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Abstract. With the increased use of ontologies in semantically-enabled appli-
cations, the issue of debugging defects in ontologies has become increasingly
important. These defects can lead to wrong or incomplete results for the applica-
tions. Debugging consists of the phases of detection and repairing. In this paper
we focus on the repairing phase of a particular kind of defects, i.e., the missing re-
lations in the is-a hierarchy. We show that this can be formalized as an abduction
problem. Further, we define properties for the ontology, the set of is-a relations to
repair and the domain expert, as well as preference criteria on solutions and dis-
cuss the influences of these properties and criteria on the existence of solutions
for the abduction problem. We also discuss the consequences of our analyses of
the repairing problem for the development and use of debugging systems.

1 Introduction

Developing ontologies is not an easy task, and often the resulting ontologies are not
consistent or complete. Such ontologies, although often useful, also lead to problems
when used in semantically-enabled applications. Wrong conclusions may be derived
or valid conclusions may be missed. Defects in ontologies can take different forms
(e.g., [16]). Syntactic defects are usually easy to find and to resolve. Defects regarding
style include such things as unintended redundancy. More interesting and severe defects
are the modeling defects which require domain knowledge to detect and resolve, and
semantic defects such as unsatisfiable concepts and inconsistent ontologies. Debugging
consists of two phases - detection and repair. Most work up to date has focused on
debugging the semantic defects in an ontology (see related work in Section 5).

Modeling defects have mainly been discussed for taxonomies, i.e., from a knowl-
edge representation point of view, a simple kind of ontologies. The focus has been on
defects regarding the is-a structure (Section 5). In addition to its importance for the
correct modeling of a domain, the structural information in ontologies is also important
in semantically-enabled applications such as ontology-based search and annotation. In
this paper we formalize the problem of repairing the is-a structure of ontologies.

There are different ways to detect missing is-a relations (Section 5). One way is
inspection by domain experts. Another way is to use ontology learning techniques or
patterns. When the ontology is part of a network of ontologies connected by mappings,
missing is-a relations may be detected using logical derivation in the network. However,
although there are many approaches to detect missing is-a relations, these approaches,

33



Thing

autopod joint limb joint joint

hinderlimb joint forelimb joint joint of rib joint of vertebral arch

hip joint foot joint knee joint ankle joint hand joint elbow joint wrist joint shoulder joint

metacarpo-phalangea joint

Missing is-a relations

• wrist joint is-a joint

• hip joint is-a joint

• knee joint is-a joint

• elbow joint is-a joint

• ankle joint is-a joint

• shoulder joint is-a joint

• metacarpo-phalangeal joint is-a joint  

Fig. 1: A part of MA concerning the conceptjoint.

in general,do not detectall missing is-a relations. For instance, although the precision
for the linguistic patterns approaches is high, their recall is usually very low.

In this paper we assume that the detection phase has been performed. We assume
that we have obtained a set of missing is-a relations for a given ontology (validated
or not) and focus on the repairing phase. In the ideal case where our set of missing
is-a relations containsall missing is-a relations, the repairing phase is easy. We just
add all missing is-a relations to the ontology and a reasoner can compute all logical
consequences. However, when the set of missing is-a relations does not contain all
missing is-a relations - and this is the common case - there are different ways to repair
the ontology.

For instance, Figures 1 and 2 (T) show a small ontology representing a part of the
Adult Mouse Anatomy (MA) ontology concerning joint, that is relevant for our discus-
sion.M is a set of detected missing is-a relations. Adding these relations to the ontology
will repair the missing is-a structure. However, there are other more interesting possi-
bilities. For instance, adding limb-joinṫ⊑ joint also repairs the missing is-a structure.
Further, this is-a relation is correct according to the domain and constitutes a new is-
a relation that was not derivable from the ontology and not originally detected by the
detection algorithm.

The contributions of this paper are the following. First, in Section 2 we formalize the
problem of repairing missing is-a structure as an abduction problem (extension of [18])
and introduce two decision problems - (i) do solutions exist, and (ii) if so, find a solution.
We also define different properties for the ontology, the set of is-a relations to repair,
and the domain expert and discuss the influences of these properties on the existence
of solutions for the abduction problem. In general, when solutions exist, there may be
many solutions. As not all solutions are equally interesting, in Section 3 we propose two
preference criteria on the solutions as well as different ways to combine these. We also
discuss the decision problems for the criteria and their preferences. Further, in Section
4 we discuss the consequences of our analyses for debugging in practice.
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C = { autopod-joint, limb-joint, hinderlimb-joint, hip-joint, foot-joint, knee-joint, ankle-joint, forelimb-joint, hand-joint,
elbow-joint, wrist-joint, shoulder-joint, metacarpo-phalangeal-joint, joint,joint-of-rib, joint-of-vertebral-arch}

T = { autopod-joint⊑̇ ⊤, limb-joint ⊑̇ ⊤, hinderlimb-joint⊑̇ limb-joint , hip-joint ⊑̇ hinderlimb-joint,
foot-joint ⊑̇ hinderlimb-joint, knee-joint⊑̇ hinderlimb-joint, ankle-joint⊑̇ hinderlimb-joint, forelimb-joint⊑̇ limb-joint,
hand-joint⊑̇ forelimb-joint, elbow-joint⊑̇ forelimb-joint, wrist-joint⊑̇ forelimb-joint, shoulder-joint⊑̇ forelimb-joint,
metacarpo-phalangeal-joint⊑̇ hand-joint, joint ⊑̇ ⊤, joint-of-rib ⊑̇ joint, joint-of-vertebral-arch⊑̇ joint }

M = { wrist-joint ⊑̇ joint, hip-joint⊑̇ joint, knee-joint⊑̇ joint, elbow-joint⊑̇ joint,
ankle-joint⊑̇ joint, shoulder-joint⊑̇ joint, metacarpo-phalangeal-joint⊑̇ joint }

H1 = set of all is-a relations that are correct according to the domain
H2 = H1 \ {autopod-joint⊑̇ limb-joint, limb-joint ⊑̇ joint}
H3 = H2 ∪ {hinderlimb-joint⊑̇ joint-of-rib, forelimb-joint⊑̇ joint-of-vertebral-arch}
H4 = { A ⊑̇ B | A, B ∈ C }

LetPi = GTAP(T, C, Hi, M) for 1 < i < 4

Fig. 2: Small example.

2 Abduction Framework

In the following we explain how the problem of finding possible ways to repair the
missing is-a structure in an ontology is formalized as a generalized version of the TBox
abduction problem (extension of [18]). We assume that our ontology is represented
using a TBoxT . The identified is-a relations to repair are then represented by a setM

of atomic concept subsumptions. As discussed in Section 1,M usually does not contain
all missing is-a relations. To repair the ontology, it should be extended with a setS of
atomic concept subsumptions (repair) such that the extended ontology is consistent and
the missing is-a relations are derivable from the extended ontology. However, the added
atomic concept subsumptions should be correct according to the domain1. Therefore,
we assume that a domain expert validates whether an atomic concept subsumption is
correct and these validated to be correct atomic concept subsumptions are collected in
a setH. We note that in practiceH is not known beforehand, but acts as an oracle. It is
then required thatS ⊆ H. The following definition formalizes this.

Definition 1 (Generalized TBox Abduction) Let T be a consistent TBox andC be a
set of atomic concepts. LetM = { Ci ⊑̇ Di | 1 ≤ i ≤ m } be a set of TBox assertions
whereCi,Di ∈ C. Let H = {Ei⊑̇Fi | 1 ≤ i ≤ n} whereEi, Fi ∈ C. A solution to
the generalized TBox abduction problem (GTAP)(T,C,H,M) is any finite setS ⊆ H,
such thatT ∪ S is consistent andT ∪ S |= M . The set of all such solutions is denoted
asS(T,C,H,M).

Moreover, we are interested in two problems which are useful in practice. The first
problem is the so called existence problem. That is, the decision problem of whether
S(T,C,H,M) 6= ∅. Clearly, with a concrete debugging task the existence problem
should be answered at the beginning. If the answer to the existence problem is positive,

1 In the remainderof this paper when we say that concept subsumptions or is-a relations are
correct, we mean correct according to the domain.
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we are interested in findinga solution2. This is normally a realistic goal in practice,
since the number of all solutions could be considerably big.

Next, we discuss different properties ofT , H andM and how these properties and
their combinations affect the existence and type of solutions. In this discussion we make
the assumption that the domain is consistent.

The GTAP definition requiresT to be consistent. If this would not be the case, it
would mean that the original ontology is not consistent. In this case approaches for
debugging semantic defects could be used to obtain a consistent ontology. We also note
that if T is not consistent then there are no solutions satisfying the definition (asT ∪ S

would be inconsistent). However, even ifT is consistent, it is possible thatT contains
relations which are not correct. It would mean that the developers introduced a modeling
defect. Therefore, we indentify two cases forT - all the is-a relations inT are correct
(’T correct’ in Table 1), or not (’T not correct’ in Table 1).

For M there are 2 cases. In the first case we assume that all is-a relations inM

are correct, and thus they are really missing is-a relations (’Missing’ in Table 1). In the
second caseM may contain missing as well as wrong is-a relations (’Missing + Wrong’
in Table 1). This is a common case when possible missing is-a relations are generated
by detection algorithms (e.g., using patterns or ontology learning methods) and not
validated by a domain expert. It may also occur whenM is generated by domain experts
(e.g., using inspection) - as it is an error-prone task, the experts may make mistakes.

For H we identified the following interesting cases. In the first case (’Complete
Knowledge’ in Table 1)H contains all correct is-a relations and no others. In this case
we are sure that if an is-a relation belongs toH, it is correct and if not, it is not cor-
rect. This case represents the ideal situation of an all-knowing domain expert. In the
second case (’Partial-Correct’ in Table 1)H contains only correct is-a relations, but not
necessarily all. This case represents a domain expert who knows a part of the domain
well. If the domain expert validates an is-a relation as correct, it is correct. Otherwise,
the is-a relation is wrong or the domain expert does not know. An approximation of
this case is when using several domain experts and a skeptical approach. We only con-
sider an is-a relation correct if all domain experts validate it as correct. In the third
case (’Wrong’ in Table 1)H may contain relations that are not correct. In this case,
the domain expert can make mistakes regarding the validation of is-a relations. Some
wrong is-a relations may be validated as correct. This is a common case as exemplified
by the use case in [12]. The fourth and fifth cases represent situations where there is no
domain expert. In the fourth case all possible is-a relations are validated as correct and
thusH = {Ei⊑̇Fi | Ei, Fi ∈ C} (’No Expert’ in Table 1). In the fifth case (not in in
Table 1) no is-a relation is validated as correct and thusH = ∅. For the fifth case there
can be only 1 solution, i.e., S =∅ and this only in the case whereT |= M (and thus the
is-a relations inM were not actually missing). We have the following relations between
the different cases. LetHc, Hpc, Hw, Hno be sets corresponding to the cases 1-4, re-
spectively and related to the same domain. ThenHpc ⊂ Hc ⊂ Hno andHw ⊂ Hno.
Therefore, we also have thatS(T,C,Hpc,M) ⊂ S(T,C,Hc,M) ⊂ S(T,C,Hno,M)
andS(T,C,Hw,M) ⊂ S(T,C,Hno,M). In our example in Figure 2H1, H2, H3 and
H4 are examples ofHc, Hpc, Hw andHno, respectively.

2 Often regarding various preference criteria, see Section 3.
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M Missing
H T correct T not correct
Complete M ⊆ H M ⊆ H

Knowledge No solution ifT ∪ M inconsistent
M is solution M is solution iffT ∪ M consistent
All solutions are correct All solutions are correct

Partial- M ⊆ H or M 6⊆ H M ⊆ H or M 6⊆ H

Correct No solution ifT ∪ M inconsistent
No solution ifM 6⊆ H ∧ T ∪ H 6|= M No solution ifM 6⊆ H ∧ T ∪ H 6|= M

No solution if
∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent

if M ⊆ H thenM is a solution if T ∪ M consistent∧ M ⊆ H thenM is a solution
if M 6⊆ H ∧ T ∪ H |= M thenH is a solution if T ∪ H consistent∧ M 6⊆ H ∧ T ∪ H |= M

thenH is a solution
All solutions are correct All solutions are correct

Wrong M ⊆ H or M 6⊆ H M ⊆ H or M 6⊆ H

No solution ifT ∪ M inconsistent
No solution ifM 6⊆ H ∧ T ∪ H 6|= M No solution ifM 6⊆ H ∧ T ∪ H 6|= M

No solution if No solution if
∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent ∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent

if M ⊆ H thenM is a solution if T ∪ M consistent∧ M ⊆ H thenM is a solution
if M 6⊆ H ∧ T ∪ H |= M ∧ T ∪ H consistent if T ∪ H consistent∧ M 6⊆ H ∧ T ∪ H |= M

thenH is a solution thenH is a solution
If M is solution, then correct, no guarantee otherwise If M is solution, then correct (but notT∪ M ), noguarantee otherwise

No M ⊆ H M ⊆ H

Expert M is solution M is solution iffT ∪ M consistent
If M is solution, then correct, no guarantee otherwise If M is solution, then correct (but notT∪ M ), noguarantee otherwise

M Missing + Wrong
H T correct T not correct

Complete M 6⊆ H M 6⊆ H

Knowledge No solution No solution ifT ∪ M inconsistent
No solution ifT ∪ H 6|= M

No solution if
∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent

if T ∪ H consistent∧ T ∪ H |= M

thenH is a solution
The solutions are not correct

Partial- M 6⊆ H M 6⊆ H

Correct No solution No solution ifT ∪ M inconsistent
No solution ifT ∪ H 6|= M

No solution if
∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent

if T ∪ H consistent∧ T ∪ H |= M

thenH is a solution
The solutions are not correct

Wrong M ⊆ H or M 6⊆ H M ⊆ H or M 6⊆ H

No solution ifT ∪ M inconsistent No solution ifT ∪ M inconsistent
No solution ifM 6⊆ H ∧ T ∪ H 6|= M No solution ifM 6⊆ H ∧ T ∪ H 6|= M

No solution if No solution if
∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent ∀S : S 6= ∅ ∧ S ⊆ H → T ∪ S inconsistent

if T ∪ M consistent∧ M ⊆ H thenM is a solution if T ∪ M consistent∧ M ⊆ H thenM is a solution
if M 6⊆ H ∧ T ∪ H |= M ∧ T ∪ H consistent if T ∪ H consistent∧ M 6⊆ H ∧ T ∪ H |= M

thenH is a solution thenH is a solution
The solutions are not correct The solutions are not correct

No M ⊆ H M ⊆ H

Expert M is solution iffT ∪ M consistent M is solution iffT ∪ M consistent
The solutions are not correct The solutions are not correct

Table 1: Different combinations of cases forT , H andM .

Table 1shows the properties forT , H, M and their combinations. For each combi-
nation we give information about the relationship betweenM andH, the existence of
solutions and the correctness of the solutions. Here, we summarize the findings.

An ideal situation is the case where the domain expert has complete knowledge (H
contains all correct is-a relations and no others) andT andM contain only correct is-a
relations. In this case,M ⊆ H. Further,M is a solution and all solutions are correct.

For any case whereT ∪ M is inconsistent, there is no solution. Indeed, for any
solutionS we have thatT ∪ S |= M and thusT ∪ S would not be consistent.

In the cases whereM contains wrong is-a relations, there may be no solutions.
If there are solutions, these are not correct. Further, correctness of solutions is only
guaranteed whenM does not contain wrong is-a relations andH represents complete
knowledge or partial-correct.

37



There are no solutions ifT ∪ S is inconsistent forevery non-empty subsetS of H.
If M ⊆ H andT ∪ M is consistent, thenM is a solution. IfM 6⊆ H, T ∪ H is

consistent andT ∪ H |= M , thenH is a solution.
In the case of no expert (H= {Ei⊑̇Fi | Ei, Fi ∈ C}) we have thatM ⊆ H and all

is-a relations are allowed in the solution. Therefore, ifT ∪ M is consistent, thenM is
a solution, otherwise there is no solution. However, as there is no domain expert, there
is no guarantee that any solution other thanM is correct. Further, in the cases whereM

contains wrong is-a relations,M is a solution, but not correct. As there is no validation,
only logical consistency can be guaranteed, but no correctness.

3 Solutions with preference criteria

There can be many solutions for a GTAP and, as explained in Section 1, not all solutions
are equally interesting. Therefore, we propose two preference criteria on the solutions.

Definition 2 (Subset Minimality) A solutionS to the GTAP(T,C,H,M) is said to
be subset minimal iff there is no proper subsetS′ ( S such thatS′ is a solution. The
set of all subset minimal solutions is denoted asSmin(T,C,H,M).

Examples of subset minimal solutions forP1 in Figure 2 are{limb-joint ⊑̇ joint}
and{hinderlimb-joint⊑̇ joint, forelimb-joint⊑̇ joint}.

Assuming there exist solutions, the answer to the existence problem for subset-
minimal solutions is yes, if and only ifT ∪ H |= M . To find a solutionS, we can start
from H, and remove the is-a relationsh stepwise, such thatT ∪H \h |= M holds. The
process continues until no is-a relation can be removed. Thus if the entailment problem
for the underlying ontology is tractable, finding a solution can be done in polynomial
time. This is indeed the case for the is-a taxonomy.

The second criterion prefers solutions that imply more information.

Definition 3 (More Informative) LetS andS′ be two solutions to the GTAP(T,C,H,M).
S is said to bemore informativethanS′ iff T ∪ S |= T ∪ S′ and there exists aψ such
that T ∪ S |= ψ andT ∪ S′ 6|= ψ. Further, we say thatS is equally informativeasS′

iff T ∪ S |= S′ andT ∪ S′ |= S.

Consider two solutions toP1 in Figure 2, S ={limb-joint ⊑̇ joint} and S’={hinderlimb-
joint ⊑̇ joint, hand-joint⊑̇ joint}. S is more informative than S’ as T∪ S entails limb-
joint ⊑̇ joint in addition to everything that T∪ S’ entails.

Definition 4 (Semantic Maximality) A solutionS to the GTAP(T,C,H,M) is said
to be semantically maximal iff there is no solutionS′ which is more informative thanS.
The set of all semantically maximal solutions is denoted asSmax(T,C,H,M).

Analogous to the subset minimality, assuming the existence of GTAP solutions, the
answer to the existence problem for a semantically maximal solution is yes, if and only
if T ∪ H |= M holds. Moreover, in the case whereM ⊆ H, andT ∪ H is consistent,
H is a semantically maximal solution.

38



In practice, both of the above two criteria are desirable. However, only with the se-
mantic maximality we might obtain a solution with redundancy. Although subset min-
imality does not yield redundancy, there is no guarantee that the solution is the most
informative. In the following we propose definitions on solutions by combining these
criteria. There are diverse interpretations for the combination of subset minimality and
semantic maximality, depending on what kind of priority we assign for the single pref-
erences. A first interpretation implies a higher priority on subset minimality than the
semantic maximality. As the second interpretation, higher priority for semantic maxi-
mality can be assigned to subset minimality. In the third interpretation, the skyline-style
interpretation, we treat both preferences equally and the chosen solution is such that
there does not exist another solution which is preferable on both criteria.

Definition 5 (Combining with priority for subset minimality) A solutionS to the GTAP
(T,C,H,M) is said to be minmax optimal iffS is subset minimal and there does not
exist another subset minimal solutionS′ such thatS′ is more informative thanS. The
set of all minmax optimal solutions is denoted asSmax

min
(T,C,H,M).

Lemma 1. Smax
min

(T,C,H,M) ⊆ Smin(T,C,H,M)

As an example,{limb-joint ⊑̇ joint} is a minmax optimal solution forP1, while
{hinderlimb-joint⊑̇ joint, forelimb-joint⊑̇ joint} is a minmax optimal solution forP2.

The existence problem is equivalent to the existence problem of the subset minimal
solutions, i.e., there exists a subset minimal solution if and only if there exists a minmax
optimal solution. On the other hand, finding a minmax optimal solution tends to be a
harder problem. One naive method is first collecting all the subset minimal solutions,
then removing those which are less informative. Obviously this is intractable, because
theoretically there could be an exponential number of subset minimal solutions already.

In practice, minmax optimal solutions ensure fewer is-a relations to be added, thus
avoiding redundancy. This is desirable if the domain expert would prefer to look at as
small solutions as possible. The disadvantage is that there may be redundant relations
that are correct and not be derivable when they are not added.

Definition 6 (Combining with priority for semantic maximality) A solutionS to the
GTAP(T,C,H,M) is said to be maxmin optimal iffS is semantically maximal and
there does not exist another semantically maximal solutionS′ such thatS′ is a proper
subset ofS. The set of all maxmin optimal solutions is denoted asSmax

min (T,C,H,M).

Lemma 2. Smax

min (T,C,H,M) ⊆ Smax(T,C,H,M)

As an example,{limb-joint ⊑̇ joint, autopod-joint⊑̇ limb-joint} is a maxmin opti-
mal solution forP1.

Analogous to the case of minmax optimal, the existence problem of maxmin optimal
is equivalent to the existence problem of the semantic maximal solutions. Moreover, if
H is a semantically maximal solution, finding a maxmin optimal solutionS can be done
by starting fromH, and stepwise removing the is-a relationsh such thatT ∪ S \ h |=
H holds. Intuitively, the goal is to remove the redundant relations inH. Of course
there might be multiple maxmin optimal solutions in this regard, but finding one such a
solution is tractable as long as the reasoning task for the underlying logic is tractable.
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The advantage of the maxmin optimal semantics is that a maximal body ofcorrect
information is added to the ontology. If the domain expert would prefer to look at as
informative solutions as possible without (set) redundancy, maxmin optimal solutions is
preferable than the minmax optimal solutions. This conclusion can even be strengthened
from the efficiency point of view, as finding a maxmin optimal solution is more efficient
than finding a minmax optimal one. The disadvantage is that more relations need to be
validated.

For the skyline interpretation, we consider the subset minimality and the semantic
maximality as two dimensions for a solutionS. S is skyline optimal if it is not dom-
inated by any other solution. A solution dominates another solution if it is as good or
better in all dimensions and better in at least one dimension. Therefore regarding the
above two dimensions we define that a solutionS dominates another solutionS′ if one
of the following conditions is fulfilled:

1. S ( S′ andS is more informative thanS′, or
2. S = S′ andS is more informative thanS′, or
3. S ( S′ andS is equally informative asS′.

It is easy to verify that condition 1 and 2 can never be fulfilled, due to the mono-
tonicity property of the entailment. Therefore, a solutionS dominates another solution
S′ if and only if condition 3 is fulfilled. Accordingly, we have the definition for the
skyline optimality as follows.

Definition 7 (Skyline optimal) A solutionS to the GTAP(T,C,H,M) is said to be
skyline optimal iff there does not exist another solutionS′ such thatS′ is a proper
subset ofS andS′ is equally informative asS. The set of all skyline optimal solutions
is denoted asSmax

min (T,C,H,M).

Skyline optimal is a relaxed criterion. It requires subset minimality for some level
of informativeness. It comprises all the subset minimal solutions – which in turn com-
prises all the minmax optimal solutions – and all the maxmin optimal solutions. This
relationship can be easily verified.

Lemma 3. Smin(T,C,H,M) ∪ Smax

min (T,C,H,M) ⊆ Smax
min (T,C,H,M).

As an example,M in Figure 2 is a skyline optimal solution forP1, P2, P3 and
P4. All previous examples for subset mininal, minmax optimal and maxmin optimal
solutions are also skyline optimal solutions. However, there are semantically maximal
solutions that are not skyline optimal. For instance,{hinderlimb-joint⊑̇ joint, forelimb-
joint ⊑̇ joint, hand-joint⊑̇ joint} is a semantically maximal solution forP2, but it is
not skyline optimal as its subset{hinderlimb-joint⊑̇ joint, forelimb-joint ⊑̇ joint} is
equally informative.

4 Debugging in practice

4.1 General observations

A system for repairing the missing is-a structure in ontologies, takes as input the ontol-
ogy T and a set of is-a relations to repairM . C is implicit and can be computed using
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T . Further, the system should be used by a domain expert who validates is-a relations
(H)3. In general, however, when starting a debugging session, we do not know the prop-
erties ofT , M andH. Further,H represents the knowledge about is-a relations from the
domain expert, but is normally not available beforehand, but only through interaction
of the domain expert with the debugging system. This means that even in the situations
whereH is a solution, this does not readily provide us a solution in practice. It also
means that one cannot just take subsets ofH and check whether they are solutions.

Table 1 provides us with some guidelines for the development and the use of debug-
ging systems. First, it is clear that we prefer an all-knowing expert. The second best case
for obtaining correct solutions is the partial-correct expert. As discussed in Section 2,
this could be approximated by using multiple domain experts and a skeptical approach.

If there are wrong is-a relations inM , there will be no solution or solutions that are
not correct. The repaired ontology will contain incorrect is-a relations. Therefore, the
expert should validateM at the beginning of the debugging session. Those is-a relations
which are identified to be incorrect should be removed fromM .4 Another advantage of
the validation is that, after validation we have thatMvalidated ⊆ H.

Further, as we do not know whetherT is correct according to the domain or not,
it should be checked whetherT ∪ Mvalidated is consistent. If not, then there are no
solutions. Otherwise, we know thatMvalidated is a solution. When we remove the re-
dundancy fromMvalidated, then we also have a subset minimal solution. This solution
could then be used as a basis for finding more informative solutions. The difficulty is in
finding subsetsS of H (which is not available) such thatT ∪ S is consistent.

4.2 Lessons for an existing system

The system in [13] allows debugging the is-a structure of and mappings between tax-
onomies in a taxonomy network. The input to the system is an ontology network. In
this discussion we focus on one of the ontologies in the network (Tand thus alsoC).
The debugging workflow consists of three phases: (1) detection (generation ofM ), (2)
validation ofM and (3) repair (solving the GTAP problem). The domain expert is in-
volved in the validation ofM as well as in phase 3 for validation of possible solutions
(S). The domain expert can switch between the different phases at any time. The sys-
tem was used in a real case for the Swedish National Food Agency [12] and in several
experiments with ontologies from the Ontology Alignment Evaluation Initiative [19].

Although the system allows to switch between the different phases, in all our exper-
iments we started with validatingM , which is as suggested by our analysis in Section
4.1. If M contained wrong is-a relations, we used semantic debugging techniques to re-
pair these. This allowed us to remove incorrect is-a relations inT . When all the wrong
is-a relations are repaired and removed fromM , we obtain a newMvalidated. If the
domain expert validatedM in a correct way, we are in a situation in the upper part of
Table 1. The is-a relations inMvalidated are then repaired. When they are repaired using

3 If there would be no expert, as shown in Table 1, in the best caseM could be a correct solution,
but there is no guarantee for solutions. We do not discuss this case further in this section.

4 Depending on the detection method to generateM , the wrong is-a relations inM may lead to
other debugging opportunities for semantic defects (e.g., [13]).
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solutions that are more informative thanMvalidated, then new knowledge is added to
the network and a new round of detection was started, possibly leading to the detection,
validation and repair of new is-a relations.

Initially, Mvalidated is added to the ontology. This means that we start with a least
informative solution. When removing redundancy fromMvalidated, it is also a subset
minimal solution. Then, the system tries to generate more informative solutions. For
this, the missing is-a relations are repaired one at the time. For each missing is-a relation
mi a set of is-a relationsRi is computed that guarantees thatT ∪ {ri} |= mi for each
ri ∈ Ri. Thus, for each missing is-a relation, at most one is-a relation is added to
the ontology. By removing redundancy subset minimal solutions can be guaranteed.
Further, for each missing is-a relation on its own semantically maximal solutions are
generated with the extra conditions that only one is-a relation is used for repairing and
no unnecessary equivalences (≪SH in [21]) are introduced in the ontology.

One immediate consequence of our analysis is that we should allow a domain ex-
pert to choose several elements of eachRi. This is an easy extension to the system
that would provide more informative solutions. Another consequence is that it would
be advantageous to allow a domain expert to deal with a previously repaired is-a re-
lation again, when new knowlegde was added to the ontology. New more informative
solutions may be found. Further, there should be a way for domain experts to add new
is-a relations that do not occur within the repairing process.

An interesting observation during the debugging described in [12] was that the do-
main experts changed their mind about the correctness of some is-a relations after de-
bugging some other is-a relations. This means thatH may actually change during a
session, and we may move upwards in Table 1.

5 Related Work

Repairing missing is-a relations.There is not much work on the repairing of missing
is-a structure. In [21, 20] this was addressed in the setting of taxonomies where the prob-
lem as well as some preference criteria were defined. Further, an algorithm was given
for finding a solution to the repairing problem and an implemented system was pro-
posed. A later version of that system was then used for debugging ontologies related to
a project for the Swedish National Food Agency [12]. The system was further extended
to deal with missing and wrong is-a relations and mappings [19] and integrated with
ontology alignment [13]. In [18] the problem was formalized as an abduction problem
and an algorithm was given for finding solutions forALC acyclic terminologies.

TBox abduction.Except for [18] in which GTAP withoutH was defined, there is
no other work yet on GTAP. There is some work on TBox abduction. [11] proposes an
automata-based approach to TBox abduction using abducibles. It is based on a reduction
to the axiom pinpointing problem which is then solved with automata-based methods.

Related topics.There is work that addresses related topics but not directly the prob-
lem that is addressed in this paper. Regardingdetecting missing is-a relationsthere is
much work on finding relationships between terms in the ontology learning area [2].
Further, there is work on finding is-a relations based on different kinds of patterns (e.g.,
[9, 4]). When the ontology is part of a network of ontologies connected by mappings,
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knowledge itrinsic to the ontology network can be used to detect missing is-arelations
using logical derivation [21, 12]. These approaches, in general, do not detectall miss-
ing is-a relations. There is much work ondebugging semantic defects. Most of the work
on debugging semantic defects aims at identifying and removing logical contradictions
from an ontology (e.g., [8, 26, 16, 10, 24, 27, 1, 23]). In [22, 28, 25, 14, 15] the setting is
extended to repairing ontologies connected by mappings. Further, there is some work on
abductive reasoning in description logics. In [7] four different abductive reasoning tasks
are defined - concept, ABox, TBox and knowledge base abduction. Concept abduction
deals with finding sub-concepts. Abox abduction deals with retrieving instances that,
when added to the knowledge base, allow the entailment of a desired ABox assertion.
Knowledge base abduction includes both ABox and TBox abduction. Most existing
approaches focus on ABox [17, 6] and concept abduction [3, 5].

6 Conclusion

In this paper we formalized repairing missing is-a structure in ontologies as an abduc-
tion problem. We defined properties for the ontology, the set of is-a relations to repair
and the domain expert, as well as preference criteria on solutions and discussed the in-
fluences of these properties and criteria on the existence of solutions for the abductive
problem. We also discussed the consequences of our analyses for the development and
use of debugging systems. One direction for future work is to analyze the complexity
of the decision problems for different knowledge representation languages. Further, we
want to investigate in algorithms that satisfy the preference criteria for different lan-
guages and that can be used in practice in a debugging system.
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