a resource
given a match pattern. We will need to process hundreds of
such match requests on the graph per second. To be able
to achieve this performance, we need to optimize the data
structure and load it into an index. SPARQL endpoints and
RDF stores are only scalable to a certain degree and the
query time depends on the size of the dataset [14][21]. For
the combination of frequency and type of queries needed for
our algorithm none of the current SPARQL endpoints was
suitable.

1http://www.everythingisconnected.be (last access: March
2013)



4.2 Graph Browsing
After preparing the index we perform the pathfinding algo-
rithm given a source and destination as input. The output
of the algorithm is the path between source and destination
nodes as a list of all the URIs and the predicates connect-
ing them. Our algorithm iterates over a growing pool of
candidate resources that might lead to a path. The links
between candidate resources are verified against a list of ac-
ceptable paths. This ensures quality of the paths and avoids
senseless or trivial connections between the resources. We
are only interested in meaningful links, so we want to make
optimal use of the semantic properties of the dataset. Our
approach consists of three main steps: initialisation, itera-
tion, and termination.

Initialisation
We start by fetching all the children for the start node, called
source, and the destination node, called target. We assign
them these names because every iteration new children will
be added and we need a solid reference to the start and des-
tination resource in the graph. Then we define a global set
containing references to all resources, as in for example Ta-
ble 1. In the example is Paris the source and Barack Obama
the target. Next, all the children of source and target are

Resources
:Paris
:Barack Obama
:France
:Eiffel Tower
:United States

Table 1: Example global set of resources

stored in the global set with references to the original re-
sources. As demonstrated in Table 2, each child is also a
set with the resources as keys, and the predicates that are
linked to it as values Table 2.

:Paris
:France :capital
:Eiffel Tower :monument

Table 2: Example resource with predicates and ob-
jects

We convert these data structures to an adjacency matrix.
The adjacency matrix represents which resources have a di-
rect link to each other. The use of an adjacency matrix
allows us to perform A* on it. A list with the list positions
corresponding to the row and column numbers refers to the
resources stored the global set. We store the list of resources
in a list:

resources =
(0 = Paris, 1 = Barack Obama, 2 = France,
3 = Eiffel Tower, 4 = United States)

The positions in the list resources correspond with the rows
and columns of the adjacency matrix in Table 3. We get a
symmetrical sparse matrix, as most of the cells are 0. Most
of the cells are 0 because there is no direct link between
most resources. Note that we do not distinguish forward

and backward links, this has the benefit of resulting in a
symmetrical matrix. For example: France is linked to Paris
as ”has capital” and the inverse link ”is capital of” is equally
important. Only when there is a parent-child connection or
vice-versa a cell gets value 1. To avoid loops we set the links
between the same resources to 0.


∗ 0 1 2 3 4
0 0 0 1 1 0
1 0 0 0 0 1
2 1 0 0 0 0
3 1 0 0 0 0
4 0 1 0 0 0


Table 3: Row and column 0 show a link with row and
column 2 and 3 which correspond in the list resources
with Paris, France and Eiffel Tower respectively.

Iterations
We prefer the A* algorithm, because of the increased per-
formance. Firstly we assign for each link between nodes a
weight using a semantic weight measure [8].

degree(node) = sum(nodelinks)
weight(parent, child) = log(degree(parent)+degree(child))

This semantic weight measure is perfectly suited as a metric
for weighting the paths. It was introduced to optimize the
quality of the links. Rare nodes, nodes with low probability
that a random walk returns to the same node, lead to better
and more interesting paths. It was shown that a weight as
the sum of the links of each node are a valid measure for
this [23].
A* requires a heuristic for estimating the distance between
nodes. This allows the sorting of the links in order of prob-
ability of leading to a path, without having to calculate the
actual distance, resulting into a performance gain. As a suit-
able heuristic, we chose the Jaccard distance. The Jaccard
distance measures dissimilarity between sample sets and is
complementary to the Jaccard coefficient. The Jaccard co-
efficient is one of the most efficient measures for semantic
relatedness [19]. Unlike the Jaccard coefficient, the Jaccard
distance is a valid heuristic for the A* algorithm: it is ex-
actly 0 when two nodes share exactly the same features, is
symmetric, and obeys the triangle inequality [18]. If nodes
have a lot of the same predicates, we assume that they are
closely related to each other. This makes it very likely to
find a path between them. We obtain the Jaccard coefficient
by dividing the difference of the sizes of the union and the
intersection of two sets by the size of the union. The sets
contain the predicates of each node (nodex = set of predi-
cates in node x).

jaccardsim(nodeA, nodeB) = ‖nodeA∩nodeB‖
‖nodeA∪nodeB‖

jaccardcoeff (nodeA, nodeB) = ‖nodeA∪nodeB‖−‖nodeA∩nodeB‖
‖nodeA∪nodeB‖

Once we have defined the weights for each link and defined
our heuristic, we try to find a path in the pool of resources
using the adjacency matrix provided.
If no path is found, we find the children of the bottom level



nodes and add them to the set of resources. They will be
used in the next iteration. We update the existing parents
of all generations to see if there are any links to the newly
added nodes. The child resources added in each iteration
form a generation. If we have found a path the algorithm
terminates.

Termination
A stop condition prevents the algorithm from running in-
definitely when no path is found. Since it is unlikely to
find a path if no path has been found after a certain arbi-
trary amount of time or iterations, the algorithm stops. This
amount depends on the dataset and the target application.

Data:
start: source
destination: target
Result:
path between source and target

adjacency_matrix = initialize(start,destination)

iteration = 0

path = False

stop_condition = not path and iteration < MAX

while stop_condition:

path = iterate(adjacency_matrix)

iteration += 1

termination(path)

Algorithm 1: The algorithm iterates over the adjacency
matrix until the stop condition is met.

5. OPTIMIZATION
One of the main issues with our approach is that time to
create the adjacency matrix increases exponentially and the
required memory space quickly hits the limit. We noticed
that is due to the adjacency matrix becoming too large. To
avoid that the adjacency matrix becomes too large to pro-
cess, we ensure a limited number of resources to check while
still increasing the probability of finding a valid path with
each iteration. To increase probability of finding a path
with each new iteration, we estimate which resources are
the most important and drop those who are not. Important
nodes have the highest probability of leading to path and
thus have links to many other important nodes. Thus, we
link resources to as many as possible related resources that
are again linked to a lot of highly linked resources (hubs).
We do not distinguish between outgoing and incoming links.
All relations in linked data have an inverse that is equally
important. Both hubs and resources that receive a lot of in-
coming links (authorities) behave the same in the algorithm.
This is because all links are reversible (as explained earlier
in Section 4.2).

Node Centrality based Rank Reduction
We can find a reduced rank approximation to the adjacency
matrix by setting all but the first k largest singular values
equal to zero and using only the first k columns of the re-
sulting decomposed matrices. We get the singular values

through Singular Value Decomposition (SVD). Though our
adjacency matrices were sparse, we noticed that the required
SVD performs slowly. SVD requires a complete dataset,
and has significant memory requirements. The SVD leads
to Hyperlink-Induced Topic Search (HITS) (also known as
hubs and authorities), a link analysis algorithm.
Another centrality measure is the PageRank algorithm, it re-
flects the so-called random surfer model, meaning that the
PageRank of a particular page is derived from the theoret-
ical probability of visiting that page when clicking on links
at random. However, real users do not randomly surf the
web, but follow links according to their interest and inten-
tion. A page ranking model that reflects the importance of
a particular page as a function of how many actual visits it
receives by real users is called the intentional surfer model.

Discussion
The difference between the two approaches mentioned above
is that SVD / HITS uses singular values while PageRank
uses eigenvalues [10]. HITS emphasizes mutual reinforce-
ment between authority and hub webpages, while PageR-
ank emphasizes link weight normalization and node hop-
ping based on random walk models. We did not look into
hybrid or unified approaches because it was out of scope and
PageRank and HITS, lead to similar ranking of the nodes.
We were thus convinced that it was fast enough and guaran-
teed a good ranking of nodes. Our initial algorithm to order
nodes according to node centrality used SVD at first, but
quickly this memory requirements became clear. A sparse
matrix iterative numerical optimization of SVD and HITS
was much faster but did not converge to a solution frequently
enough. In our case PageRank on sparse matrices performs
very fast, converges always and produces a ranking of the
nodes that guarantees that the most important nodes stay
in the candidate pool each iteration. We have also tested
simply throwing away the nodes with less than a fixed num-
ber of links. It was much faster to compute, but it did not
introduce a more densely linked node pool with each iter-
ation. This is because keeping nodes with many links to
nodes with few links is not really interesting and results in
a node pool with too many unimportant nodes compared to
the node centrality based approaches.

6. IMPLEMENTATION
To demonstrate our framework, we have indexed DBpedia
and tested the performance of a test set with random queries.
We have implemented our algorithm in Python using Numpy
and expose it as a REST Service2 with Linked Open Data3

extracted from Wikipedia: the DBpedia dataset [3]. DBpedia
defines Linked Data URIs for millions of concepts, many
other initiatives create links from their datasets to DBpedia,
making DBpedia the most centralized dataset on the Web.
We use the ”Semantic Information Retrieval Engine”(SIREn)
as index on which our algorithm checks resources. SIREn
is a specialized Solr extension for Linked Data [7]. Solr is
an HTTP layer over Lucene, the well-known indexing sys-
tem for textual data lookup. SIREn extends Solr to allow
indexing and querying of Linked Data resources. We con-
struct views based on the queried paths such as for example
in Figure 1.

2http://pathfinding.restdesc.org (last access: March 2013)
3Open Data represented as RDF



Figure 1: The relations between found paths expose
frequently returning resources such as United States.

7. RESULTS AND EVALUATION
In order to evaluate our approach, we store data about re-
trieved paths: source, destination, all the hops of the path
with the meaning of the links between them and the execu-
tion time. We check the average length of found paths and
we measure the fraction of paths found within various time
frames. A found path is relevant if it occurs within a tolera-
ble time for the users. Depending on the context and the size
of the dataset this time may vary. We measure the hitrate,
distribution of execution time and path lengths for a testset
containing 10000 random path calculations randomly among
200 DBPedia resources (popular cities, countries or brands).
The total indexed dataset (based on DBPedia version 3.8)
contains 10.8M resources. We set the stop condition for the
algorithm on a path length of 12.

Meaningfulness
The found paths should not be trivial, for example Paris
and Barack Obama could have been linked because Barack
Obama lives in the White House in Washington DC. Both
Paris and Washington DC are cities and this would be a very
short and relevant path. This is however not that meaning-
ful for most users. Executing a search for path between Paris
and Barack Obama gives output as in Table 4.

Path
:Barack Obama :isPresidentOf :Joe Biden
:Joe Biden :religion :Catholic Church
:Catholic Church :isReligionOf :Bertrand Delanoe
:Bertrand Delanoe :isMayorOf :Paris

Table 4: Output for the search for a path between
Paris and Barack Obama

We observe that the path goes over Bertrand Delanoe and
the shared religion with Joe Biden. This is still a simple re-
sult but it already exposes a route that is meaningful. This
is achieved by the introduced weighting and heuristics. Since
DBpedia contains a lot of trivia facts, the exposure of even
this result shows the potential of our approach. Especially
since the above computation took just 0.68s there is defi-
nitely margin for more complex logic should the use case

require or tolerate it.

Hitrate
The hitrate of our algorithm is above 95% which is high,
considering the relatively small number of resources that had
to actually checked compared to the size of the entire dataset
(10.8M resources). Checking a resource means retrieving the
resource from the index and identifying the linked resources.
This is under 6000 in most of the cases as shown in Figure 2.
These results indicate that popular concepts on DBpedia are
well interlinked and form a dense graph. Our optimization,
with PageRank to reduce the rank of the adjacency matrix,
does not eliminate many possible results.

Figure 2: More than half the paths required less
than 500 resources to check.

Path length
The mean length of the calculated paths is about 4 hops.
The mean of the path length values is µ = 4.1. The sud-
den dip in frequency for paths with length 4 is due to the
test set with a random choice of starting points and des-
tinations. The majority of these resources were geograph-
ical and are thus by nature linked with fewer steps than
we would averagely expect. Nevertheless, the distribution
of the path lengths approximates a gamma function with
µ = 3.4. A phylogenetic tree or evolutionary tree shows the
relationships among various (biological) entities based upon
similarities between their characteristics. Our heuristic, the
Jaccard, takes into account the similarity between resources’
predicates (equivalent to characteristics) for finding a link
between two resources. Our algorithm finds paths among a
combination of two trees which are in structure similar to a
phylogenetic tree. One tree which has as root the source and
the other tree which has the destination as root. Numeri-
cal findings from Mir et al. confirm that the distribution of
the distance, or path length, between two nodes in a phy-
logenetic tree equiprobably chosen, approximates a gamma
distribution [22].
The probability to find a path is very low from a certain
path length. Because of the gamma distribution we safely
state that this justifies the choice of a termination of the



algorithm after a fixed amount of steps. Most of the path
lengths are centered around the statistical centralities the
lower and upper boundary of the statistical mean and the
mean of the gamma distribution.

Figure 3: Normalized distribution of found path
lengths has a peak of 3 near µ = 3.4 of the fitted
gamma distribution.

Execution time
The time complexity of A* depends on the complexity for
the evaluation of the heuristic. The evaluation of our heuris-
tic, the Jaccard, is linear to the number of predicates for the
resources. Using our optimization we retained the linear ex-
ecution time and have results in the cases in which we found
a path despite the optimizations. We have approximated a
scatterplot in Figure 4 with a linear curve. A* is guaranteed
to find a path if the resources are connected. However with
our optimization this is no longer the case. Instead, we have
optimized the execution speed opposed to when there is no
optimization. The execution time reflects our choice for the
Jaccard as a heuristic for pathfinding in linked data with
A*.
We can find most of the paths within an tolerable amount
of time, a tolerable time for users for information retrieval
is maximum 2 seconds [24]. The algorithm finds 60% of the
paths within 2 seconds. Figure 5 shows the cumulative dis-
tribution of the execution times. With a notification to the
user the tolerable time could extend to 10 seconds or even
more. In 10 seconds we find a path for more than 95% of
the queries.
We notice furthermore in Figure 6 that there is a linear
relation in logarithmic space between execution time and
path length. The results for longest paths with length 11
and 12 (excluded from the plots) are not relevant as they
do no not occur frequently enough compared to the others.
There is almost no difference between a path of length 1 and
length 2 because other side-effects such as set-up time have
in impact when the total execution time is in the order of
20 ∼ 50ms. This is what we could expect as the number
of resources to check increases exponentially with increasing
path length, see Figure 7. The use of an optimal index that
ensures a constant retrieval time is crucial as the number

Figure 4: Execution time (y) is approximately a lin-
ear function of the checked resources (x) y ≈ 4.4x+k

Figure 5: The cumulative distribution of execution
time shows that most of the paths can be found with
the lowest execution time ranges.

of resources to check increases exponentially with increasing
path length. The execution time is linear compared to the
number of checked resources. This is ensured because the
time to retrieve resources is also linear if the time to retrieve
each resource from the index is always constant.

8. CONCLUSIONS AND FUTURE WORK
Pathfinding algorithms have always been around, especially
embedded in applications such as navigation systems. In
this paper we have elaborated on a more generic approach
for pathfinding using Linked Data and an optimised A*
algorithm. As a heuristic, we have chosen the Jaccard.
This choice keeps our execution time linear to the number
of resources needed to check for each query as explained
in Section 7. To achieve interesting paths we optimized
the weights to take into account the semantic properties of
Linked Data. Further optimisations are applied to the A* al-
gorithm to speed up evaluation. We introduced a reduction



Figure 6: The execution time in function of path
length appears to be linear in a logarithmic scale.

step of the matrix based on node centrality. This reduc-
tion step reduces the rank of the adjacency matrix, without
throwing away many possible solutions, as explained also in
Section 7. We have demonstrated that using Linked Data
in combination with an index enables generic pathfinding to
work in very large datasets with a tolerable time for users.
This contribution demonstrates a graph-search approach to
explore the connectivity of resources (within DBpedia in this
case). What makes this work interesting is our successful
demonstration that the outcome is useful. We tried differ-
ent search algorithms and discuss pros and cons. A major
contribution is our approach to minimize the size of the can-
didate pool of nodes in order to optimize queries and increase
the quality of the resulting paths. For instance, we tested
different weighting algorithms (PageRank, HITS, SVD) and
explain pros and cons before finally applying the PageR-
ank algorithm. We did a detailed evaluation (performance
and quality metrics). Another contribution is the choice of
heuristics and considering the effect they have on the result
set, determining how they lead to improved performance in
controlled settings. The main question will be how or if the
A* algorithm itself could be adapted to further improve the
speed of execution with increasing path lengths.
For future work, we will look into possibilities for using the
pathfinding algorithm as a semantic distance metric: if we
apply our method to e.g., WordNet concepts, the distance
between two WordNet concepts can be a measure for the se-
mantic relatedness of the concepts. As a semantic distance
metric, we want to use the path length between two con-
cepts of a vocabulary in a specific context. To enable this,
we will have to refactor our algorithm to take into account
context parameters in the search for a path, instead of just
a heuristically optimized path. We will further evaluate our
algorithm by applying it to different datasets and allowing
the user to configure the nature of the semantic connections
of the desired relation between the resources. This means
we have to extend and modify our currently selected opti-
misations, i.e., the optimisation which reduces rank of the
adjacency matrix using the PageRank metric. This opti-
mization now stands in the way of guaranteeing the found

Figure 7: The number of checked resources grows
exponentially with path length except when the
amount of test queries is not high enough to draw a
conclusion (path length 10 or 11).

path is the most suitable path for a specific context as this
is not being taken into account. For example when a spe-
cific path would be of interest for children rather than adults
in a museum for example or in a biomedical context where
relations want to be exposed taken into account the back-
ground of the expert who is querying. Such context sensi-
tive paths would require modifying the edge weights eacht
time given a new target audience such that preference can
be given to a more suitable path, rather than the current
default weights we have introduced. Without current opti-
misations, especially the rank reduction, the adjacency ma-
trix will grow exponentially. As a consequence, this matrix
could quickly hit the memory ceiling and the performance of
our algorithm will deteriorate. GPU accelerated pathfind-
ing could solve this issue. It could increase the performance
of our algorithm by exploiting the concurrency the GPU of-
fers. At the same time, another graph data structure can
help in reducing the memory footprint. The adjacency ma-
trix requires an O(N2) footprint, independent of the num-
ber of edges in the graph; and adjacency lists consumes
O(N + E) memory space for both directed and undirected
graphs (N = number of nodes, E = number of edges).
Future work will go in this direction.

9. ACKNOWLEDGMENT
The research activities that have been described in this pa-
per were funded by Ghent University, iMinds (Interdisci-
plinary institute for Technology) a research institute founded
by the Flemish Government, the Institute for the Promotion
of Innovation by Science and Technology in Flanders (IWT),
the Fund for Scientific Research-Flanders (FWO-Flanders),
and the European Union.



10. REFERENCES
[1] R. Bellman. On a routing problem. Quart. Appl.

Math., 16:87–90, 1958.

[2] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee.
Linked data on the web (ldow2008). In Proceedings of
the 17th international conference on World Wide Web,
WWW ’08, pages 1265–1266, New York, NY, USA,
2008. ACM.

[3] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,
C. Becker, R. Cyganiak, and S. Hellmann. DBpedia -
a crystallization point for the web of data. Web
Semantics, 7(3):154–165, Sept. 2009.

[4] B. Cherkassky, A. Goldberg, and T. Radzik. Shortest
paths algorithms: theory and experimental evaluation.
Mathematical programming, 73(2):129–174, 1996.

[5] D. Croes, F. Couche, S. J. Wodak, J. van Helden,
et al. Inferring meaningful pathways in weighted
metabolic networks. Journal of molecular biology,
356(1):222–236, 2006.

[6] X. Cui and H. Shi. Astar-based pathfinding in modern
computer games. International Journal of Computer
Science and Network Security, 11(1):125–130, 2011.

[7] R. Delbru, S. Campinas, and G. Tummarello.
Searching web data: An entity retrieval and
high-performance indexing model. Web Semantics:
Science, Services and Agents on the World Wide Web,
10:33–58, 2012.

[8] L. Dice. Measures of the amount of ecologic
association between species. Ecology, 26(3):297–302,
1945.

[9] E. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[10] C. H. Q. Ding, X. He, P. Husbands, H. Zha, and H. D.
Simon. PageRank: Hits and a unified framework for
link analysis. In SDM, 2003.

[11] T. Eliassi-rad and E. Chow. Using ontological
information to accelerate path-finding in large
semantic graphs: A probabilistic approach, 2005.

[12] P. Hart, N. Nilsson, and B. Raphael. A Formal Basis
for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and
Cybernetics, 4:100–107, 1968.

[13] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE
Transactions on, 4(2):100–107, 1968.

[14] B. Haslhofer, E. Momeni Roochi, B. Schandl, and
S. Zander. Europeana rdf store report. 2011.

[15] B. He, J. Tang, Y. Ding, H. Wang, Y. Sun, J. H. Shin,
B. Chen, G. Moorthy, J. Qiu, P. Desai, and D. J.
Wild. Mining relational paths in integrated biomedical
data. PLoS ONE, 6(12):e27506, 12 2011.

[16] P. Heim, S. Lohmann, and T. Stegemann. Interactive
relationship discovery via the semantic web. In The
Semantic Web: Research and Applications, pages
303–317. Springer, 2010.

[17] R. F. Helm and M. Potts. Algorithms for storytelling.
IEEE TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, 20(6):1, 2008.

[18] M. S. Hossain, M. Narayan, and N. Ramakrishnan.
Efficiently discovering hammock paths from induced

similarity networks. arXiv preprint arXiv:1002.3195,
2010.

[19] S. Kulkarni and D. Caragea. Computation of the
semantic relatedness between words using concept
clouds. In KDIR, pages 183–188, 2009.

[20] G. Laporte. The vehicle routing problem: An overview
of exact and approximate algorithms. European
Journal of Operational Research, 59(3):345–358, 1992.

[21] S. Maharajan. Performance of native SPARQL query
processors. Master’s thesis, Uppsala University, 2012.

[22] A. Mir and F. Rosselló. On the distribution of the
distances between pairs of leaves in phylogenetic trees.
In BIOTECHNO 2011, The Third International
Conference on Bioinformatics, Biocomputational
Systems and Biotechnologies, pages 100–103, 2011.

[23] J. L. Moore, F. Steinke, , and V. Tresp. A Novel
Metric for Information Retrieval in Semantic
Networks. In Proceedings of 3rd International
Workshop on Inductive Reasoning and Machine
Learning for the Semantic Web (IRMLeS 2011),
Heraklion, Greece, 5 2011.

[24] F. Nah. A study on tolerable waiting time: how long
are web users willing to wait? Behaviour &
Information Technology, 23(3):153–163, 2004.

[25] M. Vander Sande, R. Verborgh, S. Coppens,
T. De Nies, P. Debevere, L. De Vocht, P. De Potter,
D. Van Deursen, E. Mannens, and R. Van de Walle.
Everything is connected: Using Linked Data for
multimedia narration of connections between
concepts. In Proceedings of the 11th International
Semantic Web Conference Posters and
Demonstrations Track, 11 2012.


