
Checking and Repairing Ontological Naming
Patterns using ORE and PatOMat

Ondřej Zamazal1, Lorenz Bühmann2, and Vojtěch Svátek1

1 Knowledge Engineering Group, University of Economics Prague, Czech Republic
{ondrej.zamazal}|svatek@vse.cz

2 AKSW research group, University of Leipzig, Germany,
buehmann@informatik.uni-leipzig.de

Abstract. Analysis of the naming of entities across ontological struc-
tures can help reveal both naming issues and underlying conceptualiza-
tion issues. Cross-entity naming analysis thus extends the standard logi-
cal satisfiability checking by an extra, less rigorous and reliable but often
farther reaching layer. We show how such naming patterns can be ap-
plied within the transformation pattern paradigm used by the PatOMat
transformation framework. We describe how the PatOMat tool has been
integrated into the (logic-oriented) Ontology Repair and Enrichment tool
(ORE), and present the results of application of a prominent naming pat-
tern, ‘non-matching child’, on a collection of linked data vocabularies.

Keywords: Naming pattern, Ontology Repair, PatOMat, ORE

1 Introduction

During the decades of knowledge engineering research, there has been recurrent
dispute on how the natural language structure influences the structure of formal
knowledge bases and vice versa. A large part of the community seems to recog-
nise that the content expressed in formal representation languages, such as the
semantic web ones, should be accessible not only to logical reasoning machines
but also to humans and NLP procedures, and thus resemble the natural language
as much as possible.3 We build upon the assumption that naming in ontologies
matters, can be sensibly designed, and to some degree even automatically iden-
tified in existing ontologies, with the help of naming patterns. Current ontology
debugging methods, mostly dealing with the logical structure of the ontology
only, can thus be extended by debugging of naming issues. Detecting improper
or awkward naming should be ideally followed by repairing suggestions. While
in the biomedical field there have already been efforts in naming analysis, e.g.,
in [2, 9], naming in the broad field of linked data vocabularies (where domain-
specific heuristics cannot be applied) has rarely been addressed. Generic tools
such as OntoCheck [8] have so far been only equipped with very simple tests such
as that of name length or presence of a concrete sub-token (such as ‘and’). The

3 See for example the arguments by Y. Wilks in [7]

69

presented approach thus contributes to filling in a missing piece: domain-neutral
cross-entity analysis.

The paper follows up on earlier research described in [11]. In contrast to [11],
where the analysis of presence of the ‘non-matching child’ pattern was carried
out manually and only qualitative results (for three ontologies) were presented,
we now

– carry out the pattern detection fully automatically, by means of a versa-
tile ontology transformation framework, PatOMat [12], with declaratively
represented patterns

– in this context, also consider a simple form of pattern-based repair of the
discovered issue

– provide a lightweight integration of naming analysis and logical satisfiability
analysis within the Ontology Repair and Enrichment tool (ORE) [5]

– present the empirical results of analysis on a larger number of linked data
vocabularies included in the respected Linked Open Vocabularies collection.

The paper is structured as follows. Section 2 briefly surveys the PatOMat
transformation framework. Section 3 explains the NMC (non-matching child)
pattern and describes its implementation via PatOMat transformation patterns.
Section 4 describes the integration of the whole functionality into ORE. Section 5
reports on an experiment in NMC pattern detection over 16 ontologies (namely,
popular linked data vocabularies). Section 6 then wraps up the paper.

2 PatOMat Framework and Naming Patterns

PatOMat framework principles The PatOMat Framework4 has been originally
designed with the goal of transforming ontologies between ‘structural’ modelling
styles, e.g., via de/reifying properties, metamodelling classes by individuals,
switching between object and data properties, and the like. However, the en-
tity naming aspect has been considered from the beginning.

The central notion in PatOMat is that of transformation pattern (TP). A TP
contains two ontology patterns (source OP and target OP) and the description
of the transformation betweem them, called pattern transformation (PT). For
instance, we can specify a very simple TP such that a subsumption relation be-
tween two classes (as source, OP1) should be transformed to a SKOS5 taxonomic
relationship between two individuals (as target, OP2). A schematic description
follows.6

OP1: Class: ?OP1_A subClassOf ?OP1_B
OP2: Class: ?OP2_A skos:broader ?OP2_B
PT: ?OP1_A = ?OP2_A ?OP1_B = ?OP2_B.

4 [12] provides more details about the framework, and at http://owl.vse.cz:8080/

tutorial/ there is a fully-fledged tutorial for the current version.
5 http://www.w3.org/TR/skos-primer/
6 OP1 and OP2 contain axioms in frame-based variant of Manchester syntax, http:
//www.w3.org/TR/owl2-manchester-syntax/

70

The representation of OPs is based on the OWL 2 DL profile. However,
while an OWL ontology refers to particular entities, e.g. to class Person, in
the patterns we generally use placeholders, e.g. ?OP1 A. Entities are specified
(i.e. placeholders are instantiated) at the time of instantiation of a pattern. An
OP consists of entity declarations (referring to placeholders or concrete entities),
axioms and naming detection patterns (NDPs); the last capture the naming
aspect of the OP important for its detection, see below. A PT consists of a set
of transformation links and a set of naming transformation patterns (NTPs).
Transformation links are either logical equivalence relationships or extralogical
relationships holding between pairs of entities of different type (such as class
vs. individual, as in our example above). NTPs serve for generating new names
for original or newly created entities.

PatOMat currently supports naming operations at the level of short URIs; its
extension to rdfs:label values would however be straightforward. Various token
separators, such as underscore, hyphen or camel-case, are supported.

PatOMat implementation The framework prototype implementation is available
either as a Java library or as three core services.7 The whole transformation is
divided into three steps, which correspond to the three services:

– The OntologyPatternDetection service takes the transformation pattern and
a particular original ontology on input, and returns the binding of entity
placeholders on output, in XML. The structural/logical aspect is captured
in the structure of an automatically generated SPARQL query;8 the naming
aspect is dealt with based on its description within the source pattern.

– The InstructionGenerator service takes the particular binding of placehold-
ers and the transformation pattern on input, and returns particular transfor-
mation instructions on output, also in XML. Transformation instructions are
generated according to the transformation pattern and the pattern instance.

– The OntologyTransformation service takes the particular transformation in-
structions and the particular original ontology on input, and returns the
transformed ontology on output. The service is based on our specific imple-
mentation over OWL-API,9 and enables operations on axioms, entities and
adding OWL annotations.

The process of transformation is decomposed into parts in order to enable
an user intervention within the whole workflow. User intervention can be carried
out using a generic graphical tool, GUIPOT [13].

7 All accessible via the web interface at http://owl.vse.cz:8080/.
8 http://www.w3.org/TR/rdf-sparql-query/
9 http://owlapi.sourceforge.net/

71

3 Non-Matching Child (NMC) Pattern

It is quite common in ontologies that a subclass has the same head noun as
its parent class.10 By an earlier study [11] we estimate that in ontologies for
technical domains this simple pattern is verified in 50–80% of class-subclass
pairs such that the subclass name is a multi-token one. This number further
increases if we consider thesaurus correspondence (synonymy and hypernymy)
rather than literal string equality. In fact, the set-theoretic nature of taxonomic
path entails that the correspondence of head nouns along this path should be
close to 100% in principle; the only completely innocent deviations from it should
be those caused by incomplete thesauri. In other words, any violation of head
noun correspondence may potentially indicate a (smaller or greater) problem in
the ontology. Prototypical situations are:

– Inadequate use of class-subclass relationship, typically in the place of whole-
part or class-instance relationship, i.e., a conceptualisation error frequently
occurring in novice ontologies.

– Name shorthanding, typically manifested by use of adjective, such as ‘State-
Owned’ (subclass of ‘Company’).

While the former requires complex refactoring of the ontology fragment, the
latter can be healed by propagation of the parent name down to the child name.

NMC pattern in PatOMat Let us now show how to capture the NMC pattern
within a PatOMat TP. The source OP is here just a subClassOf relationship
between two classes. There are however two variants of this source OP: one
using subClassOf and one using directSubClassOf, the latter operating on class
pairs identified by a reasoner.11

An NDP within the source OP can consist of several naming operations such
as detection of a head noun; their results can then be compared using different
methods. We designed two variants of such an NDP:

1. comparing whether ?OP1 A has the same head noun as ?OP1 P (e-variant,
for ‘equality’) or

2. comparing whether head noun of ?OP1 P is a hypernym of head noun of
?OP1 A (t-variant, for ‘thesaurus’).

The target OP has only one variant, which is structurewise identical to the
source OP, i.e., Class: ?OP2 A SubClassOf: ?OP2 P (and there is no NDP
part). Finally, the PT contains transformation links specifying equality of ?OP1 A
and ?OP2 A and analogously for ?OP1 P and ?OP2 P . More interestingly, it
also includes an NTP, which represents the naming repair step. It specifies that
?OP A should be extended by the head noun of ?OP1 P .

In combination, we can have four variants of the NMC pattern, of which we
consider three: (1) Se, St and Dt.12 The Se variant simply matches the head

10 The head noun is typically the last token, but not always, in particular due to
possible prepositional constructions, as, e.g., in ‘HeadOfDepartment’.

11 We used Pellet, http://pellet.owldl.com/.
12 All variants available at http://nb.vse.cz/~svabo/patomat/tp/np/

72

nouns, the Dt variant needs to employ a reasoner, and both t variants employ
a thesaurus in order to verify the hypernym relationships. In our case we use
WordNet [6]. In order to traverse hypernym relations we first get all senses of
a given word and retrieve hypernyms of all senses. Then we check whether the
lemma of a given word is the same as the lemma of one of hypernyms. If it is
not the case, it continues to the next level of hypernyms. By experience, we set
up the number of levels to five.

In the experiment described in Section 5, we used the St variant of the
pattern, but, referring to the conjecture formulated at the beginning of this
section, distinguished between single- and multi-token child.

4 Integration into ORE

The ORE13 (Ontology Repair and Enrichment) tool was designed so as to allow
knowledge engineers to improve knowledge bases in the form of SPARQL end-
points and OWL ontologies. ORE helps fixing several kinds of problems such as
logical errors, i.e., unsatisfiable classes and inconsistencies, by applying state-of-
the-art methods [3,4], and, newly, the naming problems described in this paper.
Additionally, ORE allows for the semi-automatic enrichment of knowledge base
schemas by suggesting OWL axioms generated by the application of machine
learning algorithms [1] on the underlying instance data. These data adhering
axioms, if accepted by the user, can result in a more expressive ontology, which
can for example enable more powerful querying.

The PatOMat framework is integrated into ORE by means of a separate task
and visualized in a single view as shown in Figure 1. Here the user can select a
naming pattern, as for example non-matching child1 (corresponding to the St
variant of the non-matching child pattern), in the leftmost list (1©). PatOMat
then detects instances of the selected pattern in the currently loaded ontology,
e.g., [?OP1 P=Contribution;?OP1 A=Poster](see 2©). For the selected pattern
instances the user will be provided a list of renaming instructions (see 3©), for
example to rename the class Poster to PosterContribution, which can then
be used to transform the ontology and solve the detected naming issues.

5 NMC Pattern Detection Experiment

We carried out a small experiment on 16 randomly selected vocabularies from
the Linked Open Vocabularies (LOV) catalog.14 They belong to four of the eight
major clusters suggested by the LOV curators: City (related to personal, social
and governmental data), Library, Media and Market. Four of the vocabularies,
ontopic, swc, wi and gc, imported other vocabularies; we considered them to-
gether with these imports. For completeness we also include two vocabularies
that did not contain any subclass axioms.

13 http://aksw.org/Projects/ORE.html
14 http://lov.okfn.org

73

Fig. 1. Screenshot of the PatOMat view in the ORE tool.

The summary of the results is in Table 1. The first two columns display
the nickname of the vocabulary within LOV,15 its catalogued name and cluster.
The next three columns show the total number of asserted subclass axioms, the
number of axioms matching the NMC pattern (the ordering in the table is in
the descending order of this field), and the respective ratio. The following three
columns are analogous, but only refer to subclass axioms where the subclass has
a multi-token name. The last two columns show the time spent (in seconds) and
the average time corresponding to one subclass axiom.

The proportion of axioms satisfying the NMC pattern (‘Ratio all’ column)
ranges from 0% to 87%. The results however seem to confirm our conjecture
that subclasses with multi-token names are more likely to follow (at least via
thesaurus correspondence) the head noun of their parent class name. For 11 of
the 16 vocabularies, the frequency of occurrence of the NMC pattern was reduced
by focusing on multi-token subclasses, and only for 2 (swc and gr) it increased.

Manual analysis of the ‘alerts’ revealed several interesting cases:

– Although possibly with some ‘philosophical’ excuse, the class-subclass pair
‘Topic’–‘TopicSignature’ in ontopic is suspect for tacit partonomy, as the
latter is commented as ‘the subcollection of terms populating a Topic’ (a set
of terms is likely not same as the topic it populates).

– Head noun of the superclass is sometimes a meta-level term. For example,
in swc the class ‘ProgrammeCommitteeMember’ is a subclass of ‘Role’; ob-
viously, if this subclass is populated by ‘Person’ entities, they would become
instances of ‘Role’, which would be undesirable. In gnd, which is a taxon-
omy of keyword types rather than a true data vocabulary, class ‘PlaceOr-
GeographicName’ has subclasses such as ‘MemberState’; however, the latter
could be, in the linked data setting, populated by true ‘state’ entities (rather
than just by their names viewed as keywords).

15 The URI of the catalog item page is http://lov.okfn.org/dataset/lov/details/

vocabulary_<nickname>.html.

74

Nick Name/topic Cluster Subcl Patt Ratio Subcl Patt Ratio Time Time
name all all all MT MT MT total avg.

ontopic Ontopic Library 182 91 50% 95 39 41% 33 0.18
swc SemWeb Conference City 100 36 36% 55 25 45% 17 0.17
gnd GND Library 47 31 66% 37 23 62% 17 0.36
mvco Media Value Chain Media 32 24 75% 13 6 46% 11 0.34
pattern Pattern Library 15 13 87% 0 0 - 9 0.60
gr GR - GoodRelations Market 19 10 53% 13 8 62% 12 0.63
wi Weighted Interests City 20 9 45% 8 2 25% 24 1.20
bibo Bibliographic Library 53 8 15% 15 2 13% 11 0.21
frbr Core FRBR Concepts Library 27 7 26% 6 0 0% 11 0.41
gc oeGOV Governm.Core City 11 6 55% 3 1 33% 14 1.27
foaf FOAF City 10 3 30% 4 0 0% 9 0.90
sioc SIOC City 6 2 33% 1 0 0% 9 1.50
pna Press.net Asset Media 3 2 67% 0 0 0% 8 2.67
chord OMRAS2 Chord Media 3 1 33% 2 0 0% 9 3.00
comm Incident communication City 0 0 - 0 0 - 8 -
part Participation Schema City 0 0 - 0 0 - 7 -

Total 528 243 46% 252 106 42%
Table 1. Results of vocabulary analysis wrt. the NMC pattern

– The previous is a special case of name shorthanding. A more typical case
is such that no head noun can be detected at all, e.g., with pair such as
‘PoliticalSystem’–‘Tribal’ (in gc) or ‘Publication’–‘Unpublished’ (in swc).

– Some vocabularies redefine common terms in their specific manner, which
generates false alerts. For example, in bibo, ‘CourtReporter’ is subclass of
‘Periodical’ (while a ‘reporter’ would not primarily be viewed as periodi-
cal) and ‘LegalCaseDecision’ is a subclass of ‘LegalCaseDocument’ (while a
‘decision’, in the general sense, is not a document). Similarly, ontopic has
‘TimeInterval’ as subclass of ‘Region’ (here the unusual choice of term ‘re-
gion’ follows from the upper-level nature of the ontology).

– Sometimes the head noun detection fails due to non-intuitive agglutination
of tokens. A grammatically sound one is ‘SubjectHeadingSensoStricto’ (in
gnd), unmatched to its parent ‘SubjectHeading’. Less sound seem to be,
e.g., ‘PaymentMethodCreditCard or ‘QuantitativeValueFloat’ (in gr).

– An unusual case setting may make the tokenizer fail and thus lead to a false
alert, e.g., for a class named ‘Vevent’ (a kind of ‘event’ in swc).

The relatively high computation times are partly owing to SPARQL query
evaluation and partly to WordNet traversal. However, given the offline nature of
the task, they are not prohibitive.

75

6 Conclusions and Future Work

Many ontologies, including linked data vocabularies, have recently been created,
often with little concern for naming coherence, and sometimes even with con-
ceptualization flaws (also reflected by naming incoherence). Visual analysis of
the naming aspect of their taxonomic structures is typically feasible, as most
ontologies/vocabularies are not extremely large. However, allowing the user to
focus on ‘suspicious’ cases (and ignoring those apparently sound) can be helpful.

We present a solution for such machine-supported analysis, which combines
the functionality of an ontology debugging (and enrichment) tool, ORE, with
that of a pattern-based ontology transformation framework, PatOMat, and with
online access to WordNet. Empirical results of naming analysis (regarding the
NMR pattern) on 16 linked data vocabularies have been presented.

In future we plan to come up with more sophisticated naming/transformation
patterns (e.g., indicating a taxonomy/partonomy mismatchh), and involve a
larger number of vocabularies in the experiment.

The research is supported by the EU ICT FP7 under No.257943, LOD2 project.

References

1. Bühmann L., Lehmann J.: Universal OWL Axiom Enrichment for Large Knowledge
Bases. In: EKAW 2012, Galway, Ireland, 2012.

2. Fernandez-Breis, J. T., Iannone, L., Palmisano, I., Rector, A. L., Stevens, R.: Enrich-
ing the Gene Ontology via the Dissection of Labels Using the Ontology Pre-processor
Language. EKAW 2010: 59-73.

3. Horridge M., Parsia B., Sattler U.: Laconic and Precise Justifications in OWL. In:
ISWC 2008, Karlsruhe, Germany, 2008.

4. Kalyanpur A., Parsia B., Horridge M., Sirin E.: Finding all justifications of OWL
DL entailments. In: ISWC 2007, 2007.

5. Lehmann J., Bühmann L.: ORE - a tool for repairing and enriching knowledge bases.
In: ISWC’10, Shanghai, China, 2010.

6. Miller G. A. WordNet: A Lexical Database for English. CACM, 1995.
7. Nirenburg S., Wilks Y.: Whats in a symbol: Ontology and the surface of language.

Journal of Experimental and Theoretical AI, 2001.
8. Schober, D., Tudose, I., Svátek, V., Boeker, M.: OntoCheck: verifying ontology

naming conventions and metadata completeness in Protégé 4. J. Biomed. Semantics,
2012, 3(Suppl 2):S4.

9. Schober, D., Smith, B., Lewis, S. E., Kusnierczyk, W., Lomax, J., Mungall, C.,
Taylor, C. F., Rocca-Serra, P., Sansone, S.-A.: Survey-based naming conventions
for use in OBO Foundry ontology development. BMC Bioinformatics 10 (2009).

10. Svátek V., Šváb-Zamazal O., Presutti V.: Ontology Naming Pattern Sauce for
(Human and Computer) Gourmets. In: Workshop on Ontology Patterns at ISWC09.

11. Šváb-Zamazal O., Svátek V.: Analysing Ontological Structures through Name Pat-
tern Tracking. In: EKAW-2008, Acitrezza, Italy, 2008.

12. Šváb-Zamazal O., Svátek V., Iannone L.: Pattern-Based Ontology Transformation
Service Exploiting OPPL and OWL-API. In: EKAW 2010.

13. Zamazal O., Dudáš M., Svátek V.: User-Friedly Pattern-Based Transformation of
OWL Ontologies. In: EKAW 2012, Galway, Ireland, 2012.

76

