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Abstract

This paper considers the problem of posing

and answering hypothetical temporal queries

to databases. The queries are hypothetical in

the sense that we pose a query to a virtually

updated database, and the query is answered

on the basis of the initial, physical database

and the list of transactions that virtually up-

date the database. The queries are tempo-

ral in the sense that they refer to possibly all

the states along which the database evolves

from the initial database and the �nal vir-

tual state. The possibility of answering such

queries relies on a speci�cation of the dynam-

ics of the database augmented with a spec-

i�cation of the dynamics of auxiliary tables

that have their origin in the temporal subfor-

mulas of the query and encode the history of

the database. Queries are posed in �rst order

past temporal logic. These functionalities are

implemented in SCDBR, an automated rea-

soner for speci�cations of database updates.

Although we concentrate mostly on relational

databases, the methodology can be applied

to other kinds of databases, as deductive and

�rst order databases.
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1 Introduction

The main subject of this paper is that of modeling and

doing hypothetical reasoning in databases, a subject

that deserves more attention (but see [Bon90, Bon97]).

We think hypothetical reasoning will become more

crucial as databases are increasingly used for decision

support, where \what if" questions become relevant,

as the ones emerging in on-line analytical processing

(OLAP) and data warehousing [Cha97]. To have com-

putational tools that can be used to explore di�erent

courses of action without having to commit to any of

them, in particular, without having to physically up-

date the database, seems to be of major importance in

many applications of information systems.

We are motivated by the problem of answering

queries about di�erent states in the evolution of a re-

lational database, when the database is virtually up-

dated by the execution of a sequence of primitive trans-

actions. For example, we want to consider queries

of the form \Has it always been the case that the

database has satis�ed a given condition C?", or \Has

there been a state of the database where a certain

condition C has been satis�ed?", or \Has the salary

of some employee decreased along the database evo-

lution?". Although there is no explicit time in these

queries we call them \temporal queries". The tempo-

ral queries we are concerned with are \hypothetical"

in the sense that we have a physical database at an ini-

tial state, S

0

, and a list, T , of primitive transactions

A

1

; : : : ; A

n

, that virtually update the database, pro-

ducing new states S

1

; : : : ; S

n

; and we want to answer

a query about this sequence of states, without phys-

ically updating the whole database accordingly (and

without keeping the data associated to each interme-

diate state). We are interested in querying this whole

virtual evolution of the database.

We start from an initial database plus a speci�ca-

tion of the dynamics of the database that describes
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how the tables in it evolve as primitive transactions

are executed. The formalism we considered for spec-

ifying the transaction based updates of the relational

database is the one shown by Reiter [Rei95], who pro-

posed a particular kind of axioms written in the sit-

uation calculus (SC) [McC69]. In [Ber94, Ber98] the

implementation and functionalities of a computational

system for doing automated reasoning from and about

these speci�cations are reported.

Here we present a solution to the problem of an-

swering hypothetical temporal queries that relies on:

(1) a formulation of a query as a query stated in

�rst order past temporal logic (FOPTL)

1

, (2) a refor-

mulation of Chomicki's history encoding methodology

for e�ciently checking temporal integrity constraints

[Cho95], in the context of SC speci�cations of database

updates, and, in particular, (3) a speci�cation in the

SC of the evolution of new history encoding auxiliary

relations, or views, that are generated from the query.

2 The Dynamics of a Database

The situation calculus is a family of languages of many

sorted predicate logic used to represent knowledge and

reason about dynamic domains that are subject to dis-

crete changes caused by action executions. In its lan-

guages, we �nd domain individuals, states and actions

or primitive transactions

2

at the same �rst order ob-

ject level, then �rst order quanti�cations over all these

sorts of individuals are possible. They are usually de-

noted by 8�x, 8s, 8a, respectively. In every SC lan-

guage we �nd a name for the initial state, S

0

, and a

function symbol, do, so that do(a; s) denotes the suc-

cessor state that results from the execution of action a

at state s. We also �nd a predicate Poss(a; s) with the

intended meaning that action a is possible at state s.

In a particular SC language we will �nd function names

for parameterized primitive transactions, A(�x), and

names for tables, F (�x; s), that is, predicates with a sin-

gle state argument. If T is a sequence of action terms

A

1

; : : : ; A

n

, to be executed in that order, we abbrevi-

ate the situation do(A

n

� � �do(A

1

; S

0

) � � �) by do(T; S

0

).

The speci�cation, �, of the dynamics of a database

contains: (1) the foundational axioms of the situa-

tion calculus [Lin94], including an induction axiom on

states; (2) Unique names axioms for actions and states;

(3) A set, �

0

, of SC sentences that do not mention any

state term other than S

0

. This is knowledge about

the initial state, and state independent knowledge; (4)

1

As shown in [Are98a], all we do here can be done directly in

the SC. Nevertheless, queries in temporal logic seem to be more

readable, and more importantly, their syntactic structure makes

the problem of detecting temporal subqueries easier.

2

We do not make any distinction between states and situ-

ations. Primitive transactions are to be executed as a whole,

they are not decomposable.

Axioms describing preconditions for executing (legal)

primitive transactions; (5) A speci�cation of an acces-

sibility relation between states: s

1

� s

2

means that

state s

2

can be reached from state s

1

by executing

a �nite sequence of legal actions; (6) And the most

important ingredients, the Successor State Axioms

(SSA): For every table F (�x; s), an axiom of the form

8a; s Poss(a; s) � 8�x[F (�x; do(a; s)) � �

F

(�x; a; s)],

where �

F

is a formula to be evaluated at the execu-

tion state s. Provided there is complete knowledge

at the initial state, as is usually the case in relational

databases, this axiom completely determines the con-

tents of table F at an arbitrary legal database state,

i.e. reached from S

0

by a �nite sequence of transac-

tions that are possible at their execution states.

Example 1. Let us consider a database of a company

with the relations Emp(x; s), meaning, at state s of

the database, person x is registered in the company as

an employee. We also have the primitive transactions:

(a) hire(x), for hiring person x by the company. (b)

�re(x), for �ring person x by the company.

The initial database, at S

0

, contains the following

entries:

Emp(john ; S

0

); Emp(ernest ; S

0

); Emp(paige ; S

0

):

In addition, the speci�cation the following SSAs for

the table Emp:

Poss(a; s) � (Emp(x; do(a; s)) � a = hire(x) _

Emp(x; s) ^ a 6= �re(x));

and the following precondition axioms for the primitive

transactions:

Poss(hire(x); s) � :Emp(x; s);

Poss(�re(x); s) � Emp(x; s):

2

Among others we �nd the following advantages in

using the SC as a speci�cation language: (1) It has

a clear and well understood semantics; (2) Everything

already done in the literature wrt applications of pred-

icate logic to DBs can be done here, in particular, all

static and extensional aspects of databases and query

languages are included; (3) Dynamic aspects at the

same object level can be considered, in particular, it is

possible to specify how the database evolves as trans-

actions are executed; (4) It is possible to reason in an

automated manner from the speci�cation and to ex-

tract algorithms for di�erent computational tasks from

it; (5) In particular, it is possible to reason explicitly

about DB transactions and their e�ects; (6) In this

form it is possible to extend functionalities of usual

commercial DBMSs.
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3 Temporal Queries

In the context of DB speci�cations like above, a tempo-

ral query is a SC sentence ' in which all the states in-

volved, including quanti�ed states, lie on a �nite state

path S

0

� � � � � S

n

, obtained by executing a sequence

of ground actions terms A

1

; : : : ; A

n

. The query is true

if and only if � j= '.

FOPTL, �rst order past temporal logic, is an ex-

tension of �rst order logic. In its languages time is

implicit, discrete and linearly ordered; formulas are

evaluated on structures at a given time (found at the

semantical level, but not at the object level). We

�nd formulas of the form: (a) �', with the in-

tended meaning \' was true in the previous time",

and (b) ' since  , meaning \ became true at some

time in the past and from that time on, ' has been

true". Other temporal operators can be de�ned: (c)

3' =

def

True since ', with the intended mean-

ing \Sometime in the past ' was true"; and (d)

2' =

def

:3:', with the intended meaning \Al-

ways in the past ' was true".

Every model of the situation calculus restricted to

a �nite path in the SC tree starting at the initial

state gives rise to a sequence of �rst order structures

(databases) that can be used to interpret FOPTL for-

mulas. In this case, we are identifying the linear

discrete time with the sequence of states. We may

write D

S

0

; : : : ; D

S

i

; : : : ; D

S

n

;S

i

j= ', meaning that

the sentence is true at state S

i

in the trajectory of

databases. Since we have a past temporal logic, in

this case the states S

i+1

; : : : ; S

n

are not considered.

As we will see below, we will always start evaluating

formulas at the �nal state S

n

reached by execution of

a �xed transaction list, then, depending on the query,

we will have to evaluate its temporal subformulas at

previous states.

There is a sort of equivalence between FOPTL and

SC for our particular kind of SC queries, which have

all the explicitly and implicitly mentioned states lin-

early ordered and bounded above by a current state

(usually a virtual one). This is because they refer to

the states arising from the execution of a particular

sequence of primitive transactions. Then, given a se-

quence of database states D

S

0

; : : : ; D

S

n

originated

by the execution of a sequence T : A

1

; : : : ; A

n

of prim-

itive transactions, for every temporal query in the SC

about these states, there exists a FOPTL query to be

posed at the �nal state S

n

(wrt to the sequence of

structures D

S

0

, ..., D

S

n

) that has the same answer.

On the other side, for every FOPTL formula to be

evaluated at state S

n

, there is a SC temporal formula

mentioning the sequence of states S

0

; : : : ; S

n

that gives

the same answer. In both cases, we say that the for-

mulas are answer{equivalent in S

n

.

Example 2. The query Has Sue been working in

department 13 in all states generated by sequence

T at S

0

? is expressed in the SC by the for-

mula 8s (S

0

� s � S

n

� Emp(sue; 13; s)), which

is answer{equivalent in state S

n

(= do(T; S

0

)) to the

FOPTL sentence Emp(sue; 13) ^ 2Emp(sue; 13). 2

The main reason for using FOPTL versions of

queries is that it is easier from the syntactical point of

view to process them with the purpose of introducing

auxiliary views according to the occurrences of tem-

poral subformulas. The same could be done directly

with SC queries, but the processing of formulas would

be more complicated [Are98a]. So, we will think of us-

ing temporal logic as the original query language. In

any case, at the underlying reasoning level we stick to

the SC formalism and logic.

4 The Dynamics of History Encoding

In [Cho95] the problem of checking temporal con-

straints stated in FOPTL was considered. These are

constraints that talk about, and relate, di�erent states

of the database. There we �nd a sequence of transac-

tions that are physically executed, and in order to min-

imize the cost of checking, one progressively updates

new de�ned relations, or auxiliary views, r

�

's, that

correspond to the temporal subformulas, �'s, in the

constraint. These views encode part of the database

evolution up to a current database state. They are

de�ned and updated in such a way that they store the

historical information that is relevant to give an answer

to the query about the satisfaction of the integrity con-

straint once the �nal (current) state is reached. Then

a new, non temporal, but local and static query can

be posed at the �nal state. Here we combine our

reconstruction of history encoding in the context of

speci�cations of database updates with the possibil-

ity, opened by those speci�cations, of reasoning about

the database evolution, without having to physically

update the database. Then, we are in position of do-

ing hypothetical temporal reasoning. We can say that

while in [Cho95] the query is answered by positioning

at the �nal physical state of the database, we query

a single future, virtual state from the initial, physical

state. In this way, virtual updates make possible to ap-

ply history encoding to any temporal query, whereas

with physical updates it can be applied to �xed, pre-

determined temporal queries only.

Our starting point consists of a SC speci�cation �

and a FOPTL sentence ' to be evaluated at the �-

nal state S = S

n

= do(T; S

0

), that results from the

virtual update of the DB. So, ' implicitly refers to

the states between S

0

and S. We are able to obtain

a new SC speci�cation �

H

that extends �, and a SC

sentence '

h

(S), such that the answer to the original
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query ' coincides with the answer obtained from the

evaluation of '

h

(S) wrt �

H

. (Here the super and sub

indices

h

and

H

stand for \history".) The resulting

SC sentence refers explicitly to the state S only, and

�

H

contains a speci�cation of the dynamics of new,

history encoding, auxiliary relations of the kind intro-

duced in [Cho95]. This is done by means of derived

successor state axioms for the auxiliary views.

Notice that '

h

is instantiated at the �nal state

do(T; S

0

), and this is the only state mentioned in the

formula. Then, we have transformed the problem of

answering a temporal query wrt to a virtually updated

database into the temporal projection problem of arti-

�cial intelligence [Han86], that is, into the problem of

querying a single future state obtained by the execu-

tion of an actions sequence.

Now we will sketch how to construct '

h

, �rst, and

�

H

, next. The construction of '

h

is done by induc-

tion on '. We will introduce new SC tables for each

temporal subformula of the FOPTL formula '(�x).

1. If ' is of the form F (

�

t), then '

h

=

def

F (

�

t; S).

2. If ' is : , then '

h

=

def

:( 

h

).

3. (' � )

h

=

def

('

h

� 

h

), where � is any of the usual

binary propositional connectives.

4. (Q')

h

=

def

Q('

h

), where Q is any of the usual

�rst order quanti�ers.

5. If ' is � (�x), with  non temporal, then '

h

=

def

R

'

(�x; S), where R

'

is a new table name.

6. If '(�x) is  (�x) since �(�x), where  (�x) and �(�x) are

non temporal formulas, then '

h

=

def

R

'

(�x; S), where

R

'

is a new table name.

By bottom{up transformation of a FOPTL formula ',

we can always obtain such a '

h

. Notice that formula

'

h

is a SC formula containing a free state variable s

which is its only state term.

Now we specify the dynamics of the new, auxiliary

tables by means of SSAs. For this, we have to to con-

sider the last two cases in the previous inductive de�-

nition:

(a) Let �(�x) be of the form � (�x). This formula is

true at a given state i�  (�x) is true at the previous

state. Then, the corresponding new table, R

�

(�x; s),

has the SSA

8(a; s)Poss(a; s) � 8�x (R

�

(�x; do(a; s)) �  

h

(�x; s)):

At the initial state �(�x) is false for each �x, be-

cause there is no state previous to S

0

. So, we de-

�ne 8�x :R

�

(�x; S

0

).

(b) Let �(�x) be of the form  (�x) since �(�x). It is not

di�cult to see that for its associated table, R

�

(�x; s),

it holds

8(a; s)Poss(a; s) � 8�x(R

�

(�x; do(a; s)) �

 

h

(�x; do(a; s)) ^ (R

�

(�x; s) _ �

h

(�x; s)):

This is not a SSA, because there is a do(a; s) term

in  

h

on the RHS. Nevertheless, we can get rid of it

applying Reiter's regression operator R, that takes a

formula, instantiated at a successor state of the form

do(A; s), into a formula instantiated at the previous

state, s. For doing this, R uses the SSAs of the tables

appearing in  

h

(�x; do(a; s)). This operator preserves

logical equivalence [Rei95].

In consequence, we obtain:

8(a; s)Poss(a; s) � 8�x(R

�

(�x; do(a; s)) �

R[ 

h

(�x; do(a; s))]^ (R

�

(�x; s) _ �

h

(�x; s))):

As before, we also de�ne 8�x :R

�

(�x; S

0

).

It is possible to prove that D

0

; : : : ; D

n

;S

n

j= '

is equivalent to �

H

j= '

h

(do(T; S

0

)), where T is a

list of primitive transactions that virtually update the

database D

0

producing virtual databases D

1

; : : : ; D

n

,

being S

n

the last reached state. We emphasize that

'

h

is evaluated at this only state.

We have added to our automated reasoner, SCDBR,

the functionality of of generating the new SC for-

mula and speci�cation, including the application of

the regression operator [Ber98]. The reasoner is im-

plemented in PROLOG.

Example 3. Let us consider the FOPTL formula

3p(v

1

) since 2q(v

1

): (1)

From it we want to generate a SC formula  (v

1

; s),

such that (1) is answer{equivalent to  (v

1

; s) in every

legal state s. For this we will use some of the proce-

dures of SCDBR.

| ?- i_p(diamond p(v1) since box q(v1),F),

tl_initial(F,s,I1, [F2,F3,F4],_, [F5,F6,F7]),

p_i([F2,F3,F4,F5,F6,F7],[I2,I3,I4,I5,I6,I7]).

I1= r_0(v1,s),

I2= forall(v1):(neg r_0(v1,s0)),

I3= forall(v1):(neg r_0_sl(v1,s0)),

I4= forall(v1):(neg r_0_sr(v1,s0)),

I5= forall(a):( poss(a,s) => (r_0(v1,do(a,s))

<=>(r_0_sl(v1,s) v p(v1,s)) &(r_0(v1,s) v

neg r_0_sr(v1,s)))),

I6= forall(a):(poss(a,s)=>(r_0_sl(v1,do(a,s))

<=> r_0_sl(v1,s) v p(v1,s))),

I7= forall(a):(poss(a,s)=>(r_0_sr(v1,do(a,s))

<=> r_0_sr(v1,s) v neg q(v1,s)))

Firstly, we introduce (1) by means of the predicate

i p, which translates the formula into, F, its internal

representation in the system. Secondly, the predicate

tl initial is applied on F, obtaining: (a) a formula
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answer-equivalent to F, which is stored in I1; (b) the

list of the initial state formulas for the generated aux-

iliary tables, which are stored in F2, F3 and F4; (c)

the list of the successor state axioms for the generated

auxiliary tables, which are stored in F5, F6 and F7.

Finally, we the predicate p i is applied for translating

(b) and (c), written in the internal representation, into

I2, I3, I4, I5, I6 and I7, written in in�x notation.

From the SCDBR's invocation, we can see that the

formula that is answer{equivalent to (1) is

r 0(v

1

; s):

For producing this formulas, the system generated

three auxiliary tables r 0, r 0 sl and r 0 sr, with the

following initial state de�nitions

3

:

8v

1

(:r 0(v

1

; S

0

));

8v

1

(:r 0 sl(v

1

; S

0

));

8v

1

(:r 0 sr(v

1

; S

0

));

with the following SSAs axioms:

Poss(a; s) � (r 0(v

1

; do(a; s)) � (r 0 sl(v

1

; s) _

p(v

1

; s)) ^ (r 0(v

1

; s) _ :r 0 sr(v

1

; s)));

Poss(a; s) � (r 0 sl(v

1

; do(a; s)) � r 0 sl(v

1

; s) _

p(v

1

; s));

Poss(a; s) � (r 0 sr(v

1

; do(a; s)) � r 0 sr(v

1

; s) _

:q(v

1

; s)):

2

5 Answering Queries

To solve the problem of answering the resulting, new

query wrt the extended speci�cation, it is possible to

apply some existing techniques for Reiter like speci�-

cations, e.g. Reiter's query regression [Rei95], minimal

rolling forward of the database based on information

that is relevant to the query [Ber98, Siu96], or even full

progression of the database [Lin97]. All these method-

ologies are supported by SCDBR. For example, if we

run the regression procedure in SCDBR to solve the

temporal projection problem, we will eventually obtain

a query to be posed to the initial database. SCDBR

can answer this query by calling a conventional DBMS

(actually, ORACLE) or a PROLOG program or a the-

orem prover (OTTER), depending on the kind of ini-

tial, physical database available.

Example 4. Let us consider the speci�cation shown

in example 1. We want to know the list of the employ-

ees who have always been working in the company, in

3

SCDBR can automatically produce Latex formulas as

output.

all states generated by the execution of the sequence

of actions T = [hire(sue); �re(john)] from the initial

situation. Thus, we are asking

8s(S

0

� s � do(T; S

0

) � Emp(x; s)): (2)

This formula is answer-equivalent in do(T; S

0

) to the

FOPTL formula

Emp(x) ^ 2Emp(x): (3)

We can answer this query by means of the following

invocation of SCDBR

| ?- i_p(emp(x) & box emp(x),F),tl_initial(F,

do(fire(john), do(hire(sue), s0)), F1,[F2],I,

[F3]), p_i(F1, F6), p_i(F2, F7), p_i(F3, F8),

reg_n(F1, 2, F4),prune_una(F4,F5),p_i(F5,F9),

prolog_initial(F5,I).

Transforming Query into Prolog Goal...Done.

[[x,ernest]]

[[x,paige]]

F6 = emp(x,do(fire(john),do(hire(sue),s0))) &

neg r_0_r(x, do(fire(john),do(hire(sue),

s0))),

F7 = forall(x):(neg r_0_r(x,s0)),

F8 = forall(a):(poss(a,s)=> (r_0_r(x,do(a,s))

<=> r_0_r(x,s)v neg emp(x,s))),

F9 = ((sue eq x v emp(x,s0)) & neg john eq x)

& neg( (r_0_r(x, s0) v neg emp(x, s0)) v

neg (sue eq x v emp(x,s0)))

As in example 3, we use the predicate tl initial for

generating a formula that is answer-equivalent to (3).

More precisely, the system generates F6:

Emp(x; do(�re(john); do(hire(sue); S

0

))) ^ 

:r 0 r(x; do(�re(john); do(hire(sue); S

0

))); (4)

which includes the auxiliary table r 0 r. For this ta-

ble, the system also generates the following formula

describing its initial state

8x(:r 0 r(x; S

0

)); (5)

and the following SSA

Poss(a; s) � (r 0 r(x; do(a; s)) �

(r 0 r(x; s) _ :Emp(x; s))): (6)

In consequence, for answering (2), (4) needs to be an-

swered wrt the company database plus the information

in (5) and (6).
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As we see in the invocation, the procedure reg n

is used for applying twice the regression operator on

(4). After that, by means of the predicate prune una,

the resulting formula is simpli�ed on the basis of the

unique name axioms for actions. So, the following for-

mula F9 is generated to be posed against the initial

database state

((sue = x _ Emp(x; S

0

)) ^ :john = x) ^ 

:((r 0 r(x; S

0

) _ :Emp(x; S

0

))

_:(sue = x _ Emp(x; S

0

))): (7)

If the (initial) database of the company is a PROLOG

database, we answer to (7) by means of the procedure

prolog initial, which uses PROLOG as query lan-

guage. In this way, we obtain the following tuples as

answer to the query:

x = ernest _ x = paige:

2

As described in [Ber98], SCDBR can be interfaced with

a RDBMS.

Example 5. We have an ORACLE database with

information about the employees in the company at

the initial state. We execute the list of transactions

[�re(john); �re(ernest)]. Now we want to know all the

employees who have worked for the company from the

initial state on:

9s(S

0

� s � do(T; S

0

) ^ Emp(x; s)):

In FOPTL this query is expressed by

Emp(x) _3Emp(x);

and has to be posed at the state do(T; S

0

).

We can ask SCDBR to generate a new query in SQL

to be posed against the initial relational database:

| ?- i_p(emp(x) & box emp(x),F),tl_initial(F,

do(fire(john), do(hire(sue), s0)), F1,[F2],I,

[F3]), p_i(F1, F6), p_i(F2, F7), p_i(F3, F8),

reg_n(F1, 2, F4),prune_una(F4,F5),p_i(F5,F9),

ora_sql(F5).

[[paige],[john],[ernest]]

Here F5 stands for a �rst order query that the predicate

ora_sql transforms, via a lower level predicate, into

a SQL query to be posed to the ORACLE database.

After that, ora_sql prints the answer. In this case,

we obtain:

x = paige _ x = john _ x = ernest

2

6 Another Application: Transforming

Dynamic ICs

In [Cho95] it is shown how to check dynamic integrity

constraints (ICs) statically. This was the main moti-

vation for the introduction of history encoding.

In the context of speci�cations of database updates,

as in [Rei95], we expect integrity constraints to be

logical consequences of the speci�cation. From this

point of view, methodologies for automatically proving

static ICs from the speci�cation have been developed

[Ber96]. It turns out that with our treatment of history

encoding in speci�cations of database updates in terms

of the dynamics of history encoding relations, we can

transform dynamic ICs into static ICs, and keep logi-

cal consequence from the speci�cation. In particular,

dynamic ICs can be proved as static ICs.

Assume that  is dynamic IC, that is it is a sentence

one expects to be true at every particular legal state

s of the database. In  there may be quanti�cations

on several states, so it does not talk about the cur-

rent state only. Nevertheless, while dynamic ICs talk

about several states of the DB, they have to be satis-

�ed locally. We can use this idea in the transformation

mechanism.

From  we generate a new constraint

8s(S

0

� s �  

0

(s));

where  

0

(s) is obtained from  by relativising all the

quanti�cations over states to � s, e.g. 9s

0

becomes

9s

0

� s. If  

0

(s) has an answer{equivalent FOPTL

sentence ' at s, then we generate the static IC

8s(S

0

� s � '

h

(s));

and a new speci�cation �

H

, where '

h

and �

H

are

constructed as in section 4. It is possible to prove that

� j=  i� �

H

j= 8s (S

0

� s � '

h

(s)).

Example 6. Consider the speci�cation � of the em-

ployees DB with a salary table Sal (x; p; s). We want

the usual dynamic IC to follow from �:

 : 8(s

0

; s

00

)(S

0

� s

0

< s

00

� 8(x; p

0

; p

00

)

Sal(x; p

0

; s

0

) ^ Sal(x; p

00

; s

00

)) � p

0

� p

00

):(8)

This IC should hold in every legal current state s of

the DB. We replace  by a new formula  

0

(s):

8(s

0

; s

00

)(S

0

� s

0

< s

00

� s � 8(x; p

0

; p

00

)

((Sal (x; p

0

; s

0

) ^ Sal(x; p

00

; s

00

)) � p

0

� p

00

)):

Formula (8) holds in every legal state if and only

8s (S

0

� s �  

0

(s)) follows from �. Now, transform

 

0

(s) into a new formula '

h

(s) that can be statically
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evaluated against the new speci�cation �

H

generated

from �.

Formula  

0

(s) is answer{equivalent at s to the fol-

lowing FOPTL sentence

8(x; p

0

; p

00

)((3Sal (x; p

0

) ^ Sal (x; p

00

)) � p

0

� p

00

) ^ 

28(x; p

0

; p

00

)((3Sal (x; p

0

) ^ Sal (x; p

00

)) � p

0

� p

00

):

Applying the methodology of section 4, we obtain the

static IC

8s(S

0

� s � [8(x; p

0

; p

00

)

((R

�

(x; p

0

; s) ^ Sal(x; p

00

; s)) � p

0

� p

00

) ^ R

�

(s)])

and the new speci�cation contains the following ax-

ioms for the new tables R

�

and R

�

(a propositional

state dependent formula):

(a) 8(x; p

0

):R

�

(x; p

0

; S

0

);

(b) 8(a; s)Poss(a; s) � 8(x; p

0

) (R

�

(x; p

0

; do(a; s)) �

R

�

(x; p

0

; s) _ Sal(x; p

0

; s));

(c) R

�

(S

0

);

(d) 8(a; s)Poss(a; s) � R

�

(do(a; s)) �

R

�

(s) ^ 8(x; p

0

; p

00

)((R

�

(x; p

0

; s) ^ 

Sal (x; p

00

; s)) � p

0

� p

00

):

2

7 Conclusions and Further Work

Among the contributions in this paper we �nd the fol-

lowing: (1) An extension of Chomicki's methodology

for checking temporal integrity constraints to the sit-

uation where a speci�cation of the evolution of the

database is available; and so (2) The possibility of do-

ing hypothetical reasoning along a virtual evolution

of the database ([Cho95] concentrates on physical up-

dates of the database), and this with user de�ned prim-

itive transactions; (3) A general solution to the prob-

lem of answering temporal queries in the context of

Reiter's speci�cations of database updates, and this

solution works both in a progressive as in a regressive

way; (4) An implementation of the query mechanisms

in the context of an automated reasoner for speci�ca-

tions of database updates.

It turns out that the methodology we developed

for answering queries can be used to give solutions

to other reasoning problems. We are in position to

transform dynamic integrity constraints into static in-

tegrity constraints. The original dynamic constraint

is a logical consequence of the original speci�cation of

the database dynamics if and only if the new, gener-

ated static integrity constraint is a logical consequence

of the original speci�cation extended with an speci�-

cation of the dynamics of auxiliary history encoding

relations. In particular, any available methodology for

handling static integrity constraints can be adapted for

the dynamic case. For example, we can take advantage

of results on automated proving of static integrity con-

straints [Ber96, She89] when dealing with the dynamic

case.

As described in [Are98a], another problem we are in

position to solve consists in transforming preconditions

for action executions that depend on the history of the

database into preconditions that depend on the local,

execution state.

It is matter of our current research an extension

of the methodology of this paper that includes metric

time as in [Cho95]. This is done by considering actions

parameterized with explicit time, as in [Rei96]. We are

also working on complexity analysis of the method-

ologies used to solve the resulting temporal projec-

tion problem. Another issue has to do with coping

with the problem of safeness of the resulting, trans-

formed queries. We are also interested in applying

derived SSAs for views [Are98b] as an alternative to

explicit regression with the intention of generating sim-

pler queries to be posed to the initial database.
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