
Generating Preliminary Edit Lenses from
Automatic Pattern Discovery in Business

Process Modeling

Moisés Castelo Branco1, Arif Wider2

1 Generative Software Development Laboratory, University of Waterloo, Canada
WWW home page: http://gsd.uwaterloo.ca

mcbranco@gsd.uwaterloo.ca

2 Humboldt-Universität zu Berlin
Department of Computer Science

Unter den Linden 6, D-10099 Berlin, Germany
wider@informatik.hu-berlin.de

Abstract. Business process models are often used to describe a sin-
gle system at different levels of abstractions—for instance, a business
workflow specification and its corresponding IT implementation—and
have to be synchronized. Describing such model synchronizations with
approaches to bidirectional model transformations (e.g., lenses) has sev-
eral advantages from maintainability to verification. However, describing
a synchronization from scratch by manually writing update operations
can be tedious and error-prone. We show how to automatically gener-
ate such synchronizations by identifying refinement patterns in the rela-
tion between different models and by representing those patterns as edit
lenses. Although these generated synchronization operations may not
completely reflect all the refinement patterns that correlate the models
in practice, a considerable part of manual work can be saved by gener-
ating them automatically first, and then only check and optimize them
manually.

1 Introduction

Business Process Modeling (BPM) involves the participation and collaboration
of many stakeholders (e.g. Business Analysts, Systems Analysts, IT Architects
and Developers). The distribution of responsibilities and roles results in the
creation of different models of the same business process. Specialized modeling
languages have been developed to represent such models, for example the Busi-
ness Process Modeling and Notation (BPMN). Business- and IT-level models
evolve concurrently and periodically need to be synchronized [2]. Synchronizing
the models means propagating changes in both directions, i.e., from business
to IT and vice versa. Writing such synchronizations usually requires uncovering
tacit knowledge, which may be lost entirely. IT personnel at the Bank of North-
east of Brazil (BNB), our industry partner, has faced this challenge as part of

2

a regulatory compliance project. Without appropriate tool support, this task is
very time-consuming and error-prone.

Aiming at mitigating this problem, there is a multitude of frameworks for
bidirectional model transformations (BXs) [3–6,8,9]. Although these approaches
provide the foundations of BXs in terms of properties and operations, few con-
crete implementations of such frameworks are available. It remains unclear how
to generate such transformations in many problem domains. In particular, there
is a lack of practical BX frameworks tailored to deal with consistency of business
process models that target different levels of abstraction.

In this paper, we leverage previous work on process model matching [1]
and present a practical approach for generating preliminary bidirectional model
transformations in BPM based on edit lenses [9]. The implemented framework
is tailored to process modeling at different abstraction levels. First, we start by
providing some background in BPM and important concepts used throughout
the paper (§ 2). Following, we discuss some background and rationale behind
using edit lenses to deal with process models (§ 3). Then, we present technical
details of the approach (§ 4) and show some evaluation based on industrial case
studies (§ 5). Finally, we discuss related work (§ 6), conclusions, and future work
(§ 7).

2 Business Process Models at Different Levels of
Abstraction

2.1 Background

A business process is a collection of structured or ad hoc activities that produce
a specific output, such as service or product. The activities of a process interact
with IT assets to capture, transform, or report business data. In practice, a range
of business to IT-oriented stakeholders create and use business process models for
specific purposes, including requirements elicitation, documentation, simulation,
and execution. Figure 1 shows two models in BPMN 2.0, each representing the
process of using an Automated Teller Machine (ATM) system at different level
of abstraction. We added shorter names in parentheses (e.g., (AC), (GB)) to
avoid clutter when referring to the models. The first model (Fig. 1.a) represents
a business-level process specification. The second one (Fig. 1.b) is an IT-level
specification.

2.2 Process Structure Tree (PST)

Any BPMN model can be uniquely decomposed into single-entry single-exit
(SESE) regions [10]. Let G = (N,E) be a workflow graph, where N is the
set of nodes and E the set of edges. A SESE region R = (N ′, E′) is a nonempty
subgraph of G, i.e., N ′ ⊆ N and E′ = E ∩ (N ′×N ′) such that there exist edges
e, e′ ∈ E with E ∩ ((N\N ′)×N ′) = {e} and E ∩ (N ′× (N\N ′)) = {e′}; e and e′

are called the entry and the exit edge of R, respectively. The Process Structure

3

Start

Approve Card

(AC)

 X1

Get Balance

(GB)

Debit Account

(DA)

 X2

Print Receipt

(PR)

End

(a) Business Specification

Customer Inserts

Card into ATM

(Trigger)

Approve & Get

Transaction

(AGT)

 X1

Get Balance

(GB)

Get Statement

(GS)

Debit

Checkings

(DC)

 X2

Consolidate

Receipt

(CR)
Notify Terminal

(NT)

Debit Savings

(DS)

 X5 X6

 X3 X4

 Timeout

Cancel

Transaction

 (CT)

(b) Technical Specification

Fig. 1: BPMN Models

Tree (PST) for a BPMN process model is a tree representing the decomposition
of the model into SESE regions [10]. Figure 2 shows the PSTs corresponding to
the BPMN process models. There is a unique PST for each BPMN model. The
root represents the whole process model. Leaves represent model elements, i.e.,
tasks, gateways and events. Inner nodes represent SESE regions.

R0

Trigger R1 R2 R3 R10 NT

AGT CT X1 R4 R7 X2

X3 R5 R6 X4

GB GS

X5 R8 R9 X6

DC DS

CR

PSTb

R0

Start R1 R2 R5 End

AC X1 R3 R4 X2

GB DA

PR

PSTa

Fig. 2: PSTs representation of the business process models

4

2.3 Differences between Business and IT process models

We have compiled a catalog of 11 recurrent patterns used to refine business-level
models into IT-level models [2]. These patterns include (i) adding or modifying
properties of model elements, such as changing the name or type of an activity,
and (ii) changing the flow structure. An example from category (i) is the renam-
ing and retyping of the empty start event Start (Fig. 1.a) into the message-driven
event Customer inserts card into ATM (Fig. 1.b). An example from category (ii)
is the refinement of the task Debit Account (Fig. 1.a) into the block consisting of
the gateways X5 and X6 and two other tasks Debit Checkings and Debit Savings
(Fig. 1.b).

3 Edit Lenses

A lens is a bidirectional transformation between a pair of connected data struc-
tures, X and Y, capable of translating an edit on one structure into an appro-
priate edit on the other. Each lens is a pair of functions—to and from—one
mapping X updates to Y updates and the other mapping Y updates to X up-
dates. Although many varieties of lenses exist in the literature, only edit lenses [9]
offer a satisfactory treatment of how editing operations are represented.

Our approach employs edit lenses because of two reasons. First, in business
process modeling, changes (including refinement patterns [2]) can be distilled
into atomic editing operations, such as inserting, deleting or moving an activity
and updating its attributes. Second, edit lenses are intuitive. Human users can
inspect them easily to review, add, discard or select specific operations before
synchronizing the models.

4 Generating Edit Lenses from Correspondences between
Process Models

In previous work [1], we presented an algorithm to automatically detect non-
trivial correspondence patterns [2] between BMPN process models across levels
of abstraction. The algorithm identifies attribute and structural correspondences
over the PSTs of the input models. Table 1 shows the correspondences identified
by the matching algorithm on the PSTs shown in the Fig. 2.

For each correspondence, the lenses generator produces a pair of functions, to
and from, composed of edit operations for bidirectional transformations in both
directions: business ↪→ IT (to) and business←↩ IT (from). Regions and model
elements without correspondences, such as PSTa.DA and PSTb.GS, are treated
as individual inserts or deletes. The edit operations are generated according to
the following heuristic:

– insert(l,y,k); insert a new PST node l as the kth child of node y. For ex-
ample, in Fig. 2, the region PSTb.R6 is inserted as the 3rd child of PSTb.R4:
insert(PSTb.R6,PSTb.R4,3).

5

Table 1: Correspondences

i PSTa.R0 = PSTb.R0 (Root)
ii PSTa.Start = PSTb.Trigger (Structure)
iii PSTa.R1 = PSTb.R1 (Structure)
iv PSTa.AC = PSTb.AGT (Structure)
v PSTa.R2 = PSTb.R3 (Attribute)
vi PSTa.R3 = PSTb.R5 (Attribute)
vii PSTa.GB = PSTb.GB (Attribute)
viii PSTa.R4 = PSTb.R7 (Structure)
ix PSTa.R5 = PSTb.R10 (Structure)
x PSTa.PR = PSTb.CR (Structure)
xi PSTa.End = PSTb.NT (Structure)

– delete(x); delete PST node x from its parent. In the example, PSTa.DA is
deleted from PSTa.R4: delete(PSTa.DA).

– move(x,y,k); node x becomes the kth child of y. In the example, the task
PSTa.GB is moved from PSTa.R3 to PSTb.R5: move(PSTa.GB,PSTb.R5,1)

– update(x,v); update value of x with v. For example, the value of the node
PSTa.PR was updated to PSTb.CR: update(PSTa.PR,PSTb.CR)

– refine(r,s); the region r is refined into the region s: the atomic changes are
also presented by inserts and deletes. In the example, the region PSTa.R4
is refined into the region PSTb.R7. The corresponding inserts and deletes are
presented hierarchically, such as delete(PSTa.DA), insert(PSTb.R8,PSTb.R7,
2), and so on.

Node positions are shown as parameters using absolute paths. A path like
“/0/4/3/0” means: the unique child of the 3rd child of the 4th child of the root
node. The output of the lenses generator for the correspondences vii and viii
previously shown are as follows:

vii PSTa.GB =PSTb.GB

to (business ↪→ IT)
move PSTNode="GB" destination="/0/4/2/2" origin="/0/3/2"

from (business←↩ IT)
move PSTNode="GB" destination="/0/3/2" origin="/0/4/2/2"

viii PSTa.R4 =PSTb.R7

to (business ↪→ IT)
refine PSTNode="R4(DA..DA) to R7(X5..X6)" composed of:

delete PSTNode="DA" source="/0/3/3/0"

insert PSTNode="X5" destination="/0/4/3/0"

insert PSTNode="X6" destination="/0/4/3/1"

insert PSTNode="R8(DC..DC)" destination="/0/4/3/2"

insert PSTNode="R9(DS..DS)" destination="/0/4/3/3"

6

insert PSTNode="DC" destination="/0/4/3/2/0"

insert PSTNode="DS" destination="/0/4/3/3/0"

from (business←↩ IT)

refine PSTNode="R7(X5..X6) to R4(DA..DA)" composed of:

delete PSTNode="X5" source="/0/4/3/0"

delete PSTNode="X6" source="/0/4/3/1"

delete PSTBranch="R8(DC..DC)" source="/0/4/3/2"

delete PSTBranch="R9(DS..DS)" source="/0/4/3/3"

insert PSTNode="DA" destination="/0/3/3/0"

Users can review this preliminary set of edit operations to add, remove, group
and discard specific ones. The final lens (revised by the user) is executed when
something is changed in either of the two models to generate a consistent version
of the other model. The synchronization is fully automatic: our implementation
provides a module on top of VIATRA2 to synchronize any number of individual
operations selected by the user. Transformations are first performed on the PSTs,
and afterwards they are transformed back into BPMN. Occasional malformed
BPMN models after the transformations (e.g., an added task without incoming or
outgoing flows) need to be fixed manually by the user. To deal with this issue we
are currently working on integrating the approach with a quick fix generator [7]
that guides the user in fixing post-synchronized models, when needed.

5 Evaluation

Implementation. We have implemented the lenses generator framework in
Java as an Eclipse feature (Fig. 3), on top of the SOA Tools Platform BPMN
Modeler.

Evaluation. The quality of generated lenses directly depends on the quality of
the matching algorithm, whose recall varies between 40-70% [1]. Thus, the users
always need to review the initial lenses to capture the correct refinement patterns
and create a baseline of operations that ensure proper business-IT synchroniza-
tion. We wanted to know how much manual work is needed to update baselines
of lenses over time, in the presence of typical model changes. We inspected 48
real changes made in three BPM projects over a period of one year, and counted
how many individual operations would need to be manually changed in each
baseline to meet those changes. The results are shown in the Table 2.

A large number of operations needs to be manually revised to cope with
changes. Nevertheless, we believe that keeping baselines of lenses is useful, in-
stead of the burden of periodically rebuilding all synchronizations from scratch.
Approximately 50% of the work over the analysed period would be saved by
basically maintaining the lenses incrementally, in pace with the changes.

7

Fig. 3: Edit Lenses Generator Tool

Table 2: Evaluation

Number of

Project Baseline Operations Changes Operations Revised

Customer Registration 273 23 106 (39%)
Credit Backoffice 356 16 163 (46%)
Procurement 161 9 83 (52%)

6 Related Work

Bidirectional transformation frameworks originate from the lenses framework
proposed by Foster et al. [6] which assumes one model being an abstract view
of the other. Inspired by the lenses framework, researchers proposed state-based
framework for symmetric synchronization [8]. As a more general case, symmetric
synchronization allows neither of the model to be a view of the other. However,
as Diskin et al. [3] point out, state-based bidirectional transformations actually
mix two different operations—delta discovery and delta propagation—leading
to several semantic problems. To fix these problems, several approaches [3, 5, 9]
propose delta-based frameworks, where deltas are taken as input and output.
Typical delta-based frameworks include delta lenses [4] for the asymmetric cases,
and symmetric delta lenses [5] and edit lenses [9] for the symmetric cases.

7 Conclusions

We have presented a practical approach that generates preliminary edit lenses in
BPM, tailored to maintaining consistency of process models at different abstrac-

8

tion levels. A prototype tool is implemented on top of Eclipse and SOA Tools
Platform. We performed a preliminary evaluation of the tool based on real-world
models. As for future work, we aim to perform a qualitative assessment of the
approach, obtaining feedback from BPM practitioners in industry. We also hope
that this work may encourage developers to evolve the approach and provide
tool support to more elaborated BX scenarios in BPM.

Acknowledgment

We would like to thank the Bank of the Northeast of Brazil (Banco do Nordeste –
BNB) for providing the case study as well as valuable requirements and feedback
on the design of the tool.

References

1. Branco, M.C., Troya, J., Czarnecki, K., Küster, J., Völzer, H.: Matching Business
Process Workflows Across Abstraction Levels. In: Proceedings of 15th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems.
MODELS 2012, ACM/IEEE (2012)

2. Branco, M.C., Xiong, Y., Czarnecki, K., Küster, J., Völzer, H.: A case study on
consistency management of business and IT process models in banking. Journal of
Software and Systems Modeling SoSyM (2013)

3. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations. In: Proceedings of the Third international conference on The-
ory and practice of model transformations. pp. 61–76. ICMT’10, Springer-Verlag,
Berlin, Heidelberg (2010)

4. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object Technology 10
(2011)

5. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
State- to Delta-Based Bidirectional Model Transformations: the Symmetric Case.
In: Proceedings of the 14th international conference on Model driven engineering
languages and systems. pp. 304–318. MODELS’11, Springer-Verlag, Berlin, Hei-
delberg (2011)

6. Foster, J., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems (TOPLAS) 29(3), 17
(2007)

7. Hegedüs, A., Horváth, A., Ráth, I., Branco, M.C., Varró, D.: Quick fix generation
for DSMLs. In: Proceedings of IEEE Symposium on Visual Languages and Human-
Centric Computing VLHCC 2011. IEEE (2011)

8. Hofmann, M., Pierce, B., Wagner, D.: Symmetric lenses. In: Proceedings of the
38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. pp. 371–384. POPL ’11, ACM, New York, NY, USA (2011)

9. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: POPL. pp. 495–508 (2012)
10. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow

Analysis for Business Process Models Through SESE Decomposition. In: ICSOC
2007. pp. 43–55. LNCS, Springer-Verlag, Berlin, Heidelberg (2007)

	Generating Preliminary Edit Lenses from Automatic Pattern Discovery in Business Process Modeling

