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ABSTRACT
MapReduce framework is established as the standard ap-
proach for parallel processing of massive amounts of data. In
this work, we extend the model of MapReduce scheduling on
unrelated processors (Moseley et al., SPAA 2011) and deal
with the practically important case of jobs with any number
of Map and Reduce tasks. We present a polynomial-time
(32 + ✏)-approximation algorithm for minimizing the total
weighted completion time in this setting. To the best of our
knowledge, this is the most general setting of MapReduce
scheduling for which an approximation guarantee is known.
Moreover, this is the first time that a constant approxima-
tion ratio is obtained for minimizing the total weighted com-
pletion time on unrelated processors under a nontrivial class
of precedence constraints.
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1. INTRODUCTION
Scheduling in MapReduce environments has become in-

creasingly important during the last years, as MapReduce
has been established as the standard programming model
to implement massive parallelism in large data centers [5].
Applications of MapReduce such as search indexing, web
analytics and data mining, involve the concurrent execu-
tion of several MapReduce jobs on a system like Google’s
MapReduce or Apache Hadoop. When a MapReduce job is
executed, a number of Map and Reduce tasks are created.
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Each Map task operates on a portion of the input elements,
translating them into a number of key-value pairs. Next,
all key-value pairs are transmitted to the Reduce tasks, so
that all pairs with the same key are available together at
the same task. The Reduce tasks operate on the key-value
pairs, combine the values associated with a key, and generate
the final result. In addition to the many practical applica-
tions of MapReduce, there has been a significant interest
in developing appropriate cost models and a computational
complexity theory for MapReduce computation (see e.g., [3,
6]), in understanding the basic principles underlying the de-
sign of e�cient MapReduce algorithms (see e.g., [1, 7]), and
in obtaining upper and lower bounds on the performance
of MapReduce algorithms for some fundamental computa-
tional problems (see e.g. [2] and the references therein).
Motivation and Previous Work. Many important ad-
vantages of MapReduce are due to the fact that the Map
tasks or the Reduce tasks can be executed in parallel and
essentially independent from each other. However, to best
exploit massive parallelism available in typical MapReduce
systems, one has to carefully allocate and schedule Map
and Reduce tasks to actual processors (or computational
resources, in general). This important and delicate task is
performed in a centralized manner, by a process running in
the master node. A major concern of the scheduler, among
others, is to satisfy task dependencies within the tasks of the
same MapReduce job; all the Map tasks must finish before
the execution of any Reduce task of the same job. During
the assignment and scheduling process, a number of di↵er-
ent needs must be taken into account, e.g., transferring of
the intermediate data (shu✏e), data locality, and data skew,
which give rise to the study of new scheduling problems.

Despite the importance and the challenging nature of sched-
uling in MapReduce environments, and despite the extensive
investigation of a large variety of scheduling problems in par-
allel computing systems (see e.g., [13]), less attention has
been paid to MapReduce scheduling problems. In fact, most
of the previous work on scheduling in MapReduce systems
concerns the experimental evaluation of scheduling heuris-
tics, mostly from the viewpoint of finding good trade-o↵s
between di↵erent objectives (see e.g., [14]). From a theoret-
ical viewpoint, only few results on MapReduce scheduling
have appeared so far [11, 4].These are based on simplified ab-
stractions of MapReduce scheduling, closely-related to some
variants of the classical Open Shop and Flow Shop schedul-
ing models, that capture issues such as task dependencies,
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data locality, shu✏e, and task assignment, under the key
objective of minimizing the total weighted completion time
of a set of MapReduce jobs.

In this direction, the theoretical model of Moseley et al. [11]
generalizes a variant of the Flow Shop scheduling model,
referred to as 2-stage Flexible Flow Shop (FFS), which is
known to be strongly NP-hard, even for jobs of a single
Map and Reduce task and a single map and reduce proces-
sor (see in [11]). They consider the cases of both identical
and unrelated processors and the goal is to minimize the
total completion time of the jobs. For identical processors,
they present a 12-approximation algorithm, and a O(1/✏2)-
competitive online algorithm, for any ✏ 2 (0, 1), under the
assumption that the processors used by the online algorithm
are 1 + ✏ times faster than the processors used by the opti-
mal schedule. Since the identical processors setting fails to
capture issues as data locality and to model communication
costs between the Map and the Reduce tasks, Moseley et al.
also consider the case of unrelated processors, which pro-
vides a more expressive theoretical model of scheduling in
MapReduce environments. Nevertheless, they only consider
the very restricted (and practically not so interesting) case
where each job has a single Map and a single Reduce task,
and present a 6-approximation algorithm and a O(1/✏5)-
competitive online algorithm, for any ✏ 2 (0, 1), under the
assumption that the processors of the online algorithm are
1 + ✏ times faster.

A similar model of MapReduce scheduling so as to min-
imize the total completion time was proposed by Chen et
al. [4]. In contrast with the model of [11], they assume that
tasks are preassigned to processors and, in this restricted set-
ting, they present an LP-based 8-approximation algorithm.
Moreover, they deal with the shu✏e phase in MapReduce
systems and present a 58-approximation algorithm.
Contribution and Results. We adopt the theoretical
model of [11] and consider MapReduce scheduling on unre-
lated processors. However, departing from [11], we deal with
the general (and practically interesting) case where each job
has any number of Map and Reduce tasks and we succeed
in obtaining a polynomial-time constant approximation al-
gorithm for minimizing the total weighted completion time.
More specifically, we consider a set of MapReduce jobs to be
executed on a set of unrelated processors. Each job consists
of a set of Map tasks, that can be executed only on map pro-
cessors, and a set of Reduce tasks, that can be executed only
on Reduce processors. Each task has a di↵erent processing
time for each processor and is associated with a positive
weight, representing its importance. All jobs are available
at time zero. Map or Reduce tasks can run simultaneously
on di↵erent processors and, for each job, every Reduce task
can start its execution after the completion of all the job’s
Map tasks. The goal is to find an assignment of the tasks
to processors and schedule them non-preemptively so as to
minimize their total weighted completion time.

In terms of classical scheduling, the model we consider
in this work is a special case of total weighted completion
time minimization on unrelated processors under precedence
constraints. Despite its importance and generality, only few
results are known for this problem. These results concern
only the case of treelike precedence constraints [8]. More
specifically, in [8], Kumar et al. propose a polylogarith-
mic approximation algorithm for the case where the undi-
rected graph underlying the precedence constraints is a for-

est (a.k.a. treelike precedences). Their algorithm is based
on a reduction from total weighted completion time min-
imization to an appropriate collection of makespan mini-
mization problems. Based on ideas of [8], we present a
(32+✏)-approximation algorithm for this problem that oper-
ates in two steps. In the first step, our algorithm computes a
(8+ ✏)-approximation schedule for the Map tasks (resp. Re-
duce tasks) by combining a time indexed LP-relaxation of
the problem with a well-known approximation algorithm for
the makespan minimization problem on unrelated proces-
sors [9]. In fact, the makespan minimization algorithm runs
on each time interval of the LP solution and computes an
assignment of the Map (resp. Reduce) tasks to processors.
In the second step, based on an idea from [11], we merge the
two schedules, produced for the Map tasks and the Reduce
tasks, into a single schedule that respects the precedence
constraints. Using techniques from [11], we show that the
merging step increases the approximation ratio by a factor
of at most 4.

On the practical side, the theoretical model of [11] for
MapReduce scheduling on unrelated processors deals with
the most of the important aspects of the problem. So, con-
sidering jobs with any number of Map and Reduce tasks in
this model is particularly important for practical applica-
tions, since the basic idea behind MapReduce computation
is that each job is split into a large number of Map and Re-
duce tasks that can be executed in parallel (see e.g., [3, 6,
1, 2]). On the theoretical side, to the best of our knowledge,
this is the first time that a constant approximation ratio is
obtained for the problem of minimizing the total weighted
completion time on unrelated processors under a nontrivial
class of precedence constraints.
Notation. We consider a set J = {1, 2, . . . , n} of n MapRe-
duce jobs to be executed on a set P = {1, 2, . . . , m} of m
unrelated processors. Each job is available at time zero, is
associated with a positive weight wj and consists of a set M

of Map tasks and a set R of Reduce tasks. Each task is de-
noted by Tk,j 2 M[R, where k 2 N is the task index of job
j 2 J and is associated with a vector of non-negative pro-
cessing times {pi,k,j}, one for each processor i 2 Pb, where
b 2 {M, R}. Let P

M

and P

R

be the sets of map and re-
duce processors respectively. Each job has at least one Map
and one Reduce task that can run simultaneously on di↵er-
ent processors and every Reduce task can start its execution
after the completion of all Map tasks of the same job.

For a given schedule we denote by Cj and Ck,j the com-
pletion times of each job j 2 J and each task Tk,j 2 M [ R

respectively. Note that, due to the precedence constraints
between Map and Reduce tasks, Cj = max

T

k,j

2R

{Ck,j}. By
Cmax = maxj2J

{Cj} we denote the makespan of the sched-
ule, i.e., the completion time of the job which finishes last.
Our goal is to schedule non-preemptively all Map tasks on
processors of P

M

and all Reduce tasks on processors of P

R

,
with respect to their precedence constraints, so as to min-
imize the total weighted completion time of the schedule,
i.e.,

P
j2J

wjCj . We refer to this problem as MapReduce
scheduling problem.

2. A CONSTANT APPROXIMATION ALGO-
RITHM

In this section, we present a (32 + ✏)-approximation al-
gorithm, for ✏ 2 (0, 1), executed in the following two steps:
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(i) it computes a (8 + ✏)-approximate schedule for assigning
and scheduling all Map tasks (resp. Reduce tasks) on pro-
cessors of the set P

M

(resp. P

R

) and (ii) it merges the two
schedules in one, with respect to the precedence constraints
between Map and Reduce tasks of each job, increasing the
approximation ratio by a factor of 4.

2.1 Scheduling Map and Reduce Tasks
Next, we propose an algorithm for the problem of mini-

mizing the total weighted completion time of all Map (resp.
Reduce) tasks on processors of the set P

M

(resp. P

R

). For
notational convenience, we use a dual variable b 2 {M, R}

to refer on either Map or Reduce sets of tasks.
We define (0, t

max

=
P

T

k,j

2b maxi2P

b

pi,k,j ] to be the

time horizon of potential completion times, where t
max

is an
upper bound on the makespan of a feasible schedule. We dis-
cretize the time horizon into intervals (1, 1], (1, (1+�)], ((1+
✏), (1 + �)2], . . . , ((1 + �)L�1, (1 + �)L], where � 2 (0, 1) is
a small constant, and L is the smallest integer such that
(1 + �)L�1

� t
max

. Let I` = ((1 + �)`�1, (1 + �)`], for
0  `  L, and L = {0, 1, 2, . . . , L}. Note that, the number
of intervals is polynomial in the size of the instance and to
1/�. For each processor i 2 Pb, task Tk,j 2 b and ` 2 L,
we introduce a variable yi,k,j,` that denotes the fraction of
task Tk,j assigned to processor i in time interval I`. Fur-
thermore, for each task Tk,j 2 T , we introduce a variable
Ck,j corresponding to its completion time, and a variable
zk,j corresponding to its fractional processing time. For ev-
ery job j 2 J , we also introduce a dummy task Dj , with
zero processing time on every processor, which has to be
processed after the completion of every other task Tk,j 2 b.
LP (b) is an interval-indexed linear programming relaxation
of our problem.

LP (b) : minimize
X

j2J

wjDj

subject to :
X

i2P

b

,`2L

yi,k,j,` = 1, 8Tk,j 2 b (1)

zk,j =
X

i2P

b

pi,k,j

X

`2L

yi,k,j,`, 8Tk,j 2 b (2)

CD
j

� Ck,j + zk,j , 8j 2 J , Tk,j 2 b (3)
X

i2P

b

X

`2L

(1 + �)`�1yi,k,j,`  Ck,j 

X

i2P

b

X

`2L

(1 + �)`yi,k,j,`,

8Tk,j 2 b (4)
X

T

k,j

2b

pi,k,j

X

t`

yi,k,j,t  (1 + �)`, 8i 2 Pb, ` 2 L (5)

pi,k,j > (1 + �)`
) yi,k,j,` = 0, 8i 2 Pb, Tk,j 2 b, ` 2 L (6)

yi,k,j,` � 0, 8i 2 Pb, Tk,j 2 b, ` 2 L (7)

Our objective is to minimize the sum of weighted com-
pletion times of all jobs. Constraint (1) ensures that each
task is entirely assigned to processors of the set Pb and
constraint (2) defines its fractional processing time. Con-
straint (3) ensures that, for each job j 2 J , the comple-
tion of each task Tk,j precedes the completion of task Dj .
Constraint (4) adapts a lower and an upper bound on the
completion time of each task. For each ` 2 L, constraints
(5) and (6) are validity constraints which state that the to-
tal fractional processing time on each processor is at most

(1 + �)`, and that if it takes time more than (1 + �)` to pro-
cess a task Tj,k on a processor i 2 Pb, then Tk,j should not
be scheduled on i, respectively.
Assignment and Scheduling. Let (ȳi,k,j,l, z̄k,j , C̄k,j) be an
optimal (fractional) solution to LP (b). For each 2  `  L,
we define the set of tasks S(`) = {Tk,j 2 b | (1 + �)`�2/2 

C̄k,j  (1 + �)`�1/2}, that complete their execution within
the interval I`. By definition, for each task Tk,j 2 S(`), it
must hold that 2(1 + �)C̄k,j  (1 + �)`.

We will assign all jobs of each set S(`) to processors in Pb

according to the following algorithm.

Algorithm Makespan

1: Compute a basic feasible solution (x̄i,k,j) to LP (T ?, b).
2: Assign all tasks having integral values to processors of

Pb as in (x̄i,k,j).
3: Let a graph G = (A [ Pb, E), where A = {Tk,j | 0 <

xi,j,k < 1} and E = {{Tk,j , i} | Tk,j 2 A, i 2 Pb and 0 <
xi,k,j < 1}. Compute a perfect matching M on G.

4: Assign each Tk,j 2 A to i 2 Pb, as indicated by M .
5: for each assigned task Tk,j do
6: Schedule Tk,j as early as possible, non-preemptively,

with processing time pi,k,j on processor i 2 Pb that is
assigned to. Let Ck,j be the completion time of Tk,j .

Algorithm Makespan has been proposed in a seminal pa-
per by Lenstra et al. [9] and it is based on the so-called
parametric pruning technique in an LP setting. More specif-
ically, if T is an estimation on the optimal makespan of a
schedule of the jobs in S(`), then by pruning away all task-
processor pairs for which pi,k,j > T , we are able to define
a set of variables corresponding only to triples of the set
QT = {(i, k, j)|pi,k,j  T}; note that this pruning process
has been already taken under consideration by constraints
(6) of LP (b). Since T 2 [`0

`I`0 , using binary search on
[`0

`I`0 with T as the search variable, we can find the min-
imum value of T such that the following system of linear
constraints is feasible.

LP (b, T ) :
X

i:(i,k,j)2Q

T

xi,k,j = 1 8Tk,j 2 b (8)

X

T
k,j

:(i,k,j)2Q

T

xi,k,jpi,k,j  T 8i 2 Pb (9)

xi,k,j � 0 8(i, k, j) 2 QT

Each variable xi,k,j denotes the fractional processor as-
signment of each task Tk,j 2 S(`). Now, if T ? is the mini-
mum value for which LP (b, T ) is feasible, then T ? is a lower
bound on the optimal integral makespan.

Similarly as in [9], it can be proved that a basic feasible
solution to LP (b, T ) has at most |b| + |Pb| non-zero vari-
ables, from which at least |b| � |Pb|, must be set integrally.
Then, the number of fractional xi,k,j values must be at most
2|Pb|. If we formulate a bipartite graph G = (A [ Pb, E),
where A is the set of tasks having fractional xi,k,j values and
E = {{Tk,j , i} | Tk,j 2 A, i 2 Pb and 0 < xi,k,j < 1}, then,
according to the latter property, we deduce that G is a con-
nected graph with at most 2|Pb| vertices and at most 2|Pb|

edges. However, this means that G has the special topol-
ogy of a pseudo-forest (a collection of trees with one possi-
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ble extra edge) which enables the computation of a perfect
matching on it. Hence, by executing steps 2-6 of Algorithm
Makespan, a non-preemptive schedule of tasks in S(`) can
be found.

The following lemma provides a tight upper bound on the
makespan of the schedule computed by Algorithm Makespan.

Lemma 1. Algorithm Makespan is a 2-approximation al-
gorithm for scheduling the tasks of the set S(`) so as to min-
imize their makespan.

In the next lemma, using filtering [10] we modify the yi,k,j,`

values of the solution to LP (b) to find an upper bound on
the value of T ⇤.

Lemma 2. Consider a feasible solution to LP (b, T ). For
each set of jobs S(`) that complete their execution within the
interval I`, it holds that T ?

 2(1 + �)`, for � 2 (0, 1).

As consequence of filtering in Lemma 2 the completion
time of each task in S(`) is increased by a factor of 4; this
result has already proven to be tight (see Section 2 in [12]).

Algorithm TaskScheduling(b)

1: Compute an optimal solution (ȳi,k,j,l, z̄k,j , C̄k,j) to
LP (b).

2: for each ` 2 L do
3: compute S(`) = {Tk,j 2 b | (1 + �)`�2/2  C̄k,j 

(1 + �)`�1/2}

4: for each ` such that S(`) 6= ; do
5: Schedule all tasks in S(`) by running Algorithm

Makespan.

Running Algorithm TaskScheduling(b), we compute a
schedule for all Map (resp. Reduce) tasks such that:

Theorem 1. TaskScheduling(b) is a (8+")-approximation
algorithm, for scheduling a set of Map (Reduce) tasks on a
set of unrelated processors P

M

(P
R

), in order to minimize
their total weighted completion time, for " 2 (0, 1).

Proof Sketch. Let Ck,j be the completion time of a
task Tk,j 2 S(`), in the schedule of Algorithm TaskSchedul-
ing(b) and let Cmax(`) be the makespan of the schedule of
Algorithm Makespan on the jobs in S(`). Since, Ck,j 

Cmax(`), for all Tk,j 2 b, it su�ces to prove that Ck,j 

8(1 + �)2C̄k,j : we combine Lemma 1 and Lemma 2 with the
definition of the set S(`). Then, as we can select an " such
that (1 + �)2  (1 + "), the theorem follows. Note that this
ratio is tight.

2.2 Merging Task Schedules
Let �

M

, �
R

be two schedules computed by two runs of
Algorithm TaskScheduling(b), for b = M and b = R,
respectively. Let also C�M

j = max
T

j,k

2M

{Ck,j}, C�R
j =

max
T

j,k

2R

{Ck,j} be the completion times of the all Map
and all Reduce tasks of a job j 2 J within these sched-
ules, respectively. Depending on these completion time val-
ues, we assign each job j 2 J a width equal to !j =
max{C�M

j , C�R
j }. The following algorithm computes a fea-

sible schedule.
Algorithm MRS. In each time instant where a processor
i 2 Pb becomes available, either it processes the Map task,
assigned to i 2 P

M

in �
M

, with the minimum width, or the

available (w.r.t. its precedence constraints) Reduce task,
assigned to i 2 P

R

in �
R

, with the minimum width.
By an analysis similar to that in [11], we can prove that:

Theorem 2. Algorithm MRS is a (32+✏)-approximation
for the MapReduce scheduling problem, for ✏ 2 (0, 1).

Proof Sketch. By execution of Algorithm MRS, the
feasibility of the resulted schedule can be easily verified.
To prove the theorem, it su�ces to prove that in such a
schedule, �, all tasks of a job j 2 J are completed by time
2 max{C�M

j , C�R
j }. Let C�

j , be the completion time of a job
j 2 J in �. Note that, for each of the Map tasks of j, their
completion time is upper bounded by !j . On the other hand,
the completion time of each Reduce task is upper bounded
by a quantity equal to r + !j , where r is the earliest time
when the task is available to be scheduled in �. However,
r = C�M

j  !j and thus C�
j  2!j = 2 max{C�M

j , C�R
j }.

By applying Theorem 1 and as we can select an ✏ such that
✏  4", the theorem follows.
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