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Abstract. Client-based user modelling has already been studied and clearly has 

its place among generic approaches to the user modelling. It is especially advan-

tageous for lifelong user modelling as it can support the modelling in any time 

and any place including consideration of user privacy. Emergence of web 

browser extensions opens up possibilities of pure browser-based realisation of 

client-based user modelling. In this paper, we focus on the efficient representa-

tion of a generic user model inside a web browser, which forms the core part of 

browser-based user modelling framework in form of a browser extension. Effi-

ciency is crucial also from the lifelong perspective. We propose an efficient 

method of lifelog indexing and modelling various user characteristics inside the 

web browser. We evaluated properties of proposed representation and describe 

its applicability in some common use cases. 

1 Introduction 

In this modern era of ubiquitous computers in our everyday life, the need of ubiquitous 
lifelong user modelling approaches has emerged. With regard to the shift in human-
computer interaction from desktop computing to mobile, the decentralised client-based 
approaches have been encouraged to support variety of adaptation goals. From this 
ubiquitous perspective, the web browser seems to be an ideal choice for lifelong user 
modelling, since we use it everywhere, every day, on each device – be it a desktop 
computer, laptop, tablet or mobile phone. The emergence of new web technologies like 
HTML5 and support for powerful extensions makes the web browser a capable plat-
form suitable to perform user modelling and personalisation across the Web, while still 
keeping our user profile under our complete control, without the need to disclose our 
identity, browsing history or our user model to any third-party service. 

From the user modelling perspective, we have a tremendous choice in regards of 
user actions within a web browser. Not only we get a complete surfing history, but we 
get also the context of all actions such as mouse movements or other tabs opened at the 
same time. On the other hand, being on a client side, we need to focus much more on 
the efficiency of all user modelling processes and of all data structures used to capture 
our user model, since we are rather limited in resources compared to server. 



We developed BrUMo1 – a specialised web browser extension, which represents 
a browser-based instance of our user modelling and personalisation framework. Ac-
cording to statistics recorded within BrUMo, the average number of visited webpages 
can reach over 200 per day for some users. It is important to note that nowadays web 
pages often do not reload the entire content, but only its part is updated via AJAX. If 
we count all requests made by a single user, the average number of AJAX requests can 
grow up to over 600 per day. If we are to extract and store keywords or other metadata 
of each visited webpage and update it according to all changes made within a single 
visit to index user knowledge or interests, the efficiency is really crucial. We need not 
only an efficient storage of the model in terms of required allocated space and memory, 
but we also need to consider efficiency of perpetual retrieval of information from the 
model. 

In this paper, we propose mechanisms to index various user characteristics captured 
in the user model in an efficient manner. We have extended the concepts of some fun-
damental data structures like Patricia trie to design a user and a domain interest tree, 
which provide two perspectives of the user model. Although the usage of such basic 
data structures as well as their extensions is much broader than its application in user 
modelling, we consider it very important to deal with the efficient representation of 
user characteristics in the web browser as its resources and possibilities are still limited 
there in comparison with server-based or cloud-based solutions. 

2 Related Work 

In [4] an analysis of multiple challenges of cloud-based user modelling in favour of 
clients is presented. The authors propose to decentralise and push user models down to 
the client side and describe a sample PaaS (Personalisation as a Service) architecture. 
In [1] authors discuss the possibility of scenario where server is used only to update the 
profile and to perform personalised response computation, while all information is 
stored locally. The authors of [7] present an architecture of a client-side framework to 
provide adapted content. However, they use additional storage and management serv-
ers. There is also other user modelling framework called PersonisJ [3], which is spe-
cially aimed at Android phone platform. There is also an evaluation of its efficiency, 
which shows how it is important and thus also supports the importance of our work. An 
approach to web search personalisation described in [11] is based on a model of user 
interests coming from the user's web browsing history. It is realized as Mozilla Firefox 
extension, but only to collect the information about user. All computational work is 
done on the server. However, the author in [11] states the possibility of implementing 
it solely client-side, which would avoid the privacy concerns arising with server-based 
approaches. 

An exhaustive overview of what data can be captured directly in the browser is ana-
lysed in [14]. Another study in [5] shows what additional information about the user 
can be captured on client side by means of emerging Web 2.0 technologies. GINIS 
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framework [16] is one representative of browser-based systems. It is a customised 
tabbed Internet Explorer browser using .NET framework. Although not explicitly 
stated, we assume they used MS SQL database to log user actions, which is supported 
by their claim that “it is easy to log high-granularity data using the provided .NET 
framework”. From our perspective, GINIS framework has several disadvantages. It re-
quires user to install and use some non-standard specialised browser, which for example 
does not guarantee to receive important updates unlike the standard official releases. 
Moreover, they focus just on their single goal (to classify content as interesting or not) 
and build a decision tree based on user behaviour data. They do not present any general 
user model or other mechanisms to index their raw logs. Somewhat more relevant to 
our work is an example of browser-based user modelling system in form of an extension 
presented in [8]. There, authors mention that they use HTML5-based SQL database to 
store two tables – one for keywords with their corresponding frequencies and second 
for the visited webpages with their visit frequencies. Although this approach has more 
general user model and all the advantages of browser extension, it fails to provide some 
additional information about user, which can be required in context of lifelog creation 
as well as in some common personalisation scenarios. 

Yet another approach is to place the user modelling platform to the middle between 
the Web and a client in a form of specialised proxy. For instance, PeWeProxy is a proxy 
server, which builds a term-based user model representing the user’s interests from 
keywords and terms automatically extracted from web pages passing through the proxy. 
It shifts the personalisation part to the client using personalisation scripts embedded 
into the browsed web pages [10]. Various research extensions like estimation of user 
interests [6] and web search disambiguation [9] have already been developed for it, 
though all of them are also run within the proxy server. 

To summarise, it seems that there is a demand for pure client-side solutions to user 
modelling and personalisation, which address the problem of efficient representation of 
generic lifelong user model. Servers satisfy most of computational power and storage 
force requirements. Shifting to client however, requires more focus on this topic, since 
the possibilities and resources are generally much more limited. 

3 Representing the User 

Web (search) history analysis and keyword-based user models are becoming more and 
more popular solutions for user modelling [2]. Keywords representing users’ interests 
are relatively easy to acquire and they could be easily presented to a user (to justify or 
explain personalisation, to enable a user to scrutinise her model and provide an explicit 
feedback upon it). At the same time, their lightweight semantics provides a solid basis 
for personalisation. A nice example can be found in [13], where author uses a light-
weight folksonomy, which can be considered as a form of collaborative web surfing 
history, to infer similarity among users or visited documents. 

We use keyword-based representation to express various user characteristics such as 
interests, knowledge, goals, context of work, etc. For example, user interests are repre-
sented as weighted vector of terms, where each term is linked to some URL address 



recorded in the user browsing history. There are multiple terms for each URL and sim-
ilarly each term can be linked to multiple URLs. These links connecting terms with 
URLs are also weighted according to their mutual relevance. They denote the relevance 
of a web page at some URL to given term. Since the term represents a user interest, we 
can find out how interesting particular web page is by following the corresponding link. 
It is important to note the variability of terms that can stand for not just words extracted 
from read articles, but possibly other units like stems, lemmas or concepts. Similar log-
ical representation can be applied to other user characteristics, e.g. terms represent 
knowledge concepts or particular goals in educational domain. 

Currently, in our BrUMo platform, we use keyword extraction to infer user interests. 
To extract keywords from webpage, we combine multiple methods. First, we consider 
the content of webpage. We extract the article using Readability2 and utilise browser’s 
built-in functionality3 to obtain raw text. In further pre-processing we tokenise the text 
into words using jspos4 lexer, filter out stop-words and all words shorter than 3 charac-
ters and consider further only nouns as tagged by jspos POS tagger. With these feasible 
words extracted, we compute relevance of each word as an average of normalised TF-
IDF [15] and TextRank [12]. We normalise the TF-IDF value by text length. After-
wards, we look at keywords meta-tag in HTML structure and propagate these keywords 
by doubling their relevance value. The IDF values were obtained from Google N-gram 
corpus5. 

In this paper, we present two basic data structures to index user characteristics – user 
interest tree and domain interest tree. The user interest tree serves perfectly for indexing 
global user interest. However, a user can have different preferences in different do-
mains. These are represented by so called local interests, since they are significant only 
within a particular domain. Domain interest tree is designed to index these local inter-
ests. 

3.1 User Interest Tree 

User interest tree captures global user interests. By storing the terms representing those 
interests using a Patricia trie, we can easily execute all queries based on the term index, 
e.g., fast insertion/deletion or to iterate over all the terms stored in the tree in alphabet-
ical order. To enable retrieval of the topmost relevant terms to get the most relevant 
global user interests we extended the basic structure using a labelling technique which 
enables us to speed up the tree node traversal in an order of term relevance. 

Figure 1 depicts an example of such a labelled tree. It stores words and their rele-
vance (in brackets) PEACE (2), PENCIL (3), PEWE (5), SEBE (4) and SET (0). We 
label each sub-tree by the relevance of the most relevant term in it. Thus, we can easily 

                                                           
2 Readability – https://code.google.com/p/arc90labs-readability/ 
3 textContent property – http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-

20040407/core.html#Node3-textContent 
4 JavaScript part-of-speech tagger - http://code.google.com/p/jspos/ 
5 Google N-gram corpus – http://storage.googleapis.com/books/ngrams/books/datasetsv2.html 



retrieve the most relevant term in each sub-tree by following the path labelled by max-

imal value. The creation of such a tree is simple. The words are inserted in a common 

manner like into an ordinary Patricia trie. In addition to that, we update all vertices on 

the path from root to the inserted leaf node so that the above stated labelling rule holds 

true. 

 
Fig. 1. Labelled Patricia trie 

With such a labelled tree we propose following steps to iterate over all of the terms of 

a valid user interest tree in order of their relevance: 

1. Initialise empty array of results and two heaps. 

2. Initialise first heap by inserting the user interest tree root node in it. This heap always 

pops out the node labelled by maximal value. 

3. Initialise empty second heap. This one always pops out the most relevant node. 

4. Pop out node v from first heap. If it is empty, we have already traversed all nodes. 

5. If v represents a term (not just prefix), push it into the second heap. 

6. While there are nodes in the second heap with relevance not lower than label of v, 

pop them into the results array. If the desired count of results is reached, stop here. 

7. Push all children of node v into the first heap and continue with step 4. 

Every node is at worst once inserted and removed from each heap. Time complexity is 

therefore O(n×m×log2(n×m)) where n is the number of terms in the tree and m is the 

length of the longest term, which is asymptotically optimal. However, the advantage of 

this algorithm over a simple sorting of all terms is the ability to terminate it prematurely 

once we got the required number of terms. This can greatly reduce the running time of 

retrieval of just first k most relevant terms to O(k×m×log2(k×m)). Note that node rela-

beling is done with insertion/deletion in O(m). Another advantage is that we can use 

multiple different labels, so that we can retrieve also the most recently added term to 

get the context of user’s work. Additional labels are also important for managing the 

tree over longer time period and limit the overall tree size. Labels for the least relevant 

or the oldest terms can be used to remove such surplus terms from the tree since that 

could mean that user is interested in them no more. 

3.2 Domain Interest Tree 

Domain interest tree is similar to a user interest tree in its structure, but it is extended 

with some concepts of the generalised suffix tree. Unlike the generalised suffix tree, 



the domain interest tree does not need to store all the suffixes of strings, but only those 
suffixes that represent some subdomain. Thus, primary key in this tree is a URL address 
and its suffixes corresponding to different subdomains. Domain interest tree can also 
be labelled like in the case of the user interest tree, e.g., for each sub-tree, its root is 
labelled with a frequency value of the most frequent URL address within this sub-tree. 
Thus, we can easily determine the most frequent URLs. 

In addition, we store first k most relevant interests (terms) in each node within the 
sub-tree rooted at this node. This allows us to retrieve efficiently local interests within 
various subdomains. Constant k represents a trade-off between performance and preci-
sion. Higher k means that more terms are propagated to the parent node for the price of 
lower performance. If we need more than first k most relevant terms in a particular 
subdomain, we can recursively nest further to search the child nodes’ k most relevant 
terms until we reach the desired number of a user’s local interests. 

3.3 Lifelong perspective 

Despite the powerful built-in labelling technique, which is used to manage the tree and 
limit its size over longer time period, it is just not enough from the lifelong point of 
view. A single tree as it is, can be managed only within given time sliding window. The 
need of limiting the tree size arises from the fact that we are limited in memory and the 
naïve idea of simply building one huge tree out of the whole browsing history is indis-
pensable. 

Therefore, we propose to factorise the whole browsing history into multiple trees. In 
other words, we maintain one tree sliding over time and in regular time intervals, take 
a snapshot of it and store it into database. Moreover, we build a tree hierarchy out of 
these trees (user/domain interest trees) in order to get the most relevant terms for dif-
ferent time intervals at different abstraction level. We show a sample of such hierarchy 
in Figure 2. To create a tree on higher level of abstraction, we simply combine content 
of all underlying trees, but limit the size of the resulting tree to contain just the most 
relevant features. Using this tree hierarchy, we can easily get the overall lifelong-span-
ning characteristics, which are stored in the root. 

4 Application and Evaluation of User Model 

We designed our indexer with its underlying indexing data structures to achieve the 
best possible time and memory complexity for all needed operations to be ready for 
real-world lifelong user modelling and personalisation in a web browser environment. 
We evaluated main characteristics of the proposed data structures. User interest tree 
enables us efficiently: 

─ to retrieve the most relevant terms (e.g., user interests, concepts, context) 
─ to retrieve the latest updated terms (e.g., temporal interests, fresh knowledge) 
─ to retrieve the relevance of given term (e.g., how much is it interesting for user, how 

well she grasps given knowledge concept)  



─ to retrieve the most relevant web pages from user web browsing history for a given 

term (e.g., which pages are interesting, contain particular concepts)  

─ to retrieve the least relevant or the oldest accessed term, which can be considered for 

removal (e.g., user has no more this kind of  interest, has forgotten learned 

knowledge, changed context) 

Domain interest tree broadens these possibilities by enabling us efficiently: 

─ to retrieve the most relevant terms within given domain (e.g., local interests) 

─ to retrieve the most relevant web pages from user web browsing history within 

a given domain (which pages are interesting within a given domain, are representa-

tive for a given concept) 

─ to retrieve the most relevant domains/subdomains (e.g., which domain is the most 

interesting one, contains the best grasped concepts  

All these queries are just a top of the hill of possibilities. They represent only the most 

generic ones sufficient to cover most of common personalisation scenarios. There is 

much more of them depending on the chosen labels. All these queries (except those 

based on a simple term retrieval, which is linear to its length) can be done in time 

O(k×m×log2(k×m)) as we already analysed above (k being number of topmost terms 

and m the length of the longest of them) using presented algorithm.  

To wrap up this analysis and solve yet unanswered common question on magnitude 

of time complexity constant, we performed several experiments on a sample scenarios 

executed directly in the browser (see Table 1). We compare our indexer to various 

browser implementations of JavaScript object, which can be considered as the state-of-

art implementations of commonly used associative array data structure. Note that oper-

ations like retrieval of the most relevant terms is not supported by default in JavaScript 

object. JavaScript object allows only one type of index to be used, which is the term 

itself in this case. To simulate retrieval of the most relevant terms, we need to copy all 

items into an additional array and sort it by relevance. Therefore, the time efficiency is 

Fig. 2. Hierarchy of trees for different time and abstraction level. 



the same regardless of how many items we retrieve. Such operations are rather demand-
ing in various personalisation scenarios, since we want to recommend only the very 
relevant things (like movies, articles) and we do not need to bother with considering 
some less relevant interests (excluding local user interests, i.e. the most relevant terms 
within some particular domain, which are discussed in section about domain interest 
tree). 

Table 1. Run time comparison of selected data structures in different browsers 

Browser Data structure Term in-

sertion 

Retrieval 

by term 

Retrieval of 10 

most relevant 

terms 

Retrieval of 50 

most relevant 

terms 

Chrome 17 Our indexer 1.77 µs 0.53 µs 200 µs 560 µs 

Chrome 17 JS object 0.57 µs 0.04 µs 8650 µs 

IE 9 Our indexer 4.42 µs 3.54 µs 750 µs 1540 µs 

IE 9 JS object 2.37 µs 1.4 µs 34610 µs 

Firefox 11 Our indexer 9.33 µs 8.06 µs 1090 µs 3410 µs 

Firefox 11 JS object 1.7 µs 0.56 µs 13840 µs 

In our tests we used collection of 4 204 weighted terms (unique keywords potentially 
representing some reasonable interest) which were extracted by our BrUMo framework 
from web pages of a real user browsing history. All test results are given as an average 
of 100 test runs performed on Dell laptop with 2 GHz Intel Core 2 Duo under Windows 
7 64-bit. In retrieval of the most relevant terms, our indexer clearly outperforms all 
browsers’ implementations of JS object. Nonetheless, term insertion and term retrieval 
is still reasonably fast (in order of microseconds), which is sufficient for real-time usage 
in collaborative distributed lifelong personalisation. Interestingly, the ordering of 
browsers’ performance differs between our indexer and JavaScript object. 

5 Conclusions 

In this paper, we presented an efficient representation of user characteristics suitable 
for limited web browser environment. We described a powerful labelling technique to 
index various aspects of user model. We proposed a method of lifelog indexing as well, 
which makes it a complete lifelong user modelling component. We demonstrated the 
real-world performance of the proposed indexer within BrUMo framework. 

We focused on a widespread web browser environment, which implies computa-
tional limits and explains the importance of designing such low-level mechanisms for 
user model representation. Although straightforward in their principles, they are pow-
erful enough to accomplish various recommender tasks and supports both collaborative 
and content-based filtering approaches commonly used in today’s recommender sys-
tems. Since our experimental framework BrUMo enables communication among its 
multiple instances, users can be grouped together by comparing weighted vectors of 
their global interest (see section 3). Subsequently, similar users’ models can be queried 



to retrieve the intended collaborative recommendations. As for content-based recom-
mendation, this is even more straightforward since we already have user feature vectors. 
These can be retrieved by given webpage or web application to compare it to individual 
item feature vectors to compute the most relevant items. Since we are client-based, we 
avoid even the cold-start problem in both cases by sharing our private model (or parts 
of it) with multiple web systems. 
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