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Abstract

Building large Web sites is similar in many ways to

building knowledge and database systems. In par-

ticular, by providing a declarative, logical view of a

Web site's data and structure, many of a site builder's

tasks, such as creating complex sites, modifying a

site's structure, and creating multiple versions of a

site, are simpli�ed signi�cantly. New systems, such

as Strudel, support logical views of Web sites by al-

lowing site builders to construct a site declaratively.

In this paper, we address an important problem for

site builders: verifying that a Web site's structure

conforms to certain constraints. Speci�cally, we con-

sider the problem of verifying that a Web site created

declaratively by Strudel satis�es certain integrity

constraints, such as ` all pages are reachable from the

root' and ` every organization page points to its sub-

organizations', etc. Our contributions are (1) formu-

lating the veri�cation problem as an entailment prob-

lem in a logical setting, and (2) presenting a sound

and complete algorithm for verifying large classes of

integrity constraints that occur in practice. Our al-

gorithm uses a novel data structure, the site schema,

which enables us to identify cases in which the general

reasoning problem reduces to a decidable problem.

Introduction

The World-Wide Web (WWW) has given rise to a new

form of knowledge base: the Web site. Web sites con-

tain several bodies of data about the enterprise they

are describing, and these bodies of data are linked into

a rich structure. For example, a company's Web site

may contain data about its employees, linked to data

about the projects in which they participate and to

the publications they author. The data presented at a

Web site along with the structure of the links in the

site together form a richly structured knowledge base.

The operations we wish to perform on Web sites are

also often similar to those applied to knowledge bases.

First, we want to inspect the information in the Web

site. We can inspect the site by a combination of query-

ing and browsing. We may inspect either the underly-

ing data (e.g., �nd the price of a particular product),

or query the site's structure to better focus our brows-

ing (e.g., how do I �nd the homepage of a given per-

son). Second, as builders of Web sites, we would like

to enforce constraints on the structure of our site (e.g.,

no dangling pointers, an employee's homepage should

point to their department's homepage). This problem

is the focus of this paper. Third, we would like to be

able to easily modify either the underlying data or the

Web site's structure. Lastly, our ultimate goal is for

our Web sites to be adaptive (Perkowitz and Etzioni

1997), e.g., we would like to learn from users' brows-

ing patterns in order to improve a site's structure.

Although Web sites contain richly structured infor-

mation, this structure is usually implicit in the Web

site. In general, we do not have a model or repre-

sentation of the site's structure and data. Some for-

malisms have been developed for providing post-hoc

descriptions of Web sites (e.g., MCF (Guha 1997)).

Even though such formalisms are useful for browsing

sites, they do not facilitate modi�cations or updates.

The above operations illustrate the possible bene�ts

of viewing the problem of building Web sites from the

perspective of building knowledge and data base sys-

tems. Allowing site builders to manipulate a logical

view of the site, instead of individual HTML �les, sim-

pli�es the construction and maintenance of Web sites.

The logical view is the basis for services such as query-

ing, enforcing constraints, and easy modi�cation. In

contrast, current Web site management tools provide

only rudimentary support for such tasks.

Strudel (Fernandez et al. 1998) is a system for

building Web sites starting from their logical views.

The key idea is that Web sites are built by declara-

tive speci�cations of the site's structure and content.

In Strudel (see Figure 1) a Web site builder begins

with a data graph, which is a model of the raw data to

be presented at the site. For example, the data graph

may model the personnel database and its contents,

the set of publications, and images of employees. The

site designer then speci�es the Web site's structure in

a declarative language called StruQL. StruQL de-



scribes a site's structure in a lifted (i.e., intensional)

form, rather than in a ground form. For example, a

StruQL expression may contain a statement saying

that every person has a homepage with their name

and phone number, and that every person's homepage

points to their department's homepage. Evaluating the

StruQL speci�cation for a Web site on a given data

graph results in a site graph, which is the ground spec-

i�cation of the site's structure. Intuitively, the site

graph describes (1) what pages will be present at the

Web site, (2) the information available in and the in-

ternal structure of each page, and (3) the links between

pages. The StruQL language has been designed such

that Web sites can be constructed e�ciently from their

speci�cations. Formally, StruQL corresponds to a

restricted form of Horn rules, though, as we explain

later, its syntax is appropriate for describing Web sites

(and graphs in general). Finally, the Web site builder

speci�es a set of HTML templates that, when applied

to the nodes in the site graph, result in an HTML

page for each node, and hence to a browsable Web

site. Strudel is a fully implemented system that has

been used to build several medium-sized Web sites.

Strudel provides a platform for considering higher-

level operations on Web sites, such as the ones de-

scribed above. In this paper we consider one important

problems in building Web sites: verifying constraints

on the site's structure. Speci�cally, given a description

of the Web site's structure in StruQL, we want to

check whether the resulting Web site is guaranteed to

satisfy certain constraints (e.g., all pages are reachable

from the root, every organization homepage points to

the homepages of its suborganization, or proprietary

data is not displayed on the external version of the

site). It is tempting to think that because the structure

of Web sites is speci�ed declaratively, enforcing such

constraints comes for free. In particular, why not spec-

ify the structure of the Web site and the constraints

on its structure in the same declarative language (e.g.,

StruQL)? The di�erence is that the speci�cation of

the structure generates a unique structure, while con-

straints are not generative, they only limit the set of

possible structures. Hence, the challenge we face is to

reason about whether the structure we have speci�ed

satis�es the required constraints. Furthermore, since

speci�cations of complex Web sites require rather long

StruQL expressions, automating the reasoning task

is important. Our work can be viewed as an instance

of the knowledge-base veri�cation problem, which has

received signi�cant attention (e.g., (Levy and Rousset

1996; Schmolze and Snyder 1997)) in the context of

building Web sites.

The contributions of the paper are the following. We

begin by presenting a formalization of the problem of

verifying integrity constraints within a logical formal-

ism. Intuitively, we formalize the problem as a ques-

tion of logical entailment between two StruQL ex-

pressions. We then consider the veri�cation problem

for a commonly occurring class of integrity constraints.

Informally, this class of constraints speci�es that cer-

tain kinds of paths must exist in the Web site. We

provide a sound and complete algorithm for verifying

that a StruQL expression is guaranteed to yield a

Web site that satis�es such a constraint. The key tool

used in our algorithm is a novel data structure, the

site schema, which represents a StruQL expression

as a labeled directed graph. Intuitively, this graph can

be viewed as a schema of the Web sites that would

result from the StruQL expression. By analyzing the

structure of the graph, we can write expressions that

correspond to the possible paths in the Web site. Im-

portantly, these expressions can be written in a lan-

guage for which reasoning algorithms exist (a subset of

datalog in one case, and a restricted form of StruQL

in another case). Hence, the analysis of the site schema

yields algorithms for verifying the integrity constraints.

The focus of this paper is on the problem of verifying

integrity constraints on Web sites. However, a broader

contribution of this paper is to bring the problem of

Web-site management to the attention of the Arti�cial

Intelligence community. We argue that the declarative

representation of Web sites given by Strudel provides a

platform for exploring various issues in Web-site build-

ing and maintenance.

The Strudel System

In this section, we briey describe the main compo-

nents of Strudel's architecture (shown in Figure 1).

Overview

In Strudel, a site builder starts with raw data, then

declaratively describes the content and structure of the

site. The declarative description speci�es (1) the pages

in the site and the links between them, and (2) what

raw data is displayed in each page. The raw data may

exist in several external repositories, such as databases

or structured �les. Hence, Strudel has a data inte-

gration component (a.k.a. mediator) to provide the site

builder a uniform view of all the data. This uniform

view of the raw data is called the data graph.

A Web site's content and structure is speci�ed in the

StruQL language, which we describe in detail below.

As stated earlier, StruQL is equivalent to a language

that consists of a restricted form of Horn rules with

function symbols. StruQL's syntax, however, is quite

di�erent, because it was designed to (1) express queries

over diverse sources of data such as databases (rela-

tional or object-oriented) and structured documents



(e.g., a bibtex �le), and (2) de�ne explicitly the struc-

ture of graphs.

The StruQL speci�cation is a lifted description of

a Web site's structure. Together with an instance of

the data graph, the StruQL speci�cation uniquely de-

�nes the ground structure of the Web site, called the

site graph. The site graph can be evaluated from the

StruQL speci�cation and the data graph, much the

same way a query is evaluated in a database system.

We do not discuss the evaluation process in this paper,

but note that StruQL was designed to permit e�cient

evaluation.

Finally, we note that a site graph does not specify

the graphical presentation of pages, therefore the last

step when using Strudel is to de�ne the graphical

presentation of pages and generate the browsable Web

site. The graphical presentation is speci�ed by a set of

HTML templates, which are HTML �les with variables.

Given a node in a site graph, an HTML template is

instantiated by replacing variables in the template with

the appropriate values from the node. Every node in a

site graph has a corresponding HTML template, which

may be unique to the node, but commonly is shared by

a collection of related nodes. The browsable Web site

is constructed by instantiating the appropriate HTML

template for each node in the site graph.

Strudel's primary bene�t is that it provides the

Web-site builder a logical view of a site, instead of the

physical view as a collection of statically linked HTML

�les. As a result, it is easier to (1) specify the struc-

ture of complex Web sites, (2) build di�erent versions

of a site (e.g., one version may be internal to a com-

pany, while another may be external), and (3) modify

a site's structure and update its content. In this pa-

per, we explore another bene�t of building Web sites

declaratively: specifying and verifying constraints on

a Web site's structure. First, we describe Strudel's

data model and de�ne formally the StruQL language.

Modeling Data in Strudel

Strudel's conceptualization of the domain is based

on viewing data as a labeled directed graph. We have

two kinds of objects in the graphs: logical identi�ers,

drawn from a set I, and constants (such as integers,

strings, URLs), drawn from a set C, which is disjoint

from I. The data graph is a set of atomic facts of the

form

C(o) or o

1

! l ! o

2

;

where o

1

2 I, l 2 C, o; o

2

2 I [ C and C is a

unary relation, called a collection name. The fact C(o)

denotes that the object o belongs to the unary relation

C. The fact o

1

! l ! o

2

denotes that the graph

contains an arc from o

1

to o

2

, and the arc is labeled by

OODB

HTML Generator

Mediator

Data Graph

Site Graph

STRUDEL

Repository
DataHTML

Pages
Structured

Files

Browsable Web Site

RDB/

Wrappers

StruQL Evaluator

HTML
Templates

Expressions
StruQL

Figure 1: StrudelArchitecture

l. Note that arcs in the data graph can only emanate

from nodes of logical identi�ers. One can view the arcs

in the graph as representing a binary relation l, and the

extension of l contains the tuple (o

1

; o

2

).

The main reason for conceptualizing data in

Strudel as a directed labeled graph is that Strudel

ultimately creates Web sites, which are naturally mod-

elled as directed graphs. Note that it is possible to

model graphs using a ternary or binary relation, but

such a model is not natural when we consider paths in

a graph. In addition, a feature of this representation is

that the names of the binary relations (i.e., the labels

on the arcs) are part of the data, not the schema. As a

result, we can accommodate rapidly evolving schema,

which is important in this application.

Depending on the Web site being built, the under-

lying data can be stored in an external source, in

Strudel's own data repository, or a combination of

both. In the former case, Strudel requires wrappers

to access the external sources and to perform the ap-

propriate format translations. Since data may come

from multiple sources, Strudel requires a data inte-

gration component to provide a uniform view of the

data. We do not discuss the issue of data integration

here, except to mention that Strudel uses standard

techniques for data integration (see (Arens et al. 1996;

Levy et al. 1996; Ullman 1997; Duschka and Gene-

sereth 1997; Friedman and Weld 1997) for recent works

on this topic.)

The StruQL Language

The StruQL language is used to describe how a Web

site is constructed from the raw data modeled by a

data graph. We now describe StruQL's core. We dis-



tinguish two parts of a StruQL expression: the query

part and the construction part. The query part sup-

ports querying of the data graph. The result of apply-

ing the query part to the data graph is a relation (i.e., a

set of tuples). The construction part uses this relation

to construct the nodes and arcs in the output graph.

The result of the construction component (and hence

of a complete StruQL expression) is a new graph. We

often use expressions that contain only the query part

and refer to them as StruQL-query expressions.

In StruQL expressions, we distinguish arc variables

from normal variables. Intuitively, normal variables

are bound to nodes in the data graph and arc variables

are bound to labels on the arcs We denote arc variables

by the capital letter L.

The query part of a StruQL expression often refers

to pairs of nodes in the graph with speci�c types of

paths between them. Such paths are speci�ed by reg-

ular path expressions. A regular path expression over

the set of constants C is formed by the following gram-

mar (R, R

1

and R

2

denote regular path expressions):

R := � j a jnot (a) j j L j (R

1

:R

2

) j (R

1

j R

2

) j R

�

.

In the grammar, a denotes a letter in C; not (a)

matches any constant in C di�erent from a. denotes

any constant in C, : denotes concatenation, and j de-

notes alternation. R

�

, the Kleene star, can be matched

by 0 or more repetitions of R. For example, a:b: :c

�

de-

notes the set of strings beginning with ab, then an arbi-

trary character and then any number of occurrences of

c. We use � as a shorthand for

�

, meaning an arbitrary

path.

A single-block StruQL expression has the form:

where C

1

^ : : : ^ C

k

;

create N

1

; : : : ; N

n

link K

1

; : : : ; K

p

collect G

1

; : : : ; G

q

All the clauses in a StruQL expression are optional.

The where clause is the query part of the expression,

and the other three clauses are the construction part.

Each conjunct in the where clause is either of the form

C(X) or X ! R ! Y , where C is a collection name,

R is a regular path expression, X is a variable, and Y

is a variable or constant in C.

Example 1: Consider the following StruQL expres-

sion:

where Person(X) ^ X ! (

0

Paper

0

j

0

Publication

0

) ! Y ^ 

Y ! L ! Z

create PersonPage(X); PaperPage(Y )

link PersonPage(X)!

0

Paper

0

! PaperPage(Y );

PaperPage(Y ) ! L ! Z

collect Page(PersonPage(X));Page(PaperPage(Y ))

"Mark"

". . ."". . ."". . ."

AbstractTitle Title
Date

Name

9/3/88

"Twain"
FirstName

"John"

Paper
Paper

Publication

LastName

p2p1

markjohn
X Y L Z

john p1 Title \. . . "

john p1 Abstract \. . . "

john p2 Title \. . . "

john p2 Date 9/3/88

mark p2 Title \. . . "

mark p2 Date 9/3/88

Figure 2: A datagraph and the relation R

Q

.

Informally, the where clause considers all quadruplets

(X;Y; Z; L), such thatX is a person, there exists an arc

labeled 'Paper' or 'Publication' fromX to Y , and there

is an arc from Y to Z. The construction part creates a

page for every person X and for every publication Y ,

adds an arc from the person page to the publication

page, and also copies all the arcs emanating from Y to

the result graph. Finally, the collect expression adds

the new nodes to the Page collection.

Semantics: We �rst explain the semantics of the

where clause of a StruQL expression Q. Consider

each substitution  from the variables in the where

clause to I [ C, such that each arc variable is mapped

to an element of C, and

� if C

i

is of the form C(X), then C( (X)) is in the

data graph, and

� if C

i

is of the form X ! R! Y , then there is a path

P in the data graph between  (X) and  (Y ) such

that P satis�es  (R). Here, applying  to the reg-

ular path expression R replaces all the arc variables

in R by constants in C.

Each substitution  above de�nes a tuple whose ar-

ity is the number of variables in Q. The set of all such

tuples form a relation, which we denote with R

Q

, and

which is the result of the where clause.

Example 2: Figure 2 illustrates a data graph. The

collection Person (not shown) consists of the identi-

�ers john and mark respectively. The result R

Q

for

the query in Example 1 is also shown.

We now describe the semantics of the construction

part of a StruQL expression. X and Y denote vari-

ables in the where clause, and f and g denote function

symbols. We only use unary function symbols, how-

ever StruQL supports function symbols of any arity.

The create clause speci�es the new nodes in the result

graph. Each of the N

i

's is of the form f(X). For ev-

ery value a of the X attribute in R

Q

, the result graph

contain the node f(a).

The link clause speci�es the links in the result graph.

Each K

i

is of the form f(X) ! l ! g(Y ), where l is



Title

PaperPaperPaper

PaperPage(p2)

Abstract

9/3/88". . ."". . ."". . ."

DateTitle

PaperPage(p1)

PersonPage(mark)PersonPage(john)

Figure 3: site graph.

a constant in C or an arc variable in the where clause.

If l is an arc variable L, then for every triple (a; c; b)

in the projection of the attributes (X;L; Y ) in R

Q

, the

result graph contains an arc labeled c from f(a) to

g(b). When l 62 C, the result is obtained by projecting

on the attributes X and Y in R

Q

.

Finally, the collect clause speci�es the unary facts

that hold in the result graph. Each G

i

is of the form

D(f(X)), whereD is a collection name (not necessarily

from the data graph). The semantics are de�ned in a

similarl fashion, as above. We also implicitly associate

a collection in the result graph with every function

symbol that appears in the link or create clauses, e.g.,

if f(X) appears there, then f is also a collection name

in the result graph, and every constant in the graph of

the form f(a) is in the extension of the collection f .

Example 3: Fig. 3 shows the result of applying the

query from Example 1 to the datagraph in Fig. 2.

Above, we described StruQL expressions with one

block. In practice, several blocks are common, and

their order does not a�ect the result graph. We also

allow nesting of blocks. Nesting makes queries more

concise, because a nested where clause inherits all the

conditions from the where clauses of its containing

blocks. For example, in Figure 5 the where clause on

line (12) includes the conditions from line (7). Finally,

a block can have multiple create and link clauses, and

the result graph is independent of their order.

Example Web Site

To �nish our description, we give a simpli�ed exam-

ple of a researcher's homepage created with Strudel.

The source of raw data is a Bibtex bibliography that

contains the researcher's publications. In the data

graph, we represent this data by a collection publi-

cations, as seen in Figure 4. Note that every paper

is annotated with one or more categories and with the

�le names of its abstract and postscript source.

The structure of the homepage site is de�ned by the

StruQL expression in Figure 5. The site has four

types of pages: a root page containing general infor-

mation, an \All Titles" page containing the list of titles

of the researcher's papers, a \category" page contain-

object pub1 in Publications {

title "Web Sites With Common Sense"

author "John McCarthy"

author "Tim Berners-Lee"

year 1998

booktitle "AAAI 98"

pub-type "inproceedings"

abs-file "abstracts/bm98"

ps-file "proceedings/aaai98.ps"

category "Philosophical Foundations"

category "Knowledge Representation"

}

Figure 4: Fragment of data graph for homepage site

ing summaries of papers in a particular category, and

a \Paper Presentation" page for each paper.

The �rst clause creates the RootPage and AllTitles

pages and links them. Lines 7{9 create a page for each

publication, and links the publication page to each of

its attributes. Note that we copy all the attributes of

a given publication using the arc variable L. Lines 12{

14 consider the category attribute of each publication

and create the appropriate category pages with links to

the appropriate publication pages. Finally, lines 18{19

links the \All Titles" page to the titles of all the papers

and the papers' individual pages.

Verifying Integrity Constraints

Our goal is to develop algorithms for verifying that

a Web site created by Strudel satis�es certain con-

straints. In this section, we formally de�ne the prob-

lem. To motivate this goal, consider the following ex-

amples of integrity constraints one may wish to enforce

on the Web site generated by our example.

1. All PaperPresentation pages are reachable from the

root page by a path from the root.

2. If a publication's postscript source exists, then its

PresentationPage is linked to it.

3. Unless you follow the link labeled "Back to Regu-

lar Site", no page reachable from "TextOnlyRoot"

contains images.

1

We de�ne the veri�cation problem as an entailment

problem of a StruQL expression and a logical sen-

tence describing the integrity constraint. We express

integrity constraints by logical sentences � built from

atoms of the form C(X) and X ! R! Y , the logical

connectives ^ ;_;:, and the quanti�ers 8 and 9.

1

This example is inspired by an inconsistency in the

CNN Web site. If you go to the text-only version and click

on any article, then you get a page with images, defeating

the purpose of the text-only version.



1 INPUT BIBTEX

2 // Create root page and abstracts page and link them

3 CREATE RootPage(), AllTitlesPage()

4 LINK RootPage() -> "All Titles" -> AllTitlesPage()

5

6 // Create a presentation for every publication x

7 WHERE Publications(X), X -> L -> V

8 CREATE PaperPresentation(X)

9 LINK PaperPresentation(X) -> L -> V,

10

11 // Create a page for every category

12 { WHERE L = "category"

13 CREATE CategoryPage(V)

14 LINK CategoryPage(V) -> "Paper" -> PaperPresentation(X), CategoryPage(V) -> "Name" -> V

15

16 // Link root page to each category page

17 RootPage() -> "CategoryPage" -> CategoryPage(V) }

18 { WHERE L = "title"

19 LINK AllTitlesPage() -> "title" -> V, AllTitlesPage -> "More Details" -> PaperPresentation(X) }

20 OUTPUT HomePage

Figure 5: Site de�nition query for example homepage site

Given a labeled, directed graph G, we can determine

whether G satis�es a sentence � by interpreting G as

a logical model. That is, if A is an atom, and A 62 G,

then :A holds in the model. In addition, the only con-

stants in the domain are those that appear in G, hence,

we can evaluate a universally quanti�ed formula.

Given a data graphG, letQ(G) denote the site graph

that results from applying the StruQL expression Q

to G. Now we can de�ne the veri�cation problem.

De�nition 1: We say that the integrity constraint

� is satis�ed by Q if for any given data graph G, the

sentence � is satis�ed in the graph Q(G).

Note that the de�nition requires that � be satis�ed

in all possible sites created by Q and is not speci�c to

a particular data graph.

Example 4: The following sentences represent the

three examples above.

1. (8X)PaperPresentation(X)) RootPage()! � ! X

2. (8X:8Y )(Publication(X) ^ X ! "psF ile" ! Y ) )

PaperPresentation(X)! � ! Y .

3. (8X;Y )TextOnlyRoot(X)^ 

X ! (not ("BackToRegularSite"))

�

:"Image" ! Y

) false.

Veri�cation Algorithm

The previous section gave a very general formaliza-

tion of the problem of verifying integrity constraints.

In this section, we present an algorithm for verifying

integrity constraints that captures a large class of con-

straints that occur in practice. A closer study of these

integrity constraints shows that the sentence � often

has the more speci�c form Q

1

) Q

2

, where Q

1

and Q

2

are conjunctive formulas. For instance, in the �rst ex-

ample, Q

1

is the formula PaperPresentation(X) and

Q

2

is RootPage()! � ! X .

One main problem in developing an algorithm for

reasoning about constraint formulae is that they often

refer to the site graph, instead of the data graph. Re-

call that the site graph is de�ned by a StruQL expres-

sion Q over the data graph. In 1 and 3 of Example 4,

Q

1

; Q

2

refer to the site graph; in (2), Q

1

refers to the

data graph).

2

In the former cases, we need to consider

the composed formulae Q

1

� Q and Q

2

� Q which are

on the data graph. The key idea of our algorithm is to

translate these composed formulae into simpler ones.

As a result, we can reduce the veri�cation problem to

a reasoning problem on certain types of Horn theories,

for which sound and complete reasoning algorithms are

known.

To perform the translation, we use a novel data

structure, the site schema, that provides a schematic

graphical representation of a StruQL expression. Due

to space limitations, we consider only a simpli�ed form

of site schema. The site schema for the homepage Web

site is shown

3

in Figure 6. The site schema G

Q

for

a StruQL expression Q is a labeled directed graph,

that describes the possible paths in a Web site result-

ing from the expression Q. The graph G

Q

contains a

node N

f

for every function symbol f appearing in Q,

2

Syntactically, we cannot distinguish between expres-

sions referring to the site graph or the data graph, unless

the expression mentions function symbols or collections de-

�ned in the StruQL expression. In other cases, we assume

that the expression refers only to the data graph.

3

To avoid clutter we removed two edges and replaced

some conditions with simpler, equivalent ones.



RootPage()

AllTitlesPage()CategoryPage(V)

PaperPresentation(X)

NS

(fg,"All Titles")

Q

Q

Q

Qs

�

�

�

�+

(fPublication(X),X->"category"->Vg, "CategoryPage")

(fPublication(X),X->"category"->Vg,"Paper")

Q

Q

Q

Qs

�

�

�

�+

?

(fPublication(X), X->L->Vg,L) (fPublication(X), X->"title"->Vg,"title")

�

�

�

�

�

�

�/

Figure 6: The site schema of the homepage site.

which corresponds to nodes of the form f(a) in the site

graph, and a special node, NS, which corresponds to

non-Skolem nodes in the site graph.

The graph's links are annotated with conditions (i.e.,

where clauses) that guarantee the existence of a link

between nodes. Speci�cally, given a link clause K, let

K

W

denote the where clause that applies to K; recall

that ifK is nested, thenK

W

includes all the conditions

of the containing where clauses. For every atom in K

of the form f(X) ! l ! g(Y ), we add an arc from

N

f

to N

g

labeled (K

W

; l). Multiple arcs with di�erent

labels may exist between N

f

and N

g

. If the link is of

the form f(X)! l ! v, where v is a variable, then we

add an arc from N

f

to NS labeled (K

W

; v).

Given the site schema, the next step of the algorithm

is to describe conditions for the existence of more com-

plex paths by juxtaposing conditions on single edges.

The important point is that the conditions for the com-

plex paths refer only to the data graph, not the site

graph. For example, for any pair of nodes N

f

and N

g

in the site schema, we can write a formula describing

the conditions for the existence of an arbitrary path

from N

f

to N

g

or for the existence of a path from N

f

to N

g

of length at most n.

Example 5: In our example, the following formula

describes the condition for existence of a path from

RootPage() to PaperPresentation(X):

(Publication(X) ^ X ! "category"! v)_

(Publication(X) ^ X ! "title" ! v)

The �rst disjunct describes the path that may

go through CategoryPage(V), and the second de-

scribes the path going through AllTitlesPage().

Note that we removed some redundant conditions in

the formula. Hence, to verify that every publication

page is reachable from the root page, we need to check

the validity of the following sentence:

Publication(X) )

[(Publication(X) ^ X ! "category"! v)_

(Publication(X) ^ X ! "title" ! v)]:

Suppose we want to write a condition that expresses

the existence of a path from RootPage() to Paper-

Presentation(X) that does not go through AllTi-

tlesPage. In this case, we only consider paths in the

site schema that do not go through AllTitlesPage,

and hence the condition is simply

(Publication(X) ^ X ! "category"! v).

More generally, whenever Q is a StruQL expression

with a cycle-free site schema and Q

1

is a conjunctive

formula on the site graph, we can compute a new for-

mula equivalent to Q

1

� Q, which is a disjunction of

conjunctive formulae (i.e., a set of nonrecursive Horn

rules). Similarly, one can show that, ifQ is an arbitrary

StruQL-query expression (not necessarily cycle-free)

and Q

1

a conjunctive formula that does not contain

the Kleene star, then Q

1

�Q is equivalent to a disjunc-

tion of conjunctive formulae. These technique allow us

to express the composed formulae Q

1

�Q and Q

2

�Q

as disjunctions of conjunctive formulae.

We can now present the main results. In the follow-

ing theorems, Q is a StruQL-expression de�ning a site

graph from a data graph, and Q

1

; Q

2

are conjunctive

formulae de�ning the constraint Q

1

) Q

2

on the site

graph. The theorems distinguish between the cases in

which the site schema does and does not contain cy-

cles. As mentioned before, Q

1

; Q

2

can be expressed

either on the data graph or on the site graph. Finally,

the computational complexity of the veri�cation algo-

rithms are w.r.t. the size of Q, Q

1

, and Q

2

, and not

the size of the data or site graphs.

Theorem 1 : Let G

Q

be the site schema of the

StruQL expression Q, and assume that G

Q

is acyclic.

Then, the problem of verifying the constraint Q

1

) Q

2

is decidable, and the complexity of the decision problem

is in exponential space. Moreover, if all regular expres-

sions in Q;Q

1

; Q

2

are simple, i.e., they are restricted

to the form R

1

:R

2

: : : R

n

, where each R

i

is either a

label or �, then the decision problem is in NP.

Theorem 2: Assume that either Q

1

is expressed only

on the data graph, or that Q

1

does not contain the

Kleene star. Then, the problem of verifying the con-

straint Q

1

) Q

2

is decidable, and the complexity of

the decision problem is in NP w.r.t. the size of Q

1

.

It is important to note that Theorems 1 and 2 com-

bined capture many cases encountered in practice for



which the resulting algorithm can be implemented rel-

atively e�ciently.

The proof of Theorem 1 proceeds by reducing the

veri�cation problem to a logical entailment problem

for StruQL-query expressions, which is known to be

decidable (Florescu et al. 1998); the case for simple

regular expressions has been shown to be in NP. The

proof of Theorem 2 proceeds by a reduction to the

problem of entailing a datalog expression from a non-

recursive datalog expression, which has been shown to

be decidable in (Cosmadakis and Kanellakis 1986).

Conclusions and Related Work

We considered the problem of expressing integrity con-

straints on the structure of Web sites and verifying

whether they hold given a declarative speci�cation of

the site. Our work is done in the context of the

Strudel system, which provides a platform for study-

ing several important tasks we want to perform onWeb

sites. We presented algorithms for verifying a large

class of integrity constraints that we have seen in our

experience using Strudel.

We have only considered the problem of verifying

whether or not a constraint holds. A subsequent ques-

tion is how to �x a StruQL speci�cation when a con-

straint does not hold. One important bene�t of our

algorithm is that it returns a counter-example data

graph when the constraints are not satis�ed. Thus,

the site builder can decide whether the constraint was

not speci�ed well or whether the StruQL speci�ca-

tion needs to be changed. For instance, in Example 5,

if a publication does not have a category or title, it will

not be reachable from the root page. The site builder

may decide that this is acceptable or that the system

must enforce that every publication has a category.

Our work is most related to the problem of verifying

rule-based knowledge base systems. (Levy and Rous-

set 1996) show how to reduce the veri�cation problem

to one of entailment on Horn-rule formulas. StruQL

is a di�erent formalism from the one used in that pa-

per, therefore the challenge was to �nd the cases, re-

vealed by the site schema, in which there is a a sim-

ilar reduction. (Schmolze and Snyder 1997) consid-

ers a similar problem, but with rules that may have

side e�ects. Such rules do not exist in our formalism.

(Rousset 1997) proposes an extensional approach to

verifying constraints on Web sites. Constraints are ex-

pressed in a rule-based language, but they are checked

against the current state of the Web-site at any given

moment, similar to the way integrity constraints would

be checked when a database is updated.

The site schema is an elaboration of graph schemas,

introduced in (Buneman et al. 1997) for query opti-

mization. Site schemas contain more information than

graph schemas and are derived automatically from the

StruQL expression. In addition, we show how to use

the structure for integrity-constraint veri�cation. Sim-

ilar data structures have been used for describing in-

teractions among Horn rules (e.g., (Subramanian 1989;

Etzioni 1993; Levy et al. 1997)), but none of them have

been used for veri�cation.

The main issue for future research is �nding larger

classes of constraints for which veri�cation is possi-

ble. At the time of writing, the question of decidability

of entailment between two StruQL-query expressions

over the site graph is still open. Answering that ques-

tion will lead to a larger class of veri�able constraints.
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