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ABSTRACT
RDF is the common data model to publish structured data
on the Web. RDF data sets are given as subject-predicate-
object triples and typically are represented as directed edge-
labeled graphs. To make the information represented by
such graphs comprehensible, RDF-schema (RDFS) provides
concepts to define a class-structure as part of the given RDF-
graph and thus supports a more abstract view on the data
set. In this paper we follow a different approach and propose
to make an RDF graph more comprehensible by reducing its
size by partitioning to discover subgraphs which are similar
with respect to their structure. The methods applied to de-
rive a partition are based on bisimulation and agglomerative
clustering. We demonstrate the usefulness of the approach
by applying it on several synthetic and one real world RDF
datasets.

1. INTRODUCTION
RDF (Resource Description Framework) and RDFS (RDF
Schema) constitute the standard model for data publishing
and interchange on the web [1]. There is an increasing num-
ber of RDF data sets being published on the web. An im-
pressive example demonstrating the wide range of available
data sets is given by the LOD (Linked Open Data) cloud [2],
which is formed out of a remarkable number of interlinked
RDF data sets. To make these data sets useful in practice,
meta-information can be assigned describing the character-
istics and structure of a data set at hand in appropriate de-
tail. As a bridge between the publishers and users of RDF
data, W3C proposes the VoID-vocabulary (Vocabulary of
Interlinked Datasets) [3]. However, the VoID-vocabularies
intention mostly is to make only statistical and linking in-
formation about a data set explicit and not its structure in
some detail. A tool to generate voiD-annotations automat-
ically which, to a certain extend, takes also structure into
account is described in [4].

RDF provides a means of asserting facts about certain ob-
jects in the form of (subject, predicate, object) triples, re-
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spectively (s, p, o)-triples. The intended semantics is that
subject is related to object via predicate. RDF data most
intuitively is represented by an edge-labeled directed RDF
graph G, where each (s, p, o)-triple gives rise to an edge
directed from s to the o carrying as label p. We write
G = (V,L,E), where V is the set of nodes, E the set of
edges and L an arc-labeling function. In this paper we will
concentrate on the question how the size of a given RDF
graph can be reduced to a considerably smaller reduced RDF
graph Gr without losing too much of the original inherent
structure. This goal is related to several lines of research.
Size reduction can be achieved by extracting a schema of an
RDF graph. In certain cases this task may be eased when
RDF data already contains RDFS type information or even
is linked to an expressive ontology. However, as the inten-
tion of RDF is to provide an open minimally constraining
way for representing information, the quality of an existing
typing remains questionable. Examples for work related to
schema extraction are [5, 6, 7, 8]. Another line of research
is motivated by the construction of a path-index to make
the evaluation of structure-aware queries on an RDF graph
more efficient (e.g. [9, 10, 11, 12, 13]). Moreover, schema
extraction is related to the techniques developed for ontol-
ogy alignment, as matching two ontologies may contain the
subtask of reducing the size of the input ontologies (cf. e.g.
[14, 15]).

To reduce the size of a RDF graph G = (V,L,E) the ap-
proach presented in this paper is based on finding a partition
P = {B1, . . . , Bn} of the set of nodes V , where the elements

of P are the nodes of the reduced graph Gr. Edges B
a→ B′

are introduced in Gr whenever there exists an edge p
a→ p′

in G, where p ∈ B and p′ ∈ B′. The ultimate goal of our
approach is to group only such nodes p, p′ into a common
block B of P whenever they are similar. The notions of
similarity we shall use take the paths originating at p and
p′ into account and will be defined later in the paper. We
evaluate our method on different well-known RDF datasets
and will demonstrate the possible trade-off between strength
of similarity and size of reduction.

Technically, our approach consists of a bisimulation-step [16]
followed by an agglomerative clustering-step [17]. Similar at-
tempts have been conducted before, e.g. [5, 13, 11]; however
in [5] for similarity only depth 1 is considered and [13, 11]
do not combine bisimulation and clustering. The contribu-
tion of the current paper is a discussion of the interplay of
bisimulation and agglomerative clustering with the goal to



reduce the size of an RDF graph while keeping its structure
as much as possible. The paper is organized as follows. In
Section 2 we demonstrate the usefulness of bisimulation for
characterizing an RDF graph and in Section 3 we continue
with discussing agglomerative clustering. Section 4 presents
our experiments and Section 5 concludes the paper.

2. SIMILAR STRUCTURES BY BISIMULA-
TION

Bisimulation allows us to define sets of nodes of an RDF
graph which cannot be distinguished by looking at the se-
quence of predicates of their paths. The following definitions
are taken from [18] with only minor modifications to adapt
them to RDF graphs. Let G = (V,L,E) be an RDF graph.
A binary relation R ⊆ V × V is a strong bisimulation if for
all p, q ∈ V , such that pRq, the following two conditions
hold. (1) If p

a−→ p′, then ∃q′ ∈ V : q
a−→ q′ ∧ p′Rq′. (2) If

q
a−→ q′, then ∃p′ ∈ V : p

a−→ p′ ∧ p′Rq′. If a strong bisim-
ulation R exists such that pRq, then p and q are strongly
bisimilar.

The problem we are interested in is to find the equivalent
classes of the largest strong bisimulation of the RDF graph,
i.e. to find a partition of V such that the corresponding
blocks are largest with respect to bisimilarity of their el-
ements. Influenced by [18], the algorithm to compute a
strong bisimulation we used is a implementation of the naive
method [19]; in spite of the worst-case time-complexity of
O(MN +N2), where N is the number of nodes and M the
number of edges in the RDF graph, for our current analysis
this was acceptable (see next section).1 The algorithm starts
with putting all subjects in one block and iteratively splits
blocks of a partition to derive a new partition until any two
members of every block have the same signature with re-
spect to that partition. Again adapting definitions from [18]
the signature of a subject s with respect to a certain parti-
tion P is the set of s’s outgoing edges to objects in blocks of
P: sigP(s) = {(a,B) | s a−→ o and o ∈ B ∈ P}. Let B be
a block in some partition of V . B is called final, if it also is
contained in the partition of the strong bisimulation.

Assume that n iterations are required to compute a strong
bisimulation. If only k, 1 ≤ k ≤ n, iterations are performed,
the blocks of the resulting partition define a k-bisimulation.
Intuitively the nodes in a block of a k-bisimulation are equiv-
alent with respect to their paths of length up to k. As
demonstrated in Figure 1, the RDF graph shown in (a) has
a strong bisimulation (b) and gives rise to the partitions
shown in (c). The parameter k in the table indicates the
respective partitions for k-bisimulation. It is interesting to
see for example, that up to k = 2 subjects {2, 3, 4} form a
block; however after one iteration more this block is split
as these subjects are related with objects depending on dif-
ferent predicates. Note further, that certain blocks become
final before the final iteration k = 3.

Strong bisimulation gives us a rather strong measure of sim-
ilarity: for any two subjects s, s′ in the same block B it is

1Recently an efficient external-memory based algorithm for
bisimulation has been presented [20]; however this algorithm
cannot handle cycles in a graph and therefore can not be
applied on RDF datasets.

k partition new final blocks
1 {1, 8}, {2, 3, 4}, {5, 6, 7, 9}, {10} 1
2 {1}, {8}, {7}, {2, 3, 4}, {5, 6, 9}, {10} 4
3 {1}, {8}, {7}, {2, 3}, {4}, {5, 6, 9}, {10} 2

(c)

Figure 1: RDF graph (a), its strong bisimulation indicated
by a reduced representation of the graph whose nodes are
the blocks of the according partition which is exhibited in
(c). The table contains the partitions resulting from k-
bisimulation, where k = 3 forms a strong bisimulation.

data set subjects objects predicates edges
SP2Bench250K 50K 100K 61 250K
LUBM2 40K 20K 32 240K
LUBM2R 40K 20K 35 360K
BSBM500K 48K 100K 40 500K
SwDogFood 25K 55K 170 290K

Figure 2: RDF data sets analyzed.

guaranteed that for each path s
a1→ s1

a2→ s2
a3→ . . . orig-

inating at s there exists a path originating at s′ of the
same length which carries the same sequence of predicates

s′
a1→ s′1

a2→ s′2
a3→ . . ., where in addition si, s

′
i are elements

of the same block Bi, i ≥ 1. Therefore, we do not lose
structural information when instead of G we consider a re-
duced graph Gr whose nodes are exactly the blocks of its
strong bisimulation and labeled edges between such nodes
are drawn whenever an edge exists in the original graph be-
tween elements of the respective blocks with the same label
(cf. Figure 1). However it has been mentioned in several
papers, e.g. [13, 10], that the reduction of the number of
nodes strongly depends on the structure of the RDF graph
under consideration and therefore a limited notion of simi-
larity based on k-bisimulation seems to be the only viable
way.

For our analysis we have chosen four benchmarks (SP2Bench
[21], LUBM [22], BSBM [23]) and one real dataset (SwDog-
Food [24]). Figure 2 gives more details; LUBM2R in contrast
to LUBM2 contains also the inferable triples. As efficiency
of the computation of a bisimulation is not a topic of this
paper and benchmarks typically reflect the same structure
when varied in their size, the sizes of our datasets are rather
modest. In Figure 3 we summarize our results.

The reduction of size of the RDF dataset obtainable by k-
bisimulation is of interest. If the number of partitions is
small even for large k, then this indicates a homogeneous
structure as it might result from an existing typing of the



subjects in the RDF dataset - similar to a typing of a re-
lational database. In contrast, a large number of blocks
even for small k indicates structural heterogeneity or ab-
sence of typing. For datasets originating from benchmarks
SP2Bench, BSBM and LUBM2 we can observe a reduction
by 99% or even more which indicates a rather regular un-
derlying graph structure. However for benchmark dataset
LUBM2R and real dataset SwDogFood only a reduction of
25% - 60% could be obtained. For these datasets many
of the blocks must have only one or two elements. In the
next section we shall demonstrate, that also in such cases
a considerable reduction of the size of the dataset can be
achieved. While this observation clearly underlines the limi-
tations of bisimulation, our analysis however shows that even
for rather small k the quality of the blocks is surprisingly
high, as most of the blocks are already final with respect
to strong bisimulation. For example, for SwDogFood a 3-
bisimulation gives us a reduction of the input size by 35%
where nearly 95% of the blocks are final, i.e. contained in
the partition of strong bisimulation. Thus, when we replace
the initial RDF graph G by its reduced version Gr according
to the partition resulting from 3-bisimulation, there will be
only a small corruption of the initial structure of G.

3. SIMILAR STRUCTURES BY CLUSTER-
ING

Now we are going to construct new partitions starting from
the partition which is the result of k-bisimulation for some
RDF graph G with respect to a chosen k. To this end we
consider the reduced RDF graph Gr = (V r, Er) and com-
pute a similarity matrix S, which contains the pairwise sim-
ilarity values between each pair of nodes in Gr, i.e. each
pair of blocks in the k-bisimulation. The following notion of
similarity weakens the strong on bisimulation based form of
similarity used so far.

Let v′ be a node in Gr, then Tσ(v′) is the instance tree of
Gr which contains all nodes and edges which can be reached
when following all possible paths in Gr starting at v′ up to
length σ. Now, let Tσ(v′), and Tσ(w′) be two such instance
trees. The intersection intersect(Tσ(v′), Tσ(w′)) of the in-
stance trees is a tree whose root represents v′ and w′ and
further contains all the rooted edge-labeled paths which ap-
pear in Tσ(v′) and as well in Tσ(w′). Let size denote the
number of nodes of a tree under consideration. To decide
whether or not nodes are to be treated as similar we de-
fine the similarity sim(v′, w′) between nodes (representing
blocks of a partiton) v′, w′ of Gr by

simσ(v′, w′) =
size(intersect(Tσ(v′), Tσ(w′)))

(size(Tσ(v′)) + size(Tσ(w′)))/2
.

The notion of intersection trees is borrowed from [25], where
it is introduced as basis for the design of kernel methods used
for a learning task for prediction of attributes and links. In
contrast to this we use intersection trees as basis for our no-
tion of similarity inside unsupervised clustering. The simi-
larity between each pairs of the internal nodes in Gr(V r, Er)
is calculated and stored in the similarity matrix S.

A hierarchical clustering method is a procedure for trans-
forming a similarity matrix into a sequence of nested parti-
tions. We use an agglomerative algorithm [17] for the pur-

data set k blocks %subjects final
SP2Bench250K 1 171 0.004 97

2 592 0.012 576
* 3 609 0.013 609
LUBM2 1 27 0.001 13

2 60 0.002 33
3 124 0.003 93
4 203 0.005 200
5 206 0.005 204
6 209 0.005 208

* 7 210 0.006 210
LUBM2R 1 27 0.001 6

2 89 0.002 29
3 734 0.02 373
4 11884 0.31 10157
5 16167 0.42 16129

* 6 16208 0.42 16208
BSBM500K 1 49 0.001 31

2 483 0.01 482
* 3 484 0.01 484
SwDogFood 1 972 0.04 466

2 10161 0.40 8865
3 16432 0.65 15657
4 18604 0.74 18295
5 19082 0.75 18973
6 19273 0.76 19243
7 19302 0.76 19290
8 19316 0.76 19314
9 19317 0.76 19316

* 10 19318 0.76 19318

Figure 3: Bisimulation anlysis. For each dataset k indicates
the result of k-bisimulation. By * the corresponding row
represents a strong bisimulation. Column blocks states the
number of blocks of the respective k-partition and column
final the number of blocks inside that partition which are al-
ready contained in the partition of strong bisimulation. Col-
umn %subjects states the quotient of the number of blocks
by the total number of subjects of the RDF dataset.

pose of applying the hierarchical clustering. Before explain-
ing the agglomerative algorithm we will define the concepts
of partition and nested partitions.

Let IGr be the set of internal nodes in Gr defined as: IGr =
{v ∈ V r : ∃w ∈ V r ∧ (v, w) ∈ Er}. Elements of IGr are
the objects to be clustered. A partition P over IGr breaks
IGr into subsets {C1, C2, . . . , Cm} under the following condi-
tions: (i) for i and j from 1 to n, where i 6= j ⇒ Ci∩Cj = ∅,
(ii) C1 ∪C2 ∪ . . .∪Cm = IGr . The components of the parti-
tion are called clusters. Partition P is nested into partition
X if every cluster of P is a subset of a cluster of X .

The agglomerative algorithm for hierarchical clustering is
taken from [17] and is called Agglomerative Algorithm for
Complete-Link Clustering; it starts by placing each internal
node of the graph Gr in an individual cluster, and contin-
ues building the threshold graph, which is an undirected,
unweighted graph without self-loops or multiple edges. The
nodes of the threshold graph are the internal nodes of the
graph Gr (IGr ). A threshold graph Gτ (Vτ , Eτ ) is defined
for a certain similarity value τ by inserting an edge (i, j) be-
tween the nodes i and j if the objects i and j at least have
a similarity value of τ . That is, (i, j) ∈ Eτ if and only if
S[i, j] >= τ .
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Figure 4: IntraSim for each similarity threshold.

Initially the algorithm builds the threshold graphG∞ (which
contains no edges), and then it proceeds by visiting the en-
tries of the similarity matrix S in a descending order over
their values S[i, j]. For each similarity value τ = S[i, j], an
edge between the nodes i and j is added in the threshold
graph Gτ . Constructing the threshold graph in this way,
enables us to discover similar objects and to group them
into one cluster. Two clusters are considered to be similar if
there is an edge connecting each pair of their components,
i.e the induced graph formed by their components and all
the edges related to these components has a clique. The al-
gorithm continues by visiting all the similarity values until
one of the following conditions is met: (i) A given similar-
ity threshold is reached, or (ii) The algorithm visited all the
values of the similarity matrix, or (iii) All the nodes are
grouped in one cluster. For each similarity value the algo-
rithm constructs the corresponding partition and adds it to
the partitions list which is the output of the algorithm.

4. EXPERIMENTAL RESULTS
In this section we present the experimental results obtained
by applying bisimulation and agglomerative clustering al-
gorithms successively on the data sets described in Fig-
ure 2, where from the two LUBM-versions we considered
only LUBM2. We chose σ = k as max-value for the defini-
tion of similarity of the nodes in Gr, where k is the number
of iterations needed for strong bisimulation: SP2Bench:k=3;
LUBM2:k=7; BSBM500K:k=3; SwDogFood:k=10. The ag-
glomerative clustering algorithm produces a list of partitions
where each partition P is composed of several clusters, and
is induced by a similarity value θ and is identified by the
number of clusters (|Pθ|). In order to evaluate the results,
we are interested in two measures: the size of the partition
|Pθ| which reflects the reduction in the size achieved by the
algorithm, and the partition intra-similarity.

The intra-similarity of a partition Pθ is the average over the

cluster intra-similarity values:

IntraSimPθ =
1

|Pθ|
∑
c∈Pθ

IntraSimc.

The cluster intra-similarity IntraSimc is calculated for each
cluster c of size n as the average of the similarity values
among the cluster components:

IntraSimc =
1

λ

n∑
i<j

S[c[i], c[j]],

where λ = n(n−1)
2

the number of edges among all the nodes
of the induced graph for cluster c. Figure 4 shows the
IntraSimPθ values for all the partitions Pθ: 1 ≤ θ ≤ 100
produced by the algorithm. The initial value of IntraSimc

for each cluster is zero. As the algorithm proceeds, it starts
joining clusters with most similar components into new clus-
ters, which results in an increasing IntraSimc for those new
clusters, causing the IntraSimPθ value to raise gradually
until reaching the maximum value. Figure 4 depicts this
behaviour for all the data sets.
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For each dataset, we are interested in the partition which
corresponds to the maximum IntraSimPθ value, as such a
partition is expected to exhibit clusters where the most simi-
lar objects are grouped in one cluster over all the partition’s
clusters. There is a clear trade-off between the similarity
of the components of a cluster and the size of the parti-
tion. Figure 5 depicts the relation between IntraSimPθ
and the partition size (|Pθ|). The maximum IntraSimPθ is
associated with a relatively small number of clusters, and,
if we are interested to reduce the number of clusters, this
can be achieved by choosing a smaller similarity threshold
while keeping an IntraSimPθ value still close to the max-
imum. For example, for SP2Bench250K and SwDogFood
data sets, where the number of clusters are 85 and 1918,
respectively, the corresponding curves in Figure 5 show that
we can achieve a much smaller number of clusters when
choosing a partition implied by an IntraSimPθ value which
still is larger than 50% and thus still close to the maximum.

Finally we will comment on the quality of the obtained par-
titions. While a detailed analysis is beyond the scope of this
paper, a general discussion, however, can be outlined. To
decide, whether or not two subjects put into the same clus-
ter are indeed similar, we can look at the type-information
associated with them in the data set. For example, in data
set SwDogFood, roughly 22K of the 25K subjects have an
associated RDF type. Among those types many have been
deprecated2 and we replaced them as suggested. In Table 1
we summarize our analysis. For SwDogFood and SP2Bench
we have more clusters than types - this indicates that there
might exist interesting subtypes which so far have not been
used. For LUBM2 and BSB500K we have more types than
clusters, an indication for supertypes. We checked all clus-
ters for possible errors, where we call an assignment of a
subject to a cluster an error, when the type of this sub-
ject does not conform to any of the types of the majority
of the other subjects in the same cluster. For example, for
SwDogFood we found a cluster containing 21 subjects of
type ResearchTopic, while all other 36 subjects where of spa-
tial types MeetingRoomPlace, ConfereneVenuePlace, Room
and SpatialThing. Similarly, for LUBM2 we found a cluster
with two universities, where the other subjects in the cluster
were courses.

data set subjects RDF types clusters errors
SP2Bench 50K 9 85 0
LUBM2 40K 14 6 2
BSB500k 48K 9 7 0

SwDogFood 25K 43 1918 22

Table 1: General analysis

5. CONCLUSION
In this short paper we have presented our first results con-
cerning automatically partitioning an RDF dataset aiming
at a reduction of the size. The results of our experiments are
encouraging. Future work will aim on the analysis of larger
RDF datasets.
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