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Abstract

Knowledge base systems have not captured
the wide audience enjoyed by database
management systems (DBMS). The
capabilities of the most high-end knowledge
representation and delivery systems are
extensive, but may not be pragmatic or
accessible to a large community of potential
users.   We present SOPHIA, a frame-based
knowledge architecture which is built upon
a relational DBMS (RDBMS) to provide
basic frame access capabilities. SOPHIA

stores frames in a table with
frame/slot/value fields, and does not map
individual knowledge classes to separate
tables. It complements existing ontology
tools because it allows the output of these
systems to be compiled and delivered from a
more modest DBMS.  The KB query/update
functions of Sophia are written in SQL and
are based loosely upon the OKBC core
specification.   These functions can be
accessed by clients through a URL
mechanism or ODBC calls.  SOPHIA is being
used to deliver a knowledge base back-end
for two molecular biology software
applications.
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Introduction

As computer applications in scientific domains such as
molecular biology have grown more complex, they have
begun to shift to object-oriented methods for representing
complex data types.  Even disregarding distributed
sources of data, the structure of individual datasets is
often too complex to represent effectively in a relational
database.  Straightforward relational representations can
leave out important dependencies of interest, and can
effectively fit the data to the capabilities of the database
structure instead of fitting the structure to the data.

Knowledge bases representation systems (KBRSs)
and Object-oriented Database systems (OODBMS)
address this problem by more closely modeling the
entities in the system of interest and the interactions
between them.  These systems allow the use of object
hierarchies and dependencies to describe the organization
of information. They typically provide benefits over
RDBMS in the  richness of available queries over these
more complex data types.

Unfortunately, KB and OODBMS technologies do not
yet have a broad base of established users.  Object
oriented methods require not only that a researcher
specify the properties of entities, but also that they map
them onto programming language and database structures.
Numerous tools such as LOOM, Classic, and Ontolingua
have arisen to allow the generation of domain ontologies
independent of their programmatic usage.

Nevertheless, there has been a lack of standard
interfaces and tools for the design and use of these
systems. Evolving standards for KB systems include KIF
(the self-descriptive Knowledge Interchange Format
language) [Genesereth et al, 1992], OKBC (a generic
knowledge base access/update protocol)  [Chaudhri et al,
1998], KRSS (a description logic standard) [Patel-
Schnieder et al, 1993], KQML (an agent-based
knowledge sharing language) [Finin et al, 1994], and
numerous SQL extensions, including OOSQL
[Steenhagen et al, 1994]. However, most of these have yet
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to gain wide acceptance or usage.  The vast majority of
ongoing development in scientific and industrial
applications still utilize complex SQL queries on
relational databases as their primary method of
information access.  Furthermore, the exponential growth
of the World Wide Web (WWW) has increased the
investment in and immediate utility of such applications.

Database and Knowledge Base technologies need not
be mutually exclusive.  Several systems have mapped a
knowledge model into a database. The HYWIBAS system
[Norrie et al, 1994] maps knowledge base frames first
onto an object model, which is in turn mapped onto a
relational database structure. The PERK database [Karp et
al,  97] serves as a back end for the OCELOT FRS (and
others under the OKBC model), using a non-KB-specific
mapping.  PARKA uses a database model and multiple
tables (for different types of objects) to deliver very large
databases with a persistent backend [Spector et al, 1992].

The gap between these technologies can be bridged
most easily for programmers and users new to knowledge
bases by making use of prevailing tools and experience as
the backbone for new systems.  By using knowledge-level
queries based on SQL and RDBMS, dependencies on the
underlying information storage system can be gradually
removed.
The primary problems that SOPHIA addresses are:
(1) How can we deliver basic knowledge services widely
without asking users to purchase and learn an expensive
or special-purpose OODBMS or KBMS?  and
(2) Can a KB be represented with sufficient expressive
power and performance in a DBMS that it can be served
using off-the-shelf software?

Methods

SOPHIA is based on an ontology model similar to the
Ontolingua system [Farquhar et al, 1996].  It represents
all frames in a hierarchical classification tree, and
distinguishes concept frames from leaf instance frames.
Class slots are distinguished as own slots (associated with
a class, but not its instances) or template slots (associated
with instances, default values inherited).  Slots on
instances are simply attached to the frame (similar to own
slots). Facets modify frame-slots pairs, used for typing,
cardinality and other restrictions.

In order to store frames efficiently, we have used a
RDBMS to store all information which constitutes the
frame. The commonly available database Access97™
from Microsoft was used, although the database design is
general, and is portable to other RDBMS (see discussion).
This choice also maintains portability of supporting code
from the database (Visual Basic for Applications, VBA)
to the web server (Visual Basic Script, VBScript) or
stand-alone applications (Visual Basic).

Our design employs a simple set of indexed tables to
store frame and class information.  Performance is
improved and advanced options are supported with
additional tables for a cached hierarchy, user information,
and user-interface specifications.

The largest and most important table contains all
instance frame definitions.  We use a many-to-many
structure to store a set of tuples describing the slots and
values which compose each frame.  Thus, each record in
the table contains a frame, slot, and value. The full
definition for a frame requires several records, one for
each component slot and value.  Multiple values are
represented with multiple records.  This table resembles
the primary frames table of the PERK database [Karp et
al, 1997]. Our design differs from PERK in that it does
not place Instance-Of relationships (classifying instances)
into a separate table. We also store additional information
in each such record representing data ownership, access
permissions, and expiration date.  These additional
properties are essentially privileged facets that must
contain a single value for each frame-slot-value triplet.

Two additional tables contain the full class frame
definitions.  The first holds all of the class frames, and
differs from the frames table by distinguishing between
template- and own-slots.  This separates the description of
the class from default properties inherited by its instances.
The second class table contains a computed ordering of
all class-subclass relationships as determined by the
classification hierarchy.  This table aids in the processing
of several queries involving class membership and
inheritance, since subclass instances are grouped with
associated superclasses.

The database makes use of other tables to contain
information on facets, users, privileges and user-interface
options.  These can be sacrificed for simpler, read-only
ontologies.

With these tables in place, SQL queries can then
retrieve frames from the KB based on program- or user-
specified conditions.  The supported queries are modeled
loosely after a subset of the core OKBC functions.  The
selection of queries supported was based primarily on the
immediate needs of  RiboWeb project, which the KB
supports on the back end [Chen et al, 1997]. Generally,
these queries allow the user to request information on
frames, classes, and slots.  For example, the get-class-
instances query will return a list of all frames which are
instances of a given class or any of its subclasses
(example given below).

The SQL queries themselves are executed through a
scripting language across a WWW server.  Virtually any
scripting language can be used (in conjunction with a
compatible database connection protocol of choice such
as ODBC).  This allows complex operations or queries
beyond the capabilities of SQL (including the more
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complex inferencing) to be processed.  These scripts also
serve to format the output for client applications.

The basic interface to the KB, an HTML-based
browser, serves many functions.  Its most basic function
is to display frame references with links back to the frame
in the KB, similar to the Ontolingua system.  However, to
enable more complex data types to be displayed, and
references to other resources to be represented, values on
each slot (relation) are displayed in a specification
peculiar to that slot.

For example, the value of a slot with a Range of String
would be displayed without a hyperlink.   Alternately, if a
slot’s Range were Image-Ref, then the value of that slot
would be presented as an HTML image tag, causing the
value "http://www.stanford.edu/my-image.gif" to be
loaded as an image in the browser window.  In a similar
fashion, values in the KB can be references to external
WWW databases, or can be piped into Java applets. We
have used this facility to link to the online biological
databases (Ribosomal Database Project - RDP [Maidak,
1996] and NCBI’s Medline database
[http://www.ncbi.nlm.nih.gov/PubMed/]).  In this way,
the SOPHIA contains a representation about its external
environment, potentially including other online
knowledge bases and databases.

Results

The SOPHIA KB server is used as a back end for several
knowledge based systems in our lab, serving both the
client applications and the stand-alone web-based KB
browser.  The client applications are RiboWeb [Chen,
1997], and its spin-offs MHCWeb and Oweb [Hon et al,
1998]  These systems deliver structured scientific data to
scientists using standard ontologies to organize the critical
experimental concepts in the scientific domains.  They
then allow standard analyses to be performed on the data,
such as testing for consistency of the data or retrieving
relevant subsets of the data.  The systems store the
organizing ontologies and data instances in SOPHIA .

In some cases, we found it helpful to develop the class
structure of the knowledge bases in Ontolingua or
Protege, and then compile the knowledge base into
SOPHIA for delivery. The shared frame-based data model
allows for easy translation of ontologies and data
instances between these three systems (as long as system-
specific features such as axiomatic reasoning in are not
used).   In other cases, we have built the ontology and
data instances directly in SOPHIA.   For this purpose, we
have built a prototype KB Editor for acquiring the
structure and content of a knowledge base.

The packaged-SQL queries can be accessed directly
through ODBC libraries or processed for further output.
Developers may write their own queries using this
approach, allowing direct access through SQL.  To

provide transparency of the database, we have written
server-side wrapper scripts to return output in a simple
ASCII frame|slot||value|||… syntax.  Any program which
can parse this output can retrieve frames from the KB.

In the case of a client application written in Perl, the
Perl API provides access to the library of functions,
including: get-class-instances, get-class-instances-direct,
get-class-all-supers, get-class-direct-supers, get-slots-of-
frames, get-slots-of-frames-with-query, create-class,
create-slot, and create-individual.  The API serves the
purposes of passing queries to SOPHIA, retrieving data
over HTTP, and parsing the resulting frame information.

For example, one commonly used Perl API function is
the function that gets all instances of a particular class
(including instances of its subclasses), called here on the
class Journal-Article, one of the concepts in our
molecular biology system:

get-slots-all-instances-of-class ($class,@slot_list)

where the variable $class="Journal-Article"
and the array @slot_list=("Journal-Name",
"Publication-Year")

This Perl program uses URL to pass the following data to
the server:

http://SOPHIA.stanford.edu/get-slots-all-instances-
of-class.asp?class=Journal-
Article&slots=Journal-Name&slots=Publication-
Year

The corresponding server-side SQL is then executed:

Select Distinct [fsv].[frame], slot, value
from [fsv] where [frame] in
(SELECT [fsv].frame
FROM [fsv] INNER JOIN [superclasses] ON
[fsv].[value2] = [superclasses].class
WHERE (([fsv].[slot]='instance-of') AND
([superclasses].[superclass]='{insert class
name}')))
and slot in ({insert slot list})

And returns the string:

Jmb-Stern-200-291|Journal-Name||J Mol
Biol|||Jmb-Stern-200-291|Publication-
Year||1988|||Jmb-Svensson-200-301|Journal-
Name||J Mol Biol|||Jmb-Svensson-200-
301|Publication-Year||1988|||Nar-Atmadja-13-
6919|Journal-Name||Nucleic Acids Res|||Nar-
Atmadja-13-6919|Publication-Year||1985|||…
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The server-side SQL queries use Internet Database
Connectivity (IDC) or Active Server Pages (ASP) to
connect to an ODBC datasource (in this case Access97).
IDC is simply a template for SQL output, similar to
approaches in other databases.  ASP can be configured to
use several scripting languages, such as VBScript (based
on Visual Basic), JavaScript, or even Perl. The same
code, altered to generate HTML, displays formatted
results within WWW browsers.  The same design could
be followed in a stand-alone server application based on
another language and protocol  with HTTP and database
support (such as Java and JDBC).

In our current design, processing of the queries always
takes place after the SQL is executed. Some processing
can be performed by SQL alone, but this approach limits
our ability to use computed values in post-processing.
Generality of the queries carries a cost in execution speed,
but can be overcome by optimizing  queries for specific
database systems.

The first step in post-processing of queries is to
regulate the security of the transaction, and return only
those values which are viewable by the user, group, and
world.  Next, frames are checked to make sure that they
are current.  This allows cached values to be filtered out
or old data to be reviewed by the system manager. The
order of these tests can be reconfigured to prune records
first on fields likely to fail, saving further computation.

The last step in post-processing is formatting query
results for output.  This can be either the
frame|slot||value||| packaging or a variety of other
specialized purposes, including HTML (for the KB
browser), MIME file types (Protégé's *.pont file type
[Musen et al, 1993], VRML files for 3-D visualization
[Bell, 1994]).  Exporting to other MIME file types is a
function that would be performed by a specialized query,
as distinct from the Range specification described above,
which formats individual frame values.

The efficiency of the system is dependent largely on
the context of its use.  In comparison to memory-resident
systems, a database back-end offers many advantages. For
instance, frames do not have to be loaded from a flat file
in order to be queried, eliminating the start-up delay
[Karp et al, 1997], Futhermore, virtual memory and
caching performed automatically by the DBMS result in
speedier performance for common queries. Performance
hits are taken, however, for processing queries for output
and for network transport.  Access97 is sufficient for a
limited number of users, with few concurrent queries to
the knowledge base.  However, a larger applications
would likely benefit from industrial-scale databases which
are optimized to process multiple concurrent queries.

Figure 1 shows a plot of three typical queries run
against the KB.  Queries were tested on the Ribosome-2
knowledge base, which contains approximately 15,000
frames, and on 5x and 15x multiples of this knowledge

base.  Queries involving various classes and instances are
shown.  The queries in this figure were run with the
network API, and the times are consequently larger than
for local queries.  A simpler query such as get-class-
instances can return over 1000 frames/second when run
locally.

SOPHIA has been constructed to maintain maximum
portability to other platforms and databases, and hence
minimizes the use of stored queries (views) and database-
specific procedures which would further optimize
performance.

Discussion

SOPHIA is limited in its power: axiomatic inference must
be coded into the structure of the SQL queries or achieved
by processing the output of groups of SQL queries.
Inference is supported in three ways.  Class/subclass
subsumption is optional for subclass-of and instance-of
relations in queries (we have also tested this with other
relations such as part-of).  Inheritance and some
constraint-enforcement are performed when instances are
captured (and this code will be reused to support this
inheritance in all queries in future versions of SOPHIA).
Finally, relations with an inverse are automatically
inverted.

Despite these limitations, SOPHIA provides a highly
accessible platform for delivering basic KB services via a

Figure 1.  This plot shows the average times for
three different queries to retrieve frames from
SOPHIA using the network API.  The queries
returned 8673, 505, and 1310 records respectively
(with a typical frame consisting of 10 records).
Typical queries return 20-100 frames per second
for a KB with under 200,000 frames (In this
example with KBs with 15,000-225,000 frames,
the range is 7-79 frames per second).
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DBMS, while shielding the developer from the underlying
relational model.  It is portable to other database systems
because we have used very few Access-specific features,
and so KB functionality could be provided by other
relational systems.  We have demonstrated this with a
partial conversion of the KB to the SYBASE SQL
Anywhere database, which was then used as a new ODBC
datasource for the SOPHIA code.  The SQL used to query
the database also remains portable to alternate
programming languages.

Ideally, SOPHIA would be a complete OKBC server at
some compliance level.  Although a network model is not
dictated by OKBC (thereby making compliance easier),
runtime interoperability of KB servers with different
models can complicate client applications by requiring
client stubs for each network model.  Were SOPHIA made
OKBC compliant, however, reconfiguration of a client to
use SOPHIA stubs would entail only changes in the code
for network connection, while frame-access functions
remained virtually identical.

SOPHIA could be made to conform to the OKBC
network model in two ways. The first would be to move
SOPHIA’s VBScript routines into a Visual Basic server
application that followed the OKBC network model.  This
would entail writing and debugging code to talk over
OKBC’s network protocol or wrapping existing code for
VB, since the available libraries are provided for C++,
Java, and LISP.  The second would be to rewrite the
SOPHIA code in one of the supported languages.

Full support of OKBC has not been a primary goal
because the protocol has remained under active
development.  The OWeb family of systems have been
developed in our lab over the span of a year and a half,
during which time OKBC and its predecessor GFP have
undergone many changes.  We anticipate that OKBC will
stabilize, and have therefore modeled our approach after
this protocol.  Client applications built on SOPHIA will be
designed around frame-based information and knowledge
queries.  They should therefore be more easily portable to
OKBC servers (including possible future versions of
SOPHIA) than applications built around other information
sources.

In summary, we have stressed simplicity and
limitation of features in order to provide a graceful
evolutionary pathway for application programmers who
are familiar with DBMS (who want to "look under the
hood" of SOPHIA), but recognize the value of object
oriented or semi-structured data in providing information
services.  To that end, the use of simple SQL and server
side scripting serves as a springboard for building queries
across structured data. We focus on a URL mechanism for
access to the system, which (despite inefficiencies) is also
well understood.  Finally, we package data using a simple
ascii syntax which is accessible to virtually all end
application programming languages. These somewhat
severe restrictions provide quite general utility.  In fact,

SOPHIA is serving the Ribosome-2 knowledge base
[Altman et al 1997], originally developed in Ontolingua,
with approximately 15,000 frames (a total of 130,000
frame-slot-value records in the database). It is also
serving MHCWEB a KB of immunologic scientific
literature and data, with approximately 4500 frames [Hon
et al, 1998].   We have found the following hardware
requirements to be suitable: Windows NT 4.0
Workstation, with a 586 processor, 32 MB RAM and
100MB hard disk (for the swap file). At a minimum, a
486 computer with Windows95 and 16 MB RAM could
be used as a web server.  We intend to develop the system
further to support limited axioms, implement more closely
the core OKBC functions, and release the KB Browser to
be a functional ontology editor.
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