
P. Martin, W. Powley, P. Zion 13-1

A Metadata Repository API

Patrick Martin, Wendy Powley & Peter Zion
Dept. of Computing and Information Science

Queen’s University at Kingston
(martin, wendy)@qucis.queensu.ca

peter@legasys.on.ca

.
Abstract

The Internet provides users with a wealth of
data. Much of this data is maintained in
passive data sources, that is sources which do
not provide facilities to search and query the
information. In this paper we describe an
approach to querying passive data sources
based on the extraction and exploitation of
metadata from the data sources. We describe
two situations where this approach has been
used successfully. The main focus of the paper
is on the metadata repository API. We
describe the requirements for the repository
and show how these influence the API design.
We then describe the typical use of the API
and explain how it differs from other standard
knowledge base APIs. 1

1. Introduction
For many of us, accessing on-line information has
become a common, everyday task. From travel
information to scientific data, the Internet provides
users with a multitude of data in a variety of forms
such as web pages, sound files, program source files,
and library catalogs. This data is generally maintained
not in database systems, but in what we call passive
data sources. Unlike a database system, these passive
data sources usually lack suitable Application
Programming Interfaces (APIs) to search or query the
data. Typically the data must be retrieved using "third-
party" applications such as browsers or search
engines. A topic of particular interest to the research

The copyright of this paper belongs to the paper’s authors.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage.

Proceedings of the 5th KRDB Workshop
Seattle, WA, 31-May-1998

(A. Borgida, V. Chaudhri, M. Staudt, eds)
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-10

community is how to make effective use of the data
stored in these passive data sources. Research in this
area includes resource discovery [Bow94, Yuw96],
data mining [Etz96] and query tools [Kon95, Men96]

One approach to querying passive data sources is
based on the extraction and subsequent exploitation of
metadata from the data sources [Mar98]. The
metadata includes descriptions of the properties of,
and the relationships present in, the data and the data
sources. The metadata is extracted from the data
sources and stored in a Metadata Repository (MDR)
which can be queried to locate data of interest.

In this approach, a metadata schema defines the
organization of the metadata. This schema is stored in
the MDR. Once the schema is defined, tools are built
to extract the metadata from the data sources and store
it in a metadatabase then query the repository to
facilitate access to the data sources. By querying the
metadatabase generated for a collection of passive
data sources, users are able to conveniently formulate
queries that specify conditions on the structure and the
semantics of the data as well as its content.

Key to the metadata approach is the application
programming interface (API) which the MDR clients
use to access the repository. The API provides easy-
to-use functions to connect to, and disconnect from,
the MDR, functions to populate the MDR with
metadata schemas and metadata, as well as query
facilities. The API is the focus of this paper. The
structure of the paper is as follows. Section 2 outlines
the requirements of the MDR and its API. We briefly
examine two applications of the MDR and derive the
requirements for the MDR. Section 3 describes the
MDR architecture. Section 4 presents the MDR API
and illustrates its use. In Section 5 we discuss some
related work and compare the MDR API to other
approaches. Section 6 summarizes the paper.

P. Martin, W. Powley, P. Zion 13-2

2. MDR Requirements
We have applied the MDR technique successfully in
two different application areas; distributed application
management [Bau97], and querying the World Wide
Web [Wes97]. In the distributed application
management system, the MDR is used to maintain
configuration information. This includes the "code-
view" information that describes the static
organization and construction of the software making
up the application. This information is embedded in
the various files that make up the application and in
the directory structure holding the files. Tools were
built to extract the configuration information from the
application files and then to browse and query the
metadata that is stored in the MDR.

The second application involves querying the World
Wide Web. The Web is the largest example of a
collection of passive data sources. Existing query
engines use either keyword or full-text indexing
techniques. Neither of these techniques capture the
internal structure of the Web documents, defined by
their HTML tags, or the external structure of the
portion of the Web containing the documents which is
defined by the hypertext links connecting the
documents. The MDR approach provides a tool to

handle queries involving both the content and the
structure of the Web documents.

When we first set out to develop the metadata
repository, we felt that it had to have the following
properties:

• An object-oriented data model was necessary to
model the complex structures and relationships
that exist between the data.

• Unlike a typical knowledge base, the MDR would
consist of a small number of classes with a large
number of instances. The MDR therefore had to
be able to handle large data sets efficiently.

• Queries to the MDR would frequently be based
on the relationships between the data (for
example, finding similar items) or on attribute
values. Query facilities had to be able to process
these types of queries. Typical knowledge base
interfaces are navigational in nature and do not
support the types of queries needed for the MDR.

T e l o s
R e p o s i to r yT e los

R ep o s i to r y

M D R
S er v er

In te r fa ce

T M B

M D R S e r v e r M D R C lie n t s

D C E

M D R
C lie n t L ib ra ry

Figure 1: MDR Architecture

P. Martin, W. Powley, P. Zion 13-3

class MMO
{
 string name; // the MMO name
 LinkedList<string> inherList; // list of MMOs from which the MMO inherits
 LinkedList<string> localCatList; // list of local categories
 LinkedList<string> inherCatList; // list of inherited categories

 public:
 …
 string Name(); // returns the name of the MMO
 boolean InherAdd(string inher); // add a MMO to the inheritance list
 boolean LocalCatAdd(string catName); // add a local category
 …
}

class MSO
{
 string name; // the MSO name
 string instanceOf; // specifies which MMO the MSO is an instance of
 LinkedList<string> inherList // the list of MSOs from which this object inherits
 LinkedList<Category> inherCatList; // inherited categories

 public:
 string Name(); // returns the MSO name
 string InstanceOf(); // returns the name of an MMO
 boolean InherAdd(string inher); // add a MSO to the inheritance list
 boolean LocalAttrAdd(string catName, string attrName, string attrType);
 // add a local attribute by specifying the category,
 the attribute name, and its type
 …
}

class MDO {
 string name; // the MDO name
 string instanceOf; // specifies which MSO the MDO is an instance of
 LinkedList<MDO_Attribute> attrList; // the attribute list for the MDO

 public:
 string Name(); // returns the name of the MDO
 string InstanceOf(); // returns the name of the “instance of” MSO
 boolean AttrAddString(string attribute, string name); // add an attribute of type string
 boolean AttrAddInteger(string attribute, long number); // add a attribute of type integer
 boolean AttrAddReal(string attribute, double number); // add an attribute of type real
 boolean AttrAddLink(string attribute, string objectname); // add a reference attribute
 …
}

Figure 2: Class Definitions for MMO, MSO and MDO Objects

P. Martin, W. Powley, P. Zion 13-4

• Multiple users should be able to access the
repository simultaneously.

These requirements influenced the design of the MDR
API. The main purpose of the MDR was to store and
query large amounts of metadata. A typical
knowledge base interface based on navigation would
not suffice. It was necessary to provide extended
capabilities to allow formulation of queries based on
the contents of attributes as well as on relationships
between objects. The API had to provide facilities to
manage and examine large result sets.

3. The MDR Architecture
The MDR approach uses a structurally object-oriented
model based on the Telos language [Myl90] to define
the structures of our metadata model. Telos, being a
conceptual modeling language, is particularly
convenient for expressing complex relationships
among the data.

Figure 1 shows the Metadata Repository architecture.
The MDR consists of an MDR Server which is
accessed by MDR Clients. The MDR Server has two
components: the Telos Repository [Myl90] which
provides the back-end knowledge base (KB) for the
MDR, and the MDR Server Interface which takes
requests from MDR clients and translates them into
requests to the KB. An MDR Client also has two
components: an application that requires access to the
MDR and the MDR Client Library, which is the API
to the MDR

The MDR Server communicates with the Telos
repository via the Telos Message Bus (TMB).
Requests and results are passed along the TMB in the
form of strings called s-expressions that are parsed
and understood by the Telos Repository. Theoretically
clients could connect to the Telos Repository directly
using the Telos API but we decided to build an
intermediate layer, the MDR Server, for the following
reasons:

• Database Independence – The MDR Server
Interface buffers the MDR clients from the
specifics of Telos and allows the MDR storage
mechanism to be changed without affecting
clients’ code.

• Multiplexing – The implementation of Telos
that was used for the MDR prototype supports
only a single client. The MDR uses threads to
service and coordinate multiple clients, sending
one request at a time to the Telos Repository.

• Extended Query Capabilities – The Telos
Repository provides limited query capabilities.
The MDR Server Interface extends these
capabilities to include conjunctive queries based
on instance-of conditions, is-a relations, and
queries by attribute value. The MDR Server
Interface generates a query that can be processed
by the Telos Repository. It then sends the request
to the repository, and filters the result set to return
only objects satisfying the client’s query.

4. The MDR Client Library
As stated earlier, the two components making up an
MDR client include an application that requires the
services of the MDR, and the MDR Client Library, or
API, which provides the routines and data structures
required to access the MDR. The applications may be
generic or application-specific tools. Generic tools
are designed to work with any MDR application.
Examples include the MDR Browser, the MDR
Populator, and the MDR Administration tool. The
MDR Browser presents a graphical view of the MDR
and allows users to browse both the metadata schema
and the metadata. It also provides query facilities.
The MDR Populator takes as input a file containing a
metadata schema and/or metadata and performs the
necessary operations to load the information in the
MDR. The administration tool is a command line
interface for the MDR that provides the MDR
administrator with the basic functions to test and
query the repository.

Application-specific tools are designed for a particular
purpose and are tailored to a specific application. To
date these include the Code View Data Extractor
(CDVE) [Lut98], a Web Search Tool, and a Web
Query Interface Tool [Mar98]. The CDVE is part of
the distributed systems management application. The
CDVE automatically extracts the metadata associated
with the code-view of a distributed application. The
user is prompted for some vital information regarding
the application and the file structure of the code
making up the application. The CDVE uses key files
such as the makefile(s) and IDL file(s) from a
CORBA or DCE application to derive the code view
metadata.

The Web Search Tool is a combined web crawler and
document indexer. Its function is to gather the
metadata for a collection of Web documents and store
it in the MDR. The user provides the tool with an
initial URL and a maximum number of documents to
collect. The initial page is processed first then all
links are followed and the documents processed in

P. Martin, W. Powley, P. Zion 13-5

turn. Once all the metadata is collected, it is
submitted to the MDR. The Web Query Interface tool
provides web users with the facilities to query the
repository to retrieve information about the documents
collected by the Web Search Tool [Mar98, Wes97].

The API comes in two flavours: object-oriented (for
C++) and procedural (for C). Clients include the MDR
Client Library and header files in their compilation to
enable them to invoke the MDR functions or methods.
Communication between the clients and the MDR
Server Interface is via DCE RPCs [Shi94].

In the API, the Client object class represents an MDR
client. This class contains member functions for
working with the knowledge bases as a whole, and for
submitting new objects to the MDR. The Client
object constructor performs the connection to the
MDR, so when a new client is created, the connection
to the MDR is established automatically. The
destructor method severs the connection to the MDR
(assuming a valid connection has been established).
Existing metadatabases are listed using the ListMDB
method. As well, they may be created (CreateMDB)
and/or deleted (DeleteMDB) using the Client object
class. The SetMDB method is used to choose which
metadatabase the client will use. The methods to
submit objects to the MDR are discussed below.

There are three basic object types used in the MDR to
represent the metadata and the metadata schema.
These include Meta Meta Objects (MMOs), Meta
Schema Objects (MSOs) and Meta Data Objects
(MDOs). MSOs are similar to classes in object-
oriented programming languages in that they define
the attributes that an MDO (data object) can contain.
The attributes are further grouped into categories that

are defined by an MMO. Each MSO is an instance of
one or more MMOs (thus specifying the categories of
the attributes) and each MDO is an instance of an
MSO.

Partial class definitions are given for the object types
in Figure 2. An MMO object contains a name and
three lists: a list of MMOs from which it inherits, a
list of local categories provided by the MMO, and a
list of categories which the MMO provides via
inheritance. An MSO object contains a name, an
instanceOf attribute (specifying which MMO the
MSO is an instance of) and four lists: an inheritance
list (a list of MSOs), a list of local categories, a list of
inherited categories, and an attribute list. An MDO
object contains a name, an instanceOf attribute
(specifying which MSO the MDO is an instance of)
and a list of associated attributes. The similarities
among the 3 types of objects are exploited in the client
library interface to make creations, modifications and
retrievals as simple as possible.

4.1 API Example
A small portion of the metadata schema for the World
Wide Web application is shown in Figure 3. The
shaded boxes represent MMOs. All others are MSOs.
Sample schema definitions for the objects are given in
Figure 4. We use this partial schema to illustrate the
typical usage of the MDR API.

The first step in using the MDR is defining the
metadata schema. This involves the creation of the
MMO and MSO objects. The following shows the
creation of two objects shown in the metadata schema
in Figure 3: the HypertextObjectClass MMO and the
Heading MSO. The HypertextObjectClass is created
as follows:

Heading

DocumentLink GraphicLink HyperLink

UrlLink

HypertextObjectClass

Person

AuthorObjectClass

TextFile PSFile

Document

DocumentObjectClass

WebSearchObjectClass

Figure 3: Metadata Schema for the WWW application

P. Martin, W. Powley, P. Zion 13-6

// Create a new, empty MMO object called
// HypertextObjectClass
MMO mmo;
mmo.Name = “HypertextObjectClass”;
 // add the inheritance class
mmo.InherAdd(“WebSearchObjectClass”);
// define the 2 local categories
mmo.LocalCatAdd(“hypertextAttributes”);
mmo.LocalCatAdd(“classificationProperties”);

The MSO Heading is defined by:

//Create a new, empty MSO object
MSO mso;
mso.Name = “Heading”;
// add the MMO to the inheritance list
mso.InstanceOf = “HypertextObjectClass”;
// add local attributes
mso.localAttrAdd(“hypertextAttributes”, “mainHeading”,

STRING);
mso.localAttrAdd(“hypertextAttributes”, “subheadings”,

“Heading”);

MetaMetaClass WebSearchObjectClass
with
 descriptions: Proposition
end

MetaClass HyperTextObjectClass
 isa WebSearchObjectClass
 with
 hypertextAttributes: Proposition;
 classificationProperties: Proposition
end

class Heading
in HyperTextObjectClass
with
 hypertextAttributes
 mainHeading: String;
 subheadings: Heading
end

Figure 4: Sample schema definitions

Heading contains one category, hypertextAttributes
that has two associated attributes: mainHeading (a
string), and subheadings which is a link to another
object of type Heading.

Once defined, the objects are submitted to the MDR.
MMOs must be submitted before MSOs since MSO
objects contain references to MMOs. Objects can be
submitted alone or as a list of objects of the same

type. If an object contains a reference to another
object via a link, the object must either already exist
in the MDR, or it must be submitted within the same
list. An object is submitted via the Client class using
the appropriate submit method. There exist two
methods for each type of object: one to submit a
single object and one to submit a list of objects.

Creating data objects (MDOs) is done in a similar
manner. The following shows the creation of an
instance of Heading:

// Create a new, empty MDO
 MDO mdo;
mdo.Name() = “PaperHeading”;
// add the MSO to the inheritance list
mdo.InstanceOf() = “Heading”;
// add the attributes
mdo.AttrAddString(“mainHeading”, “An MDR API”);
mdoAttrAddLink(“subheadings”, “Intro”);
mdoAttrAddLink(“subheadings”, “Req”);
mdoAttrAddLink(“subheadings”, “Arch”);
mdoAttrAddLink(“subheadings”, “CliLib”);
mdoAttrAddLink(“subheadings”, “Example”);

This creates an instance of the MSO class Heading
with 8 attributes. The Name attribute is a user-defined
name for the MDO. The MDR Server converts the
name into a unique identifier for each object. The
InstanceOf attribute indicates that the MDO is an
instance of the class Heading. The mainHeading is a
string attribute with the value “An MDR API”. The
subheading attribute is a link to another Heading
object. The referenced object is specified using the
object name. In this example there are five
subheadings. These objects must already exist in the
MDR or they must be submitted in a list of MDOs
along with the “PaperHeading” MDO.

Although information can be retrieved about
particular MMOs and MSOs (such as the categories
and attributes they contain), only MDOs can be
queried. The filter object class is used for MDO
queries. A filter is a list of conditions applied
conjunctively to the MDOs in the MDR. There are
four types of conditions:

• InstanceOf <msoName>. Return all MDOs
which are instances of a given MSO.

• IsA <msoName>. Return only MDOs which are
instances of an MSO which is a descendant of the
named MSO.

• Name <relation> <string>. Returns only MDOs
whose name is either equal to or not equal to the
given string.

P. Martin, W. Powley, P. Zion 13-7

• Attribute <attrName> <relation> <value>.
Return only MDOs which have an attribute
satisfying the given relation to the given value.
There are 4 variants on this type of condition,
with one for each data type supported by the
MDR (string, integer, real and link). A
<relation> is one of {=, !=, <, >, <=, >=) with
restrictions depending on the data type being
examined. In addition, this filter also supports
substring matches.

Consider the following query:

Find all PostScript documents about Repositories
with “API” in the title written after 1994

The Filter object is created as follows:

Filter filter;
filter.AddCondIsA(“PSFile”);
filter.AddCondAttrString(“keywords”,

 SUBSTRING_EQUAL, “Repository”);
filter.AddCondAttrString(“title”,

SUBSTRING_EQUAL, “API”);
filter.AddCondAttrInteger(“year”, GREATER_THAN,

 1994);

Four query conditions are used to specify this
particular query. The first “IsA” condition specifies
that the document must be a postscript document. The
3 additional conditions are attribute based. The first
two require substring matches whereas the last is an
integer comparison. The conditions are applied
conjunctively to the MDOs in the metadatabase. To
submit the query, the user creates an instance of the
QueryMDOsRetList class which takes as parameters
the client id and the filter. Query results are returned
to the client as a linked list containing all MDOs that
satisfy the filter.

Linked lists are used extensively in the MDR API.
Each type of list contains a set of standard functions
including First(), Next(), IsDone(), Size() and
CurItem(). The list is traversed forwards to allow
examination of each item as follows:

// create the return list and submit the query
QueryMDOsRetList retlist(client_id, filter);
for (retlist.First(); !retlist.IsDone();

 retlist.Next())
 DoSomethingWithEachItem(retlist.CurItem());

5. Discussion
The MDR API is a different type of interface than the
standard Telos Repository interface [Myl90]. The
standard Telos interface is a traditional knowledge
base style of interface. Its retrieval is primarily based
on navigation. There is a currency pointer that always
points to the most recently accessed object in the
knowledge base and users navigate the knowledge
base by following the relationships in the knowledge
base, specifically the isa and instance-of relationships.
Commands are composed as strings and then passed
to the Telos Repository.

The MDR API, on the other hand, provides an
extensive set of individual operations for interacting
with the MDR. Each operation has a specific function
and information is passed to and from the operation
via parameters. In particular, the MDR API supports
querying on the contents of attributes as well as by
relationships. It provides a set of operations to build a
query filter, which is a conjunction of query
conditions. This filter is then applied to the repository
contents and only objects that match the filter are
returned. The MDR API also provides operations to
manage and examine large result sets. These query-
by-content features are not available in the Telos
Repository and are supplied by the MDR Server
Interface component of the MDR Server. The
approach the MDR API uses for constructing queries
and handling query results is taken from database
APIs such as the Open Data Base Connectivity API,
or ODBC [Gei95].

It is interesting to compare the MDR API and the
Open Knowledge Base Connectivity API, or OKBC
[Cha98, Ric98]. Both APIs provide a set of
operations that can be used to access a
repository/knowledge base system from an application
program. They are both concerned with the problem
of how tools interact with a system. OKBC primarily
addresses tool reusability. The MDR API, on the other
hand, supports the development of a wide range of
tools for a specific repository system.

OKBC's emphasis on reusability means that it must be
able to accommodate a range of knowledge base
systems. OKBC's model, therefore, is more general
than the MDR object model. OKBC also includes the
concept of behaviors, which are not required in the
MDR API. There is considerable overlap in the sets of
operations present in the two APIs. OKBC, again
because of its generality, has a wider range of
operations than the MDR API. The MDR API,
because of its database requirements, contains the
concept of a query filter which can be constructed and

P. Martin, W. Powley, P. Zion 13-8

then applied with a query. OKBC does not appear to
have an analogous construct. It would be an
interesting exercise to construct a binding for OKBC
to the MDR.

6. Summary
The paper describes the API to the Metadata
Repository that has been built to manage the metadata
for a variety of applications such as distributed
applications management and querying the WWW.
The requirements for the MDR have resulted in a
system that combines features from both knowledge-
based systems and database management systems.
The MDR, which is built around the Telos repository,
provides an object-oriented API with support for
multiple clients, querying based on relations and
context, and managing large query result sets.

References
[Bau97] M. Bauer, R. Bunt. A. El Rayess, P.

Finnigan, T. Kunz, H. Lutfiyya, A. Marshall,
P. Martin, G. Oster, W. Powley, J. Rolia, D.
Taylor and M. Woodside. Services
Supporting Management of Distributed
Applications and Systems. IBM Systems
Journal 36(4), pp. 508 – 526, 1997.

[Bow94] C. M. Bowman, P.B. Danzig, U. Manber and
M.F. Schwartz, “Scaleable Internet Resource
Discovery: Research Problems and
Approaches”, Communications of the ACM
37(8), August 1994, pp. 98-107.

[Cha98] V.K. Chaudri, A. Farquhar, R. Fikes, P.D.
Karp and J.P. Rice. "OKBC: A
Programmatic Foundation for Knowledge
Base Interoperability", appears in the
Proceedings of AAAI-98, Madison, WI., July
1998.

[Etz96] O. Etzioni, “The World Wide Web: Quagmire
or Gold Mine?”, Communications of the
ACM 39(11), November 1996, pp. 65-68.

[Gei95] K. Geiger. Inside ODBC, Microsoft Press,
1995.

[Kon95] K. Konopnicki and O. Shmueli, “W3QS: A
Query System for the World Wide Web”,
Proceedings of the 21st VLDB Conference,
1995, ppp. 54-65.

[Lut98] H. Lutfiyya, A. Marshall, M. Bauer, P.
Martin, and W. Powley. Configuration
Maintenance for Distributed Applications

Management. To appear in the Journal of
Network and Systems Management, 1998.

[Mar98] P. Martin, W. Powley and A. Weston. Using
Metadata to Query Passive Data Sources.
Proceedings of the 31st Hawaii International
Conference on System Sciences, January
1998.

[Men96] Mendelzon, G. Mihaila and T. Milo,
“Querying the World Wide Web”,
Proceedings of PDIS ‘96, Miami FL, 1996.

[Myl90] J. Mylopoulos, A. Borgida, M. Jarke and K.
Koubarakis, Telos: A Langauage for
Representing Knowledge about Information
Systems (revised), Technical Report KRR-
TR-89-1, Department of Computer Science,
University of Toronto, August 1990.

[Ric98] J.P. Rice and A. Farquhar. OKBC: A Rich API
on the Cheap, Technical Report KSL-98-09,
Knowledge Systems Laboratory, Stanford
University, 1998.

[Shi94] J. Shirley, W. Hu, and D. Magid. OSF
Distributed Computing Environment: Guide
to Writing DCE Applications. O’Reilly &
Associates, Inc, 1994.

[Wes97] A. Weston, Using a Data Model to Search
and Query the World Wide Web, Master’s
thesis, Department of Computing and
Information Science, Queen’s University,
1997.

[Yuw96] B. Yuwono and D.L. Lee, “WISE: A World
Wide Web Resource Database System”,
IEEE Transactions on Knowledge and Data
Engineering 8(4), August 1996, pp. 548-554.

