
D.P. Silberberg, R.D. Semmel 17-1

Role-Based Semantics for Conceptual-Level Queries

David P. Silberberg
Ralph D. Semmel

The Johns Hopkins University
Applied Physics Laboratory

Johns Hopkins Road
Laurel, Maryland 20723-6099

{david.silberberg, ralph.semmel }@jhuapl.edu

Abstract

We are developing a system known as QUICK
(for QUICK is a Universal Interface with
Conceptual Knowledge) which provides
simplified access to database systems. It
allows users to develop applications and specify
ad hoc queries without requiring them to
understand the underlying schema. Users
present high-level queries that specify only
attributes to be selected and their constraints.
In turn, QUICK infers corresponding SQL
queries by using a knowledge construct called a
context, which is derived from underlying
conceptual schema. For most queries, the
context provides enough information to
insulate users from the underlying schema.
The context does not contain sufficient
knowledge to infer the corresponding SQL
query from certain classes of high-level queries.
Users must specify logical attributes and some
of the joins already described by the schema.
This paper identifies how relationship roles

specified in the conceptual schema in
conjunction with new knowledge representation
constructs called pseudo-schemas and super-

contexts can be exploited to generate reasonable
queries on complex schemas for these classes
of high-level queries. Both new constructs are
automatically inferred from the original
conceptual database schema.

The copyright of this paper belongs to the paper's authors. Permission
to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial
advantage.

Proceedings of the 5th KRDB Workshop

Seattle, WA, 31-May-1998

(A. Borgida, V. Chaudhri, M. Staudt, eds.)
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-10/

1. Background

Query formulation on relational databases is a difficult
task. Database programmers must understand the logical
and conceptual database schemas to construct queries.
The logical schema describes the structure of the database
tables including their attributes, data types, keys, and
indexes. The conceptual schema describes the semantic
structure of a database including its entities,
relationships, and generalizations (a.k.a. specializations).
Database programmers that formulate queries to a
database certainly know which attributes they want to
retrieve and how to constrain the search. However, with
conventional query languages, such as SQL,
programmers that formulate multiple table queries must
understand the semantic structure of the schema to
properly formulate the joins and specify the tables.
Programmers must also be familiar with the tables in
which attributes are located, the table keys, and the
associations described in the conceptual schema. If the
database schema is discarded, which is often the case after
a database is created, the programmer must perform
significant research to reconstruct the semantics of the
database. Furthermore, if the underlying data model
evolves, all queries of all applications must be examined
to determine if they are affected by the change. The
affected queries must be updated to reflect the modified
database model.

Ideally, the application programs and the underlying
database environments should be decoupled. Programmers
should expect that the database interface hides the
underlying schema. Views often provide this capability
to application programs. Unfortunately, views are static.
When the underlying data model and database changes, all
affected views must be updated manually. The use of
views moves the onus of change from application
programmers, who presumably know little about the
underlying data environment, to database programmers,
who are more familiar with the underlying data
environment. Nevertheless, for a database with many

D.P. Silberberg, R.D. Semmel 17-2

views, the effort to update all the appropriate views is
still formidable. Furthermore, in an environment where
ad hoc queries are performed, views are not generally
helpful. Users must still formulate actual database
queries and, thus, are still faced with the difficulty of
having to understand the underlying database schemas to
create the joins and specify tables.

2. Automated Query Formulation

Early approaches to solving this problem were explored
in the development of the universal relation model
[Kor84][Ley89][Ull89]. Unfortunately, the underlying
representations used abstractions that are not typically
used by database designers. Other approaches that use the
more common entity-relationship (ER) models [Che76]
either present a graphical user interface for selecting
subgraphs which correspond to requests [Lie80][Zha83],
or use universal relation concepts directly
[Pah85][Wal84]. Others attempted to create automated
query generators [Mar90], which resolve shortcomings of
the universal relation model. Some commercial systems
attempt to solve the same problem using ER constructs
[Har98][Ora98]. All, however, still failed to provide the
richness of expression needed for generalized queries.

Problems with the previous systems were overcome by
the development of QUICK [Sem94], which is an
intelligent data access system that simplifies the process
of query formulation for application programmers and
users that require an ad hoc query interface to a database.
It extracts domain knowledge from a database conceptual
schema and uses it to automatically formulate SQL
queries from high-level queries. Thus, QUICK insulates
the users from having to understand the semantics of the

underlying database schema and from having to formulate
complicated join clauses.

QUICK accepts high-level queries expressed in the
Universal SQL (USQL) language [Dia95], which is a
simplified version of SQL. The USQL interface requires
users to specify only attributes and their constraints.
Users do not have to specify table names and most join
clauses described in the underlying conceptual schema.

QUICK uses an extended entity-relationship (EER) model
[Bat92][Teo86] to represent conceptual database schemas.
It then recognizes contexts of the schema, which are
maximal sets of strongly related entities, attributes,
relationships, and generalizations. Contexts attempt to
capture the local and global semantic inter-relationships
among entities, relationships and generalizations of a
schema as intended by its designer. QUICK interprets a
high-level USQL query with respect to the set of schema
contexts to infer the corresponding SQL query likely
intended by the user.

Figure 1 shows an example schema for a Bank database.
Rectangles with enclosed text describe the entities of the
system. This schema includes the customer, account,
loan, and branch entities. Diamonds with enclosed text
describe the relationships between entities. The numbers
and letters associated with the relationships indicate the
cardinality of the relationship. For example, the
account_branch relationship indicates that there is a one-
to-many (1:N) relationship between branch and account,
while the customer_account relationship indicates that
there is a many-to-many (M:N) relationship between
customer and account. Double lines that emanate from
relationships to entities indicate that the entities fully
participate in the relationship. For example, all branches
must be associated with accounts, and all account must
be associated with a Branch. Attributes are represented
by free text connected to an entity by a single line. For
example, the loan entity is associated with the loan_id
and amount attributes. Underlined attributes are the
conceptual keys of the entities.

QUICK uses heuristics to analyze the schema and
determine that there are two contexts associated with this
schema. These contexts are represented by the large
boxes surrounding multiple schema objects. The first
context set contains the customer, customer_account,
account, account_branch, and branch schema objects,
while the second context set contains the customer,
customer_loan, loan, loan_branch, and branch schema
objects.

N

1 loan-

branch

N

M

customer-

account

N

Mc ustomer-

loan

1

N

account-

branch

 branch-name

 branch-address

branch

loan-id amount

loan

account-id balance

account

customer-address

 ssn

customer-namec ustomer

Figure 1. The Bank Schema

D.P. Silberberg, R.D. Semmel 17-3

A high-level query presents a set of attributes that are
associated with schema objects. If the set of schema
objects form a subset of a context, QUICK formulates
the corresponding SQL query using the join paths defined
by the context. Thus, in response to the high-level
USQL query:

SELECT customer_name, Query 1
balance,
branch_name

QUICK generates the corresponding SQL query:

SELECT Query 2
A.customer_name,
C.balance,
D.branch_name

FROM
customer AS A JOIN customer_account AS B

ON A.ssn = B.ssn
JOIN AS account C

ON B.account_id = C.account_id
JOIN branch AS D

ON C.branch_name = D.branch_name

The context provides the information necessary to infer
the user's likely intention as formulated in high-level
query. However, if attributes from both loan and account
are requested, QUICK recognizes that no one context
contains these attributes. Thus, QUICK infers that the
database designer did not intended for this query to be
formulated on the schema. If attributes are requested that
belong to multiple contexts, such as customer_name and
branch_name, QUICK cannot discern if either one or
both contexts are desired by the user. Therefore, by
default, QUICK generates the query which is the UNION
of SELECT statements of both contexts. The inability
for the user to indicate the intended context and for
QUICK to generate the intended query is one of the
limitations of the context paradigm. More limitations
will be described in the next section.

Certainly, there is no guarantee that a generated query
matches the user's intent. However, real-world experience
indicates that QUICK does an excellent job at generating
reasonable queries [Sil94][Sem95]. Thus, contexts appear
to be an appropriate paradigm for automatic query
generation.

3. Limitations of the Context Paradigm

The context paradigm is not always sufficient to
determine the user's intention because it does not allow
users to fully describe the intention or meaning of their

queries. For instance, consider a query to the Bank
database which requests information about customers and
their branches. Two separate contexts cover the requested
attributes and thus, the intention of the user is not clear.
USQL does not provide the syntax for the user to clarify
the request.

SELECT customer_name, branch_name Query 3

Three possible interpretations of the query include
requests to retrieve customer_name and branch_name of
all accounts, of all loans, or both all accounts and loans.
Currently, QUICK generates the following SQL query by
default:

SELECT Query 4
A.customer_name,
D.branch_name

FROM
customer AS A JOIN customer_account AS B

ON A.ssn = B.ssn
JOIN AS account C

ON B.account_id = C.account_id
JOIN branch AS D

ON C.branch_name = D.branch_name
UNION
SELECT

A.customer_name,
D.branch_name

FROM
customer AS A JOIN customer_loan AS B

ON A.ssn = B.ssn
JOIN AS loan C

ON B.loan_id = C.loan_id
JOIN branch AS D

ON C.branch_name = D.branch_name

But clearly, this may not match the user's intention.

Another class of queries that USQL does not provide the
syntax and that contexts do not provide the semantics to
discern the user's intention include queries over partial
participation relationships. Consider the example Health
Club database schema of Figure 2. The member and
non_member entities are related by a one-to-many, partial
participation invites relationship. The double line from
the relationship to the non_member entity indicates that
non_member fully participates in the relationship. A
non_member can and must be invited by only one
member. Thus, the non_member assumes the role of
guest with respect to the member entity. The single line
from the relationship to the member entity indicates that
members partially participate in the relationship.
Members may invite multiple non_members, but do not

D.P. Silberberg, R.D. Semmel 17-4

necessarily invite any. Members that invite
non_members assume the role of host.

Ambiguity occurs when a query requests attributes from
both entities. For instance, consider the following
USQL request:

SELECT member_name, Query 5
non_member_name

Perhaps the intention of the user is to request
non_members and their hosts. If so, the query is non-

member-centered and a natural join query should be
generated by QUICK.

SELECT Query 6
member_name,
non_member_name

FROM
member JOIN non_member

ON member_name = member_name_fk

This query does not return those members who do not
have guests. Or, perhaps, the intention of the user is to
request members and their guests, if they have any. This
query is a member-centered query and an outer join should
be generated.

SELECT Query 7
member_name,
non_member_name

FROM
member LEFT OUTER JOIN non_member

ON member_name = member_name_fk

This query returns all members. In either case, the
context construct does not have the necessary information
for an automatic query generator to discern the user's
intention.

Another class of queries that do not provide enough
information to formulate the appropriate SQL is queries
over recursive relationships. For instance, the Employee
database schema in Figure 3 describes an employee entity
with a one-to-many, double-partial-participation manages

relationship. Employees that manage other employees
assume the role of manager. Employees that report to
other employees assume the role of report. Employees
need not manage any reports and may manage multiple
reports. Employees report to at most one manager, but
at least one employee (e.g., the CEO) does not report to
any employees.

The corresponding logical schema is given below.

employee <name, manager_name_fk, salary, age>

The employee relation contains a manager_name_fk to
store the employee's manager's name. This field is used
to self-join the employee relation via the manages
relationship.

USQL provides no mechanism to express a request for
employee names and their manager names using only
conceptual attributes. Furthermore, the context paradigm
does not have the ability to automatically generate the
join through the manages relationship. The logical
attribute manager_name_fk must be added to the
conceptual schema. Then, the user must explicitly
specify the join between the name key and the
manager_name_fk foreign key, as in the following
USQL query.

SELECT A.name, B.name Query 8
WHERE A.name = B.manager_name_fk

The first problem with this approach is that users must
step outside of the framework of the conceptual schema
and draw upon the logical schema to express the join
between name and manager_name_fk. Secondly, the user
must explicitly express a join that is already represented
in the conceptual schema. This violates the desire to
insulate users from understanding the structural semantics
of the schema. Thirdly, there are three interpretations of
the query, all of which are correct given the information
provided by the user. Since both sides of the manages

 non-member-address

 non-member
 N

 guest

 num-visits

 non-member-name

 member
 1

 host

 membership-date

 member-name

 member-address

 invites

Figure 2. Health Club Database Schema

employee

manager

report

1

N

name

salary

age

manages

Figure 3. Employee Database Schema

D.P. Silberberg, R.D. Semmel 17-5

relationship contain partial participation constraints, the
interpretation based on the schema representation can be
one of the following:

1. Select all employee names and their reports names,

if they have any reports. This is expressed by the
SQL query:

 SELECT Query 9
 A.name, B.name

 FROM
 employee AS A LEFT OUTER JOIN
 employee AS B
 ON A.name = B.manager_name_fk

2. Select all employee names and their manager names,

if they have one. (The CEO does not have a
manager.) This is expressed by the SQL query:

 SELECT Query 10
 A.name, B.name

 FROM
 employee AS A LEFT OUTER JOIN
 employee AS B
 ON A.manager_name_fk = B. name

3. Select only managers and their reports. The results

only include rows that list managers in the first
column and reports in the second column.

 SELECT Query 11
 A.name, B.name

 FROM
 employee AS A JOIN employee AS B
 ON A.name = B.manager_name_fk

In this case and in all the previous cases, the syntax of
USQL does not allow users to express more powerful
queries. Furthermore, QUICK does not have the
underlying constructs to interpret more powerful queries.
Users are required to understand the underlying schema to
formulate complex queries. However, the schema does
contain sufficient information to allow users to specify
high-level queries without having to understand the
schema. The next section will describe the syntactic
additions to USQL and the semantic additions to QUICK
that allow these classes of high-level queries to be
interpreted according to the query formulator's intention.

4. Role-Based Semantics

By properly exploiting the defined roles of a conceptual
schema, the limitations inherent in the context-based
approach can be surmounted. To remedy the ambiguity

of partial participation relationships, a new construct
called a pseudo-schema is introduced, which uses the
roles of the relationship to augment the EER
representation. The pseudo-schema, which is
automatically generated by QUICK, augments the
original schema by introducing both pseudo-entities and
pseudo-relationships. These explicitly represent the
multi-fold semantic meaning of partial participation
relationships. For example, in the Health Club database,
QUICK recognizes that the member entity represents
two separate concepts with respect to the invites
relationship. The first is its role as a member and the
second is its roles as a host. The pseudo-schema of
Figure 4 shows the host pseudo-entity that represents
this concept. The arrow with a circle from host to
member indicates that the host entity is a specialization
of the member entity. (If there were another
specialization of the member entity, another line would
emanate from the circle to the other specialized entity.

Either the circle would contain a "D" to indicate that the
specialization is disjoint, or it would contain an "O" to
indicate that the specialization is overlapping. In the
case of a single child of an entity, the distinction between
overlapping and disjoint specialization types are
irrelevant.) The single-lined arrow from the circle to the
member entity indicates that a member can exist
independently. (If there were a double-lined arrow,
members would be required to have at least one associated
child entity.) Finally, the pseudo-relationship between
non-member and host is a fully participatory and 1:N.

The syntax of USQL is also augmented to allow users to
formulate role-based queries. Informally, the grammar of
a USQL query was:

<USQL query> ::= SELECT <attribute list>
[WHERE <where list>]

<attribute list> ::= <attribute>[, <attribute>]*
<attribute> ::= [<attribute prefix>]<attribute name>
<attribute prefix> ::= <tuple variable>.
<where list> ::= <where expr>

[<AND-OR> <where expr>]*
<where expr> ::= <attribute> <op> <compare value>
<compare value> ::= <attribute> | <value>

 non-member

 N

 guest
 num-visits

 non-member-name

 member
 1

 membership-date

 member-name

 member-address

 invites

 host invites

 non-member-address

 1

 N

 guest

Figure 4. Health Club Pseudo-Schema

D.P. Silberberg, R.D. Semmel 17-6

The new syntax of USQL modifies the definition of
<attribute prefix> as follows:

<attribute prefix>::= <tuple variable>.[<role name>.]*

Note that multiple role names can precede the attribute
name to achieve effects that will be discussed later.

When presented the following USQL query:

SELECT host.member_name, Query 12
non_member_name

QUICK interprets the pseudo-schema to generate the
SQL query that contains a natural join, as in Query 6.
When presented with the following USQL queries:

SELECT member.member_name, Query 13
non_member_name

SELECT member_name, Query 14
non_member_name

QUICK interprets the pseudo-schema to generate the
SQL query that contains an outer join, as in Query 7.

4. 1 Partial Participation Cyclic Schemas

A more efficient design, perhaps, of the Health Club
database is presented in Figure 5. The person entity is
introduced to represent the common attributes of
members and non-members. The name attribute
represents the information from both the
non_member_name and member_name attributes. The
address attribute represents the information from both the
member_address and non_member_address attributes.
Both the non_member and member entities are
specializations of the person entity. The circumscribed
"D" indicates that both entities are disjoint. The double
line emanating from the circle to the person entity
indicates that a person must be associated with either a

non-member or a member.

The underlying logical schema is represented as:

person <name, address>
member <person_member_fk, membership_date>
non_member <person_non_member_fk,

member_non_member_fk, num_visits>

The logical attribute person_member_fk is the foreign
key on which the person and member tables are joined.
The person_non_member_fk is the foreign key on which
the person and non_member tables are joined. The
member_non_member_fk is the foreign key on which the
member and non_member tables are joined.

Certainly, the original USQL does not provide the syntax
to express a query requesting both member and non-
member names using only conceptual constructs. The
best option is to modify the conceptual schema to
describe all the logical foreign keys as conceptual
attributes and express the USQL query as follows:

SELECT A.name, B.name Query 15
WHERE A.name = person_member_fk AND

person_member_fk
= member_non_member_fk AND

B.name = person_non_member_fk

where A and B are tuple variables representing member
and non-member, respectively. Unfortunately, users
must specify logical attributes and the joins that are
already represented in the schema. In addition, there is no
mechanism to specify whether member names should
assume the role of host or member. Thus, QUICK
cannot discern whether to generate natural joins or outer
joins in the resulting SQL query.

The corresponding pseudo-schema is shown in Figure 6.
The member entity remains a partial participant in the
one-to-many invites relationship while the host role is
represented as a pseudo-entity. The host entity is a
specialization of the member entity and it fully
participates in the invites relationship. Using the
pseudo-schema, the following role-based query:

SELECT member.name, Query 16
non-member.name

is interpreted by QUICK to generate the corresponding
SQL query:

 non-member member
 N 1

 guest host

 membership-date num-visits

 person

 D

 name address

 invites

Figure 5. Alternate Health Club Schema

D.P. Silberberg, R.D. Semmel 17-7

SELECT Query 17
P1.name, P2.name

FROM
person AS P1 JOIN member
 ON P1.name = person_member_fk
LEFT OUTER JOIN non_member
 ON person_member_fk

 = member_non_member_fk
JOIN person as P2
 ON person_non_member_fk = P2.name

Similarly, QUICK uses the pseudo-schema to interpret
the role-based USQL query:

SELECT host.name, Query 18
non-member.name

and generate the corresponding SQL query:

SELECT Query 19
P1.name, P2.name

FROM
person AS P1 JOIN member

ON P1.name = person_member_fk
JOIN non_member

ON person_member_fk
= member_non_member_fk

JOIN person as P2
ON person_non_member_fk = P2.name

In both cases, only conceptual objects are specified in the
USQL query and QUICK generates the corresponding
SQL query. The user did not have to be familiar with the
underlying structure of the schema or logical foreign keys
and the user did not have to specify joins in the high-
level query.

In general, role names of partial participation
relationships are transformed into pseudo-entity names in
the pseudo-schema. Entity names are then used as role
names to disambiguate high-level queries. Similarly,
any entity name can be used as a role name to
disambiguate high-level queries. Therefore, queries to the
Bank database may use account or loan as the role name
to indicate the context desired. If roles are not specified
in the query, the default query which spans both contexts
is still generated, as in Query 4.

4. 2 Self Relationships

The problems of the Employee Database in Figure 3
partially stem from the semantics of a context. A
context is a maximal, acyclic set of entities,
relationships, generalizations, and attributes of a schema.
Thus, the singular context of the Employee Database
contains only the employee entity and the manages
relationship, as shown in Figure 7. Since contexts are
acyclic, both senses of the employee entity (manager and
report) cannot be represented by a single context.
Therefore, contexts lack the information required to
generate a self-join. Users are forced to explicitly specify
joins in high-level queries as in Query 8.

To solve this problem, super-contexts are defined to
represent the closure of all contexts and their recursive
relationships as defined by their roles. The Employee
database super-context, as shown in Figure 8, allows
users to request an employee and his manager's manager,
or an employee and his report's report, for example.
QUICK interprets the super-context to generate the
corresponding cyclic SQL query, as will be presented
shortly.

non-member member
N 1

guest

membership-datenum-visits

person

D

name address

invites

hostinvites
1

guest

N

Figure 6. Alternate Health Club Pseudo-Schema

context

employee manages

Figure 7. Simple Employee Schema Context

D.P. Silberberg, R.D. Semmel 17-8

The corresponding pseudo-schema of the Employee
Database is shown in Figure 9. Since the manages
relationship describes partial participation of the
employee both in the role of manager and of report,
report and manager pseudo-entities are represented in the
pseudo-schema. The report and manager pseudo-entities
are specializations of the employee entity. The double
line from the overlapping generalization indicates that an
employee must be either a manager or a report. The
overlapping generalization indicates that an employee can
be both. The full participation relationship between
report and manager describes only the relationship
between employees who are reports and employees who
are managers. The partial participation relationship
between employee and report describes the relationship
between all employees and their reports, if any.
Similarly, the partial participation relationship between
employee and manager describes the relationship between
all employees and their managers, if any.

Users may formulate role-based queries using the

augmented USQL without having to specify logical-level
attributes or joins that are defined by the schema.
QUICK interprets the pseudo-schema and super-context
constructs to automatically generate corresponding SQL
queries. For example, the query that requests salaries of
all employees and their managers, if they have one, is
expressed in USQL as:

SELECT salary, manager.salary Query 20

The corresponding generated SQL query is:

SELECT Query 21
E1.salary, E2.salary

FROM
employee AS E1 LEFT OUTER JOIN
employee AS E2

ON E1.manager_name_fk = E2.name

The query which requests the salaries of all employees
and their reports, if they have reports, is expressed by the
USQL query:

SELECT salary, report.salary Query 22

The corresponding SQL query is:

SELECT Query 23
E1.salary, E2.salary

FROM
employee AS E1 LEFT OUTER JOIN
employee AS E2

 ON E1.name = E2. manager_name_fk

The query which requests the salaries of managers and
reports is expressed in the USQL syntax as:

SELECT manager.salary, reports.salary Query 24

The corresponding SQL query is:

SELECT Query 25
E1.salary, E2.salary

FROM
employee AS E1 JOIN employee AS E2

ON E1.name = E2. manager_name_fk

Finally, the USQL syntax permits users to express
queries that leap layers of contexts via the super-context
construct. Thus, the request for report salaries and
manager's manager's salaries is expressed in USQL as:

SELECT report.salary, Query 26
manager.manager.salary

 report manager

O

 employee

 salary
 name address

 manages manages

 manages

 N 1

 N 1

 1 N

 manager report

Figure 9. Employee Database Pseudo-Schema

 context

 employee manages

 context

 employee manages

 context

 employee manages

 manager

 manager

 manager

 manager

 report

 report

 report

 report

...

...

...

...

Figure 8. Employee Database Super-Context

D.P. Silberberg, R.D. Semmel 17-9

The corresponding SQL query is:

SELECT Query 27
E1.salary, E3.salary

FROM
employee AS E1 JOIN employee AS E2

ON E1.manager_name_fk = E2.name
JOIN employee AS E3

ON E2.manager_name_fk = E3.name

5. Roles Versus Tuple Variables

On the surface, tuple variables and roles appear to be
similar concepts. However, their semantic meanings are
quite different and complementary. Roles clarify the
meaning of the relationship between entity attributes. In
addition, roles clarify the how contexts within a super-
context must be joined when the schema includes self-
relationships. Tuple variables, on the other hand, identify
different instances of either query contexts or super-
contexts within a single query. For example, a query
that pair-wise compares all employees' salaries is
expressed using tuple variables to describe each employee
instance. The USQL query is:

SELECT E1.name, E1. salary, Query 28
E2.name, E2. salary

WHERE E1.name != E2.name

The WHERE clause ensures that no result row contains a
self-comparison.

Similarly, the complementary aspects of roles and tuple
variables is demonstrated by the following request:

"List all employees and their reports, if any, whose
salary is greater than Jones' manager."

The "employees and their reports, if any" and "Jones'
manager" phrases identify two schema supercontexts.
The full query is expressed by comparing the
supercontexts by salary, either using tuple variables or
embedded SELECT statements. The corresponding high-
level query expressed with tuple variables and roles is:

SELECT U.name, U.report.name Query 29
WHERE V.report.name = "Jones" AND

V.manager.salary < U.salary

An automated query generator will generate the following
SQL query:

SELECT Query 30
A.name, B.name

FROM
employee AS A LEFT OUTER JOIN
employee AS B

ON A.name = B.manager_name_fk,
employee AS C JOIN
employee AS D

ON C.name = D.manager_name_fk
WHERE

D.name = "Jones" AND
C.salary < A.salary

Similarly, the high-level query expressed with an
embedded SELECT statement and roles is:

SELECT name, report.name Query 31
WHERE salary >
 (SELECT manager.name

 WHERE report.name = "Jones")

The corresponding generated SQL query is:

SELECT Query 32
A.name, B.name

FROM
employee AS A LEFT OUTER JOIN
employee AS B

ON A.name = B.manager_name_fk
WHERE

A.salary >
(SELECT

C.salary
 FROM

employee AS C JOIN
employee AS D

 ON C.name = D.manager_name_fk
 WHERE

D.name = "Jones")

In both cases, roles are used to identify entities and their
relationships within a supercontext. Tuple variables and
embedded SELECT statements identify how
supercontexts are related.

6. Conclusion

Simplified access to databases helps speed system
development time, simplifies programming tasks, and
increases application robustness with respect to
underlying schema modifications. Contexts have been
used as the knowledge-based construct for QUICK to
provide these benefits to real-world applications.
Unfortunately, the benefits of contexts are limited when
multiple contexts apply to a query, when there are
recursive relationships, and when there are partial

D.P. Silberberg, R.D. Semmel 17-10

participation relationships. This paper demonstrates that
roles defined in conceptual schemas in conjunction with
pseudo-schemas, super-contexts, and an augmented high-
level query syntax can be used effectively in these cases.
Ultimately, these new constructs are beneficial in that
they greatly decouple applications and users from
underlying databases.

Bibliography

 [Bat92] Batini, C., Ceri, S., and Navathe, S.B.
Conceptual Database Design: An Entity-

Relationship Approach. Benjamin/Cummings,
Redwood City, CA. 1992.

[Che76] Chen, P.P. "The Entity-Relationship Model -
Toward a Unified View of Data, " ACM

Transactions on Database Systems 1, 1, 9-36.
1976.

[Dia95] Diamond, S.D. The Universal SQL Processor,
Internal Johns Hopkins University Applied
Physics Laboratory communication. RMI-95-
005. 1995.

[Har98] Harris, L., English Wizard 3.0,
http://www.englishwizard.com/. 1998.

[Kor84] Korth, H.F., Kuper, G.M., Feigenbaum, J.,
Van Gelder, A., and Ullman, J.D. System/U: A
Database System Based on the Universal
Relation Assumption. ACM Transactions on

Database Systems 9, 3, 331-347. 1984.

[Ley89] Leymann, F. "A Survey of the Universal
Relation Model," Data & Knowledge

Engineering 4, 4, 305-320. 1989.

[Lie80] Lien, Y.E. "On the Semantics of the Entity-
Relationship Model," in Entity-Relationship

Approach to System Analysis and Design, P.P.
Chen, ed. North-Holland, Amsterdam, pp. 155-
167. 1980.

[Mar90] Markowitz, V.M., and Shoshani, A.
"Abbreviated Query Interpretation in Extended
Entity-Relationship Oriented Database," in
Entity-Relationship Approach to Database

Design and Querying, Lochovsky, F.H., Ed.
North-Holland, Amsterdam, pp. 325-343. 1990.

[Ora98] Oracle Corporation, Developer 2000,
http://www.oracle.com/products/tools/dev2k/ind
ex.html. 1998

[Pah85] Pahwa, A., and Arora, A.K. Automatic
Database Navigation: Towards a High Level
User Interface. In Proceedings of the 4th

International Conference on Entity-Relationship

Approach, Chen, P.P., Ed., IEEE Computer
Society Press, pp. 36-43. 1985.

[Sem94] Semmel, R.D. "Discovering Context in an
Entity-Relationship Conceptual Schema,"
Journal of Computer and Software Engineering,
2:1, pp. 47-63. 1994.

[Sem95] Semmel, R.D. "Integrating Reengineered
Databases to Support Data Fusion," Journal of

Systems Software, 30:127-135. Elsevier
Science Inc., NY, NY. 1995.

[Sil94] Silberberg, D.P., Semmel, R.D. "The StarView
Flexible Query Mechanism." Astronomical Data

Analysis Software and Systems III, Crabtree,
D.R., Hanisch, R.J., Barnes, J. (eds.),
Astronomical Society of the Pacific, Vol. 61.,
pp. 92-95. 1994.

[Teo86] Teorey, T.J., Yang, D., and Fry, J.P. "A
Logical Design Methodology for Relational
Databases Using the Extended Entity-
Relationship Model," ACM Computing

Surveys 18, 2, 197-222. 1986.

[Ull89] Ullman, J.D. Principles of Database and

Knowledge-Base Systems, Vol. 2. Computer
Science Press, Rockville, MD. 1989.

[Wal84] Wald, J.A., and Sorenson, P.G. Resolving the
Query Inference Problem Using Steiner Trees.
ACM Transactions on Database Systems 9, 3,
348-368. 1984.

[Zha83] Zhang, Z., and Mendelzon, A.O. A Graphical
Query Language for Entity-Relationship
Databases. In Proceedings of the 3rd

International Conference on Entity-Relationship

Approach, pp. 441-448. 1983.

