Kaos4SOA - Extending KAOS Models
with Temporal and Logical Dependencies

Benjamin Nagel, Christian Gerth, Jennifer Post, and Gregor Engels

s-lab - Software Quality Lab
University of Paderborn
Zukunftsmeile 1
33102 Paderborn, Germany
{bnagel, gerth, engels}@s-lab.upb.de, jennifer.post@me.com

Abstract. In requirements engineering for service-oriented systems,
stakeholder objectives are described by goal models from which business
process models are derived that define the required service compositions.
A goal-based requirements specification should ensure completeness of
the goals that need to be achieved as well as the consideration of tem-
poral and logical dependencies between goals. Recent approaches lack
the ability to elicitate and specify the stakeholders’ knowledge about de-
pendencies between goals that need to be considered in the derivation
of business processes. We present Kaos4SOA, an extended goal notation
for the explicit specification of goal dependencies and briefly describe
how existing approaches can be extended to validate the consistency of
business processes against these dependencies. The application of our
approach is supported by the implemented KaosdSOA modeling work-
bench.

Keywords: Requirements engineering, goal models, dependency mod-
eling, business process models, service-oriented systems

1 Introduction

Following the paradigm of service-oriented architectures [4], today’s information
systems are developed by composing loosely coupled services into highly flexible
service compositions. Requirements engineering for such systems differentiates
between two different kinds of requirements. Farly requirements specify stake-
holder objectives on a high level of abstraction and are iteratively refined into
operationalized goals termed operations [1]. Based on these operations, late re-
quirements are derived that represent concrete requirements in terms of business
process models.

The elicitation and analysis of early requirements using goal models has been
addressed comprehensively by existing work [3,5,6]. Different notations, like
KAOS [3] or Tropos/i* [2,16], provide modeling languages and methodologies
for the specification and refinement of goal models. The systematic derivation of
business processes from goal models has been addressed by recent research [8, 11].

2 Benjamin Nagel, Christian Gerth, Jennifer Post, and Gregor Engels

While providing a high degree of flexibility, these approaches do not constrain
how (i.e. with respect to temporal and logical dependencies) operations shall be
composed. Figure 1 provides an example. From the source goal model (G1) three
different process models (P;, Py, P3) can be derived. Each of these process models
considers all required operations specified in G1, but obviously results in different
execution orders of the operations. This ambiguity can lead to inconsistencies
between the actual stakeholder objectives and derived business process models.

Process
Model P4 OpB

Goal Model Gy e opC
.
-

Process

é

Goal B

Goal C

Goal D

Operation A

Operation B

Operation C

I

~ Model P,

Process
Model P3

Fig. 1. Derivation of Different Process Models from a Goal Model

To address this issue, we propose to elicitate the stakeholders’ knowledge
about logical and temporal dependencies by specifying them explicitly in KAOS
goal models. These dependencies are defined between goals on different levels of
abstraction and constrain how the operations shall be composed.

The contribution of this paper consists of two parts. We introduce Kaos4SOA,
an extended KAOS goal notation that supports the specification of temporal
and logical dependencies between goals [13]. Further, we present a tool support
in terms of a modeling workbench for the specification of Kaos4SOA goal models.

The remainder of the paper is structured as follows. In the next section
the foundations of KAOS goal models are introduced. Section 3 presents the
Kaos4SOA approach and discusses the extension of existing approaches to gen-
erate verifiable business process constraints from Kaos4dSOA models. In Sec-
tion 4, the implemented Kaos4SOA modeling workbench is described. Section 5
discusses related work and finally Section 6 concludes the paper and gives an
overview about future work.

2 KAOS Goal Models

In this section, we introduce the KAOS modeling approach for specifying goal
models [3]. KAOS provides a systematic approach to specify and refine goal mod-
els. Hereby, abstract high-level goals are iteratively decomposed to subgoals that
are operationalized to operations, representing concrete functional requirements.
These operations are used as input for the composition of process models.

Kao0s4SOA - Extended Goal Dependency Modeling 3

An example for a KAOS goal model is illustrated in Figure 2. In order to
achieve the main goal Customer order processed, four subgoals need to be fulfilled
as specified by the AND-decomposition. The subgoals Customer data recorded
and Payment received are further decomposed into subsubgoals that provide
alternatives to achieve the subgoals (OR-decompositions).

The decomposition of Customer data recorded is a special type of decompo-
sition. The circle connecting the goals Account login data entered and Customer
profile loaded indicates an AND-decomposition which itself is part of an OR-
decomposition. This means that the goal Customer data recorded is achieved by
New Customer account created or by Account login data entered AND Customer
profile loaded.

Using operationalization [1, 14], operations are identified that need to be ex-
ecuted in order to achieve the related goals. The operations are defined by input
and output parameter as well as different conditions. The conditions are differ-
entiated into pre- and postconditions in the domain and additional conditions.
Two examples for the detailed definition of operations are depicted in Table 1.

Operation Create account Operation Enter credit card number
Input c:Customer, d:CustomerData |Input c:Customer, cc:CreditCard
Output a:CustomerAccount Output c:Customer, cc:CreditCard
DomPre c.status = newCustomer DomPre cf.sent = false

DomPost c.status = registeredCustomer |DomPost cf.sent = true

ReqPre c.Account =77 RegPre c.hasCard(cc) = true
ReqPost c.Account = a ReqPost cc.number = c.enteredNumber

Table 1. Exemplary Definition of Operations

Customer order
processed

Customer data Availability Payment Order
recorded checked received shipped

:

New customer Account login Customer profile Receive payment Receive credit
account created data entered on delivery card payment

loaded
Login to Pay on

Credit card Credit worthiness Money
number entered checked debited

Enter credit Check credit Debit mone
card number worthiness d

Fig. 2. Customer Order Processing Goal Model

In addition to the AND-/OR-refinement relationship between goals, KAOS
also provides the ability to express conflicts between goals. For this purpose, the

4 Benjamin Nagel, Christian Gerth, Jennifer Post, and Gregor Engels

ConflictsWith attribute [3] is used. The conflict relationship defines a depen-
dency between two goals G; and G defining that G1, G2 can not be achieved
together. In our exemplary goal model the ConflictsWith relationship can be
used to express that new customers are not allowed to pay on delivery by defin-
ing a conflict relation between the goals New Customer account created and
Receive payment on delivery.

3 Kaos4SOA

In Section 1 we motivated the need for the elicitation and specification of goal
dependencies to enable their consideration in the derivation of business processes.
We propose Kaos4dSOA, an extension of KAOS to express these dependencies in
a goal model. In addition, we briefly describe the requirements for the automatic
generation of verifiable constraints.

3.1 Goal Dependency Modeling

As described, KAOS goal models provide the ability to express relationships be-
tween goals (e.g. AND/OR-relation) and pre- and postconditions for atomic op-
erations. We have analyzed existing research presented in [9, 12, 15] and identified
two extensions for a more precise definition of temporal and logical dependencies
between goals.

First, it is desirable to consider the order in which goals need to be achieved.
We argue that even on the abstract level of goals, a requirements engineer is
already able to decide about temporal dependencies between goals. In addition,
we aim for a more precise definition of the logical OR-refinement. In the existing
KAOS notation the OR-statement is interpreted as an inclusive-OR, i.e. OR(
G1,Gy) — Gy VGs vV (Gy A Gy). Currently, it is not possible to define
conditions to specify when GG; or G5 need to be achieved. For this purpose we
introduce annotation capabilities for branches to define conditional branches.
The proposed extensions of KAOS to address the required dependencies are
described in the following.

Order Constraints

KAOS goal models do not provide the ability to express dependencies among
goals regarding the order in which the goals need to be achieved. For this pur-
pose, we extend the annotation capabilities of KAOS with the additional Order
element. Two different types of orders are expressible by the proposed extension.
Loose Order describes that a goal G5 needs to be achieved some time later
than goal G;. It does not matter, if other goals are achieved meanwhile. For
expressing the loose order dependency the attributes Order.Predecessor and
Order.Successor are introduced. Figure 3 (a) shows a loose order example:
Before the ordered goods are shipped, the goods’ availability has to be checked.

Kao0s4SOA - Extended Goal Dependency Modeling 5

Strict Order expresses that the achievement of goal (G is directly followed by
the achievement of goal G without other goals achieved in-between. This kind of
sequential execution is described by the annotations Order.StrictPredecessor
and Order.StrictSuccessor. As an example the strict order The credit wor-
thiness needs to be checked directly before the credit card is debited is shown in
Figure 3 (b).

(a) Loose Order Constraint (b) Strict Order Constraint

Order Receive credit
processed card payment
Availability Order Credit worthiness Credit card
checked shipped checked debited
! 1
e — ey | o

r . r

| Name Order shipped I || Name Credit card debited |
| Def The order is shipped to the customer. | | Def The credit card is debited. I
| Order.Predecessor Availability checked | Order.StrictPredecessor Credit worthiness checked |

Fig. 3. Goal Attributes for Order Constraints

Conditional Branch

In some cases not only the achievement of single goals is important to be con-
strained by a condition, instead the achievement of a whole set of goals depends
on a condition. Often this can be seen for alternatives, which are all suitable to
achieve a desired result, but not each goal sequence is appropriate in each case.
An example for conditional branches is depicted in Figure 4. The goal Customer
data recorded is decomposed by an OR-refinement. Which alternative subgoal
shall be chosen under which condition, can be differentiated by the new attribute
condition which is defined for both links. In this example, the conditional branch
is used to define the following policies.

If the customer is ordering for the first time (is a new customer), he needs
to create a new account for recording the customer data.

If the customer already has an account, he needs to login AND the customer
profile needs to be loaded to record the customer data.

Customer data
recorded

FCondition ~Customer.status =
! NewCustomer '

New customer Account login Customer profile
account created data entered loaded

Fig. 4. Goal Attributes for Conditional Branches

3.2 Towards the Goal-driven Generation of Business Process
Constraints

To preserve the consistency between goal models and business process models
it is required to evaluate that the derived business processes do not violate the

6 Benjamin Nagel, Christian Gerth, Jennifer Post, and Gregor Engels

constraints indicated by the temporal and logical dependencies in the KaosdSOA
model.

Kaos4SOA facilitates additional goal annotations expressing the dependen-
cies, but does not provide formal constraints. To evaluate the consistency of a
business process regarding these dependencies, formalized constraints need to be
generated from the Kaos4SOA goal model. Since the dependencies are defined
among goals on different levels of abstraction they need to refined iteratively
to the operational level. From the refined dependencies, business process qual-
ity constraints are generated that express the defined dependencies by concrete,
verifiable constraints. [7] provides a language to express constraints for business
process models, but do not provide a method for deriving them from goal models.
To apply these constraints existing approaches [8,11] for the derivation of busi-
ness processes need to be extended by model checking techniques for evaluating
the business process quality constraints.

4 Implementation

The applicability of our approach depends on the ability to create and edit com-
plex goal models and the dependencies among the goals in an efficient way. To
provide a tool support for our modeling approach we implemented the Kaos/SOA
Workbench. It provides modeling capabilities for standard KAOS modeling ele-
ments as well as for the extended Kaos4SOA goal dependencies.

The KaosdSOA Workbench is realized as a plugin for the Eclipse develop-
ment environment !. A metamodel for the extended KAOS notation is defined
by EMF Ecore models using the Eclipse modeling framework (EMF). The con-
crete syntax for the extended goal models is modeled by the Graphical Modeling
Framework (GMF). Based on the defined GMF models a graphical editor is gen-
erated, that enables the creation and editing of Kaos4dSOA models. A screenshot
of the modeling Ul is depicted in Figure 5.

5 Related Work

The i* framework [16] is a goal-oriented requirements engineering approach from
the domain of agent-oriented software. As well as KAOS it is designed for the
early phase of requirements analysis, which aims to analyse and model stake-
holder interests. In i* different kinds of relationships can be defined. Dependency
links are used to define relations between actors. For the specification of relations
between goals i* distinguishes Task-Decomposition-Links, Means-End-Links and
Contribution Links. Hereby, the decomposition of goals to tasks, traceability be-
tween goals and tasks and the contribution of tasks to soft goals can be defined.

Tropos [2, 6,10] is a software development framework which spans all phases
of software development from early requirements specification to implementa-
tion. Tropos extends the relationships provided by ¢* by providing differenti-
ated AND-/OR- Decompositions of goals into subgoals. Furthermore, Tropos

! http://www.eclipse.org/

Kao0s4SOA - Extended Goal Dependency Modeling 7

B, CAISE_mm_content k4s_diagiam =

I [Achieve]VideoandTextPreparedrorsendng

[+ [Achieve ITextAcquredAndTranslated
5

slated / / |+ [Achieve]Transcodedvide. . / | [Achieve SeparatelyAoUreAndTranslat=Text / |+ [Achieve]TranslatedTex

Seotranscoded / [lechieveltextacqured / /1% [achieve TextTrandated /

— PreTranscode : Booke
— PreTranshate ; Bookea

Fig. 5. Screenshot of the Kaos4SOA Workbench

allows the application of Contribution Links that enable to identify Goals, that
contribute positively or negatively to the fulfillment of other Goals.

In summary, existing goal oriented approaches provide concepts for express-
ing and modeling dependencies among goals. Nonetheless, they lack the ability
to define concrete logical dependencies for branches and do not support any kind
of temporal dependencies.

In [1] a framework for the requirements operationalization from goal models
is presented. This approach describes the iterative operationalization and for-
malization of goals for preserving completeness and correctness with respect to
possible goal violations but does not consider dependencies among goals.

6 Conclusion and Future Work

This paper presents Kaos4SOA, an extension of the well-known KAOS approach
to elicitate the stakeholders’ knowledge about dependencies between goals. Based
on an analysis of existing research we identified required dependencies and the
shortcomings of KAOS for expressing these dependencies. We introduce and
define new notation elements for logical and temporal dependencies. Finally, we
present a tool support that supports the creation of extended KAOS models in
a graphical modeling workbench.

The future work of our research is twofold. First we aim to extend our ap-
proach with the generation of verifiable business process quality constraints,
that can be used to evaluate the consistency between goals and derived business
processes. Our future work also includes the extension of the Kaos4dSOA Work-
bench with a model checker which allows the integrated, automated verification
of business process models against defined constraints.

Benjamin Nagel, Christian Gerth, Jennifer Post, and Gregor Engels

References

1.

10.

11.

12.

13.

14.

15.

16.

D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Learning operational requirements
from goal models. In Proceedings of the 31st International Conference on Software
Engineering, ICSE 09, pages 265—-275. IEEE Computer Society, 2009.

. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS:

An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems, 2004.

A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements ac-
quisition. In Selected Papers of the Sizth International Workshop on Software
Specification and Design, pages 3-50. Elsevier Science Publishers B. V., 1993.

T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, 2005.

A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso. Spec-
ifying and analyzing early requirements in tropos. Requirements Engineering,
9(2):132-150, 2004.

P. Giorgini, M. Kolp, J. Mylopoulos, and M. Pistore. The tropos methodology: An
overview. In Methodologies and Software Engineering for Agent Systems. Kluwer
Academic Press, 2003.

L. Khaluf, C. Gerth, and G. Engels. Pattern-based modeling and formalizing of
business process quality constraints. In Proceedings of the 23rd Int. Conf. on Ad-
vanced Information Systems Engineering, CAiSE’11, pages 521-535, Berlin, Hei-
delberg, 2011. Springer-Verlag.

A. Lo and E. Yu. From business models to service-oriented design: A reference
catalog approach. In C. Parent, K.-D. Schewe, V. C. Storey, and B. Thalheim,
editors, Conceptual Modeling - ER 2007, volume 4801, pages 87-101. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

R. Lu, S. Sadiq, G. Governatori, and X. Yang. Defining Adaptation Constraints
for Business Process Variants. In Business Information Systems, volume 21 of
Lecture Notes in Business Information Processing, pages 145-156. Springer Berlin
Heidelberg, 2009.

J. Mylopoulos and J. Castro. Tropos: A framework for requirements-driven soft-
ware development. In S. Brinkkemper, E. Lindencrona, and A. Sglvberg, editors,
Information Systems Engineering: State of the Art and Research Themes. Springer,
2000.

B. Pernici. Methodologies for design of service-based systems. In Intentional
Perspectives on Information Systems Engineering, pages 307-318. Springer, Berlin,
Heidelberg, 2010.

M. Pesic, H. Schonenberg, and W. M. P. van der Aalst. Declare: Full support
for loosely-structured processes. In Proceedings of the 11th IEEE Int. Enterprise
Distributed Object Computing Conf., page 287. IEEE Computer Society, 2007.

J. Post. Goal-driven refinement of quality constraints for adaptive business pro-
cesses. Master’s thesis, University of Paderborn, 2012.

A. Van Lamsweerde. Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. John Wiley, 2009.

J. Wainer and F. de Lima Bezerra. Constraint-based flexible workflows. In J. Favela
and D. Decouchant, editors, CRIWG, volume 2806 of Lecture Notes in Computer
Science, pages 151-158. Springer, 2003.

E. S.-K. Yu. Towards Modeling and Reasoning Support for Early-Phase Require-
ments Engineering. In Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering, pages 226-235. IEEE Computer Society, 1997.

