
Bottom-up Integration of Ontologies in a Database Context

Jean-Christophe R. Pazzaglia

J-C.Pazzaglia@cs.cf.ac.uk

Suzanne M. Embury

S.M.Embury@cs.cf.ac.uk

Department of Computer Science, Cardi� University, Cardi�, Wales, CF2 3XF

Abstract

We describe a pragmatic approach to the cre-

ation of local ontologies for databases which

must be integrated into multi-agent systems.

Our approach avoids the introduction of an

extra language, solely for modelling the re-

quired ontological information, by showing

how to extend the expressiveness of a typical

OODBMS data de�nition language. In this

paper, we outline the principle behind our ap-

proach, and describe the implementation of a

prototype system, which has demonstrated its

feasibility.

Introduction

Ontologies have been proposed as a means of achiev-

ing consistent communication between agents in multi-

agent systems. In order to do this, one ontology (or

possibly a collection of overlapping ontologies) must

be constructed which integrates the combined \world

views", or \local ontologies", of the participating

agents. In distributed information systems, however,

many of these participants will be existing (legacy)

databases, which bring with them some limited onto-

logical information in the form of their schema. This

database metadata can represent a signi�cant contri-

bution towards the description of the database agent's

local ontology, but it is too impoverished to play this

role by itself. The schema information must be deco-

rated with richer ontological information before it can

be used in this way.

The copyright of this paper belongs to the paper's authors. Per-

mission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage.

Proceedings of the 5th KRDB Workshop

Seattle, WA, 31-May-1998

(A. Borgida, V. Chaudhri, M. Staudt, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-10/

The purpose of this paper is to describe a pragmatic

proposal to extend a typical non-extensible object-

oriented database language so that it can be used as an

ontological language. The proposal has been validated

by the implementation of a prototype system, which

is being used in the context of the Kraft Project

[GPF

+

97]. Three ideas are behind this proposal :

� to eliminate the additional cost that would be

caused by the introduction of a new language into

the distributed information system,

� to reuse the conceptualisations already embedded

in the di�erent databases' schemata, and

� to allow an incremental evolution of the ontologi-

cal description of the domain covered by the dif-

ferent databases.

1 Background of the Kraft project

The Kraft project is a close collaboration between

BT and the Universities of Aberdeen, Cardi� and Liv-

erpool. It aims to develop a combination of database

and arti�cial intelligence technology into a multi-agent

system. The overall architecture is similar to those

proposed in other projects, such as SIMS [ACHaK93]

and InfoSleuth [BBB

+

97]. Where these projects have

concentrated on distributed query processing, how-

ever, the focus of theKraft project is on the exchange

and reuse of knowledge in the form of constraints. The

Kraft architecture, therefore, supports the extrac-

tion of constraint information (together with relevant

stored facts) from various sites, and allows them to be

combined with design goals and other user-supplied

constraints in a common form which can be used to

solve a speci�c problem.

Briey, the Kraft architecture distinguishes three

di�erent kinds of agent: wrappers, mediators and fa-

cilitators. As in other similar projects, the three dif-

ferent kinds of agent used in the KRAFT project all

use a shared ontology to embody their commitment to

a common semantics, thus making the network more

easily extensible [HS97].

J-C Pazzaglia, S. Embury 7-1

In addition to this conceptualisation role normally

attached to an ontology, four further functions are as-

sociated with the ontology in a Kraft network :

1. to provide an abstract data type to allow consis-

tency inside theKraft network (i.e. global name

space),

2. to attach a meaning to relationships appearing

in the databases (such as component of) and to

support reasoning over these,

3. to provide a way to store and to reuse standard

mapping functions (e.g. between two known on-

tological concepts, such as standard unit transla-

tions), and

4. to provide a means to �nd "associated" or "simi-

lar" concepts (e.g. \pink" and \red").

When a resource joins the Kraft network, for ex-

ample, its owner must explicitly describe the way that

resource commits to the shared ontology. The wrap-

per for this resource makes use of this information

to perform its translation tasks, and also advertises

its capabilities using the same terms. Our facilitator

agents use ontologies to perform the knowledge-based

reasoning required to achieve content-based routing of

requests.

All this demands that the software agents within the

Kraft network must have access to the shared ontol-

ogy in a machine-readable form. Furthermore, since

the set of resources and agents participating in the

system is likely to change over time (as new sources of

data become available or as application demands alter,

for example), the stored ontology must be extendible

| both in terms of the conceptualisation itself and

the modelling constructs available for describing that

conceptualisation. Finally, since many of the resources

wishing to join the Kraft network will be databases,

we wish to make use of the existing if impoverished on-

tological information already present in their schemas

in extending the shared ontology. This paper describes

a proposal for, and prototype implementation of, a

software component which meets these requirements.

2 A bottom-up approach to extract ontology

We use our shared ontology, or more precisely an in-

terconnected network of domain speci�c ontologies, as

described in [GPF

+

97], to provide a self-contained con-

ceptualisation of problems domain in a computer ma-

nipulable form. Commitment of a new resource to

the network can be a complicated and time consuming

business. One of the keys to speed this process up is

the reuse of the ontological information already stored

in the shared ontology and at the resource itself. De-

pending on the nature of the resource, we can directly

reuse well de�ned ontology such as a Boolean algebra

ontology for boolean constraint solvers or commonly

accepted concepts already present in the shared ontol-

ogy such as number, physical magnitude,etc.

When a resource joins the Kraft network, we are

faced with two alternatives :

1. an ontology already exists in the domain of inter-

est of the resource, or

2. an ontology must be built or extended to take

account of this new domain of interest.

In both cases, if we want to avoid misinterpretation

and allow relevant advertisement, we need to extract

the meaning of the information which will be exported

from the resource to the Kraft network. This step,

part of the ontological commitment, involves the con-

ceptualisation vocabulary and objects which are used

by our resource. Since we have already developed on-

tologies to share information, we can, naturally, follow

the same scheme to describe this conceptualisation of

the local ontology of the resource.

In fact, several kinds of resources already embed

an ad-hoc and explicit, if not complete, conceptualisa-

tion of their domain. Relational and Object Oriented

Database resources belong to this category since their

schema is, in essence, an abstraction which classi�es

data. From the perspective of someone who wishes to

create a local ontology, for such a resource, the aim

is to share the commonly accepted concepts already

present in the shared ontology and/or the conceptual-

isation already embedded in the joining resource. We

propose to support this task by reusing the informa-

tion present in the schema thanks to the help of some

soft extension to an object-oriented data de�nition lan-

guage.

Native schema

KRAFT Schema

Local Ontology
imported from SO

+ Knowledge based enhancement
Semi-Automatic translation

Automatic translation
Syntactic translation

Ontological upgrade

Figure 1: Bottom-up extraction of ontology

The di�erent stages of this extraction process can

be seen in �gure 1 and are described below :

Native schema The database administrator must

�rst produce a Kraft exportable view of the re-

source in the native language.

J-C Pazzaglia, S. Embury 7-2

Kraft Schema Technology developed at Cardi�

within the ITSE project [BAFG96] achieves the

syntactic translation from the resource's native

language to the Kraft schema language (aka

P/FDM).

Local Ontology The local ontology adds knowledge

and further relationships between the entities in

the translated schema.

This approach can be seen as a computer assisted

extraction of the ontology since the two steps use par-

tially automated translation tools. Obviously, the sec-

ond step requires human intervention since the en-

hancement of a schema to an almost

1

self-contained

conceptualisation cannot be fully automated.

This ontology can be now used to provide a domain

speci�c node in our ontology network, or as a basis

to provide a semantic translation to the rest of the

Kraft network. In order to ful�ll the commitment

of the resouce to its ontology, and to be compliant

with our translation scheme, we need to describe a

way to translate expressions in terms of this local on-

tology to equivalent expressions in terms of theKraft

ontology. This task is achieved by describing map-

ping functions between the local and a target ontol-

ogy. Another choice, commonly adopted, is to describe

mapping functions directly from the database schema.

However, we think that this �rst step (i.e. the ontol-

ogy extraction) has to be done since knowledge about

the resource must be decribed.

We will now describe how we upgrade an object-

oriented data de�nition language to support this task.

In the next section, we explain why we have been con-

vinced by the study of Ontolingua related works that

our planned extension is suitable as a language in wich

to describe ontologies.

3 Ontological languages

Before describing our ontological tool suite, we will

�rst introduce the Ontolingua language suite [Gru93,

GF92, SK97]. We will then briey highlight the di�er-

ences between standard object oriented database lan-

guage (OODL) such as O

2

[LRV88] or other ODMG

[Cat97] compliant systems and OKBC, the API sup-

ported by Ontolingua to exchange ontologies. Finally,

we will present a framework in which to describe on-

tologies.

3.1 Ontolingua

Ontolingua provides a set of tools to edit ontologies

and, support di�erent languages. The language used

1

Even if we follow this bottom-up extraction scheme, we al-

low user to import common concepts directly from the shared

ontology.

by Ontolingua is a syntactic superset of the Knowl-

edge Interchange Format [GF92] that captures stan-

dard knowledge representation conventions in a frame-

based language. Ontolingua also supports some sim-

ple inferences in order to check the consistency of on-

tologies. The OKBC API

2

allows the export of frame

based ontology descriptions.

The success and wide acceptance of Ontolingua as

a de facto standard for describing ontologies calls into

question the value of projects designing yet more on-

tological description languages. However, the Ontolin-

gua tool suite assists in top-down development on-

tologies, whereas many real applications demand the

bottom-up construction of a shared ontology by reusing

a number of pre-existing conceptualisations. A typi-

cal example would be the construction of a distributed

information system within an organisation, from a col-

lection of databases which have already been indepen-

dently constructed.

It is this problem that our work aims to address.

However we believe that classical database data mod-

els are not expressive enough to be able to capture the

required richness of ontological knowledge, even when

it is known and available within the organisation.

3.2 Object model comparison

The main di�erence between OODL's and OKBC is

seen in the object oriented model underlying them. On

the one hand, OODL's use a classic class-based model,

while in the other OKBC uses a frame-based language.

:value-type

:cardinality

...

slot1

slot2

template-slot3

template-slot4

slot4

slot3

Axioms

OA

Class Frame B Class Frame C

subclass/superclass

instance-of/type-of

Class Frame A

Individual Frame

Facet Description

associated

Figure 2: OKBC overview

However, this di�erence is not as important as it

might seem since OKBC provides (and Ontolingua

tools strongly promote) the use of a Class frame (see

�gure 2). Whereas an attribute description in OODL's

2

Former name was GFP

J-C Pazzaglia, S. Embury 7-3

(also known as template-slot in the Ontolingua ter-

minology) is only controlled by the class, OKBC can

use a facet to describe this attribute. It captures the

meaning and can limit not only the type but also par-

ticular values of an attribute or even characterise the

relationships between several attributes (e.g. disjunc-

tion...). Furthermore, KIF-axioms express relation-

ships between concepts and can be used to check the

consistency of ontologies.

4 Ontolological language description

Since a class-based framework seems suitable for de-

scribing ontologies, we chose to extend the expressive-

ness of our existing OODL, rather than incorporate an

additional language for specifying ontological informa-

tion. Our idea is to provide a class based framework

with extensible capabilities to describe ontologies. We

describe a schema which captures our language de�ni-

tions, and use standard metadata and database con-

structs to both populate this meta-description and also

to extend the ontological meta-model.

4.1 Ontology description and the compilation

process

The �rst step is to describe the ontological model as

a standard schema. Basically, this description is the

meta-description of our ontological language. Since

an ontological language is focused on descriptive as-

pects, behavourial description (such as method calls)

are outside our current scope. We therefore describe

only the structural part of our language. The actual

description can be seen as a re-engineered version of

the metadata schema focused on ontological aspects.

It provides support for documentation and hides some

of the internal database aspects which are not useful

in this context. Starting from this point and using the

metadata schema facilities provided by the underlying

database system, we provide a set of methods in order

to reify

3

each standard OODL element. The main dif-

ference between our system and typical OODL's meta-

data is that we have now the capability to extend the

metadata

4

and add useful information to our schema.

We also have the ability to extend the ontological

model. Ontological experts can write these extensions

in the new ontological language (OL). Such extensions

can complete a hierarchy or add di�erent kinds of rela-

tionships, and can, for example, capture data seman-

tics, as facets do. This o�ers a useful link framework

and a way to enable knowledge reasoning. The com-

plexity of ontological descriptions can be adapted to

3

To reify: to regard (something abstract) as a material or

concrete thing

4

As for example we can do with languages like

CLOS [KdRB91].

the needs of the agent network and can therefore follow

the evolution of application requirements and capabil-

ities.

OODBMS

modeling capabilities

OODBMS

OODBMS

modelisation concepts

subset of the ontology

Use OL

Provide the OODBMS

OODBMS

enhancement

OODL

Add useful

ontology

model

OL

description

Provide an initial
ontological framework

model

OL

decom
poser

ontology
description

OL

Use QL to query OL

OL
ontology

description

1

2

3

4

Figure 3: OL initialisation stages

An ontology description in OL consists of several

standard OODL �les. The di�erent components are

loaded in the OODBMS during an initialisation stage

which converts the standard OODB into the extended

OODB with additional ontological capabilities (shown

in �gure 3). Three main components can be distin-

guished :

Enhancement to the Ontological Model :

an OODL schema, interpreted in our ontological

model module which extends the standard Onto-

logical Model, can add speci�c ontological exten-

sions required by some application, and

OODL subset of the ontology : a stan-

dard OODL schema which describes the overall

architecture of the ontology with the usual OODL

semantics,

OL Ontology description :

Useful information such that facets descriptions

or relations typing can be added conformly to the

Ontological Model.

Finally, the OODL database stores the ontologi-

cal description of the application domain and can be

queried with standard OODL's schema statements.

4.2 Prototype overview

Our prototype is implemented in P/FDM [Obj], an

object-oriented database using the functional data

J-C Pazzaglia, S. Embury 7-4

model and an enhanced version of the Daplex language

including metadata and constraints.

The basis of our prototype is a research DBMS

called P/FDM that was developed at the University

of Aberdeen [Obj]. P/FDM is based on a functional

data model with object-oriented extensions. Despite

this rather unusual history, the data model supports

the principal features of an object-oriented data model,

including object identity, (single) inheritance between

classes and the ability to describe the behaviour of an

object by de�ning methods on classes. P/FDM sup-

ports uniform querying of metadata using the standard

query language, and allows a restricted set of updates

to metadata at run-time. Unlike many object-oriented

languages, however, and in common with the major-

ity of object databases currently available, it does not

allow modi�cation of the meta-schema itself.

We have extended this language in order to allow

further ontological information to be expressed within

the schema, alongside the database schema informa-

tion that is already there. In order to allow the ex-

isting P/FDM language processor to continue to parse

the extended schemas, we chose to label the additional,

ontological statements with two special pre�xes: %%e

and %%o. To P/FDM, these lines appear to be com-

ment lines, and so are ignored. The ontological lan-

guage processor, however, is able to detect these lines

and to handle them accordingly.

%%e extend module ontological_model

%%e declare om_constrained_slots

%%e ->> om_slots_method

%%e declare allowed_value(om_constrained_slots)

%%e ->> string;

%%o om_constrained_slots(om_documentation)

%%o = 'slots value in a set of string'

%%o om_documentation

%%o (allowed_value(om_constrained_slots))

%%o = 'set of allowed value'

declare date ->> entity

%%o om_documentation(date)

%%o = 'this class allows to manipulate date'

...

declare month(date) -> string

%%o include month(date) in om_constrained_slots

%%o allowed_value(month(date))

%%o = ['January','February',....]

Figure 4: A basic schema after ontological upgrade

We will illustrate this approach using a simple ex-

ample, shown in �gure 4. In this example, we distin-

guish the three components of an OL �le:

1. The OODL schema �le describes the class date

(on the lines which do not begin with special char-

acter).

2. Lines starting with %%e describe enhancements to

the ontological meta-description.

3. Lines starting with %%o describe ontological infor-

mation.

The enhancement in this example consists of the

introduction of a subclass om constrained slots of

the class om slots method which allows the user to

constrain values of certain attributes. The other in-

formation describes components of the schema. The

slot month(date) is declared to be an instance of

constrained slots and takes its value from a partic-

ular set of allowed values (i.e. [January, Febru-

ary,]). A query to the rei�ed object instance of

om constrained slots identi�ed by [month, date]

will give the values allowed for this attribute. This in-

formation can be useful both during the commitment

phase when resources �rst link to the agent network,

and also to search for agents talking about January

during facilitation. The next section describes evolu-

tion of metadata during the compilation of this par-

ticular example.

4.3 Evolution of metadata

The evolution of both OODL metadata and OL dur-

ing the compilation process are shown in the �gures

5, 6, 7, and 8. These �gures (bold font emphasize

recently system's update) can be seen as snapshots of

the memory in the numeroted OODBMS stages shown

in the �gure 3 during the compilation of the example

described above.

The �gure 5 shows the basic framework provided by

our system as well as established links between them

and the frozen metadata provided by our OODL. This

framework is used to provide automatic translation to

basic concepts.

The class om constrained slots is introduced, by

the person providing a suitable ontological model, as

subclass of om slots method (�gure 6). By using the

OL querying capability and in accordance with the se-

mantic associated with this ontological model, a pro-

gram will be able to reason about concepts and the

instances installed in the following stages.

The classic OODL schema populates both classic

metadata and the OL representation in the �gure 7.

The last stage unable to migrate the attribute month

in order to express values allowed. The same manip-

ulation could be done in order to link the number of

days with the month. This would be done at the class

level since this constraint will link several attributes.

J-C Pazzaglia, S. Embury 7-5

storedfunmeta

mapping
inheritance

slots
instanciation

user concept

meta conceptentmeta

date

OL mirror OODL metadata

entmeta

compoundmeta

om_slots_method

om_class

om_thing

om_polything

Figure 5: Evolution of the representation(1/4)

storedfunmetaom_slots_method

om_polything

om_thing

om_class entmeta

compoundmeta

om_constrained_slots

Figure 6: Evolution of the representation (2/4)

Conclusion

We have described an approach to the integration of

ontological information with existing database meta-

data, which avoids some of the practical problems

inherent in the creation of ontologoes from legacy

database systems. In our prototype, we have shown

how to bypass the extensibility limitations inherent in

typical OODBMS metadata facilies. This is done by

using introspection to create a mirror image of the

metadata at the instance level, thus allowing it to be

extended as if it were an ordinary database schema.

om_thing

om_class entmeta

compoundmeta

om_constrained_slots

storedfunmetaom_slots_method

datedate

year year

month

month

om_polything

Figure 7: Evolution of the representation (3/4)

date

storedfunmetaom_slots_method

date

year
month

year

om_polything

om_thing

om_class entmeta

compoundmeta

om_constrained_slots

month
[january,february,]

Figure 8: Evolution of the representation (4/4)

This simple approach provides us with the power to

enhance the expressiveness of our modelling language

as and when required. We have e�ectively created an

open framework by which to add meaningful informa-

tion to the naked schema used in database system.

Furthermore, the framework enables better concep-

tualisation and automatic translation/control support

since the underlying ontological model provides a clear

semantics.

At this stage in our research, we have dealt only

with the structural aspects of our system and few dif-

�culties was encountered during the development. Ob-

J-C Pazzaglia, S. Embury 7-6

viously, an extensible meta-object system would have

eased the implementation task, and would have freely

o�ered the modelling capabilities we have gained.

With this in mind, it would seem to be a relatively

simple matter to provide, for example, an ODMG-

compliant meta-program able to support this way of

constructing an ontology from a schema. However, it

should be remembered that many legacy systems will

not have this kind of capability.

The next step in our work is to enhance our

current ontological model to allow us to add meta-

descriptions of KIF-like relationships and attributes

to our schemas. When this is completed, we plan to

allow batch interaction via OKBC.

After this �rst step, databases containing data

about wide and local area network equipment, devel-

oped as part of the Kraft project will be used as

embryonic ontologies and enhanced in order to bene�t

from the Ontological Model. The next stage will be to

study how constraint information can be represented

in the ontological description, and extracted during

commitment of several databases.

Acknowledgements

We would like to thank Philippe Marti and Wern-

her Behrendt, for fruitful conversations regarding the

OL (O/PFDM) model, Graham Kemp for his great

P/FDM support and the rest of Kraft team. The

Kraft project is funded jointly by the EPSRC and

BT.

References

[ACHaK93] Yigal Arens, Chin Y. Chee, Cgun-Nan

Hsu, and Craig a. Knoblock. Retrieving

and Integrating Data from Multiple In-

formation Sources. IJCIS, 2(2):127{158,

1993.

[BAFG96] W. Behrendt, M.H. Ashwell, N.J. Fid-

dian, and W.A. Gray. Migration Tools for

Heterogeneous Databases in Wide Area

Networks. In Workshop on Information

Technologies and sytems, 1996.

[BBB

+

97] R. Bayardo, W. Bohrer, R. Brice,

A. Cichocki, G. Fowler, A. Helal,

V. Kashyap, T. Ksiezyk, G. Martin,

M. Nodine, M. Rashid, M. Rusinkiewicz,

R. Shea, C. Unnikrishnan, A. Unruh,

and D. Woelk. Infosleuth: Agent Based

Semantic Integration of Information in

Open and Dynamic Environments . In

Sigmod, 1997.

[Cat97] R. G. G. Cattel. Object Database Stan-

dard: ODMG 2.0. Morgan Kau�mann,

1997.

[GF92] Michael R. Genesereth and Richard E.

Fikes. Knowledge Interchange Format,

Version 3.0 Reference Manual. Technical

Report Logic-92-1, Computer Science De-

partment, Stanford University, 1992.

[GPF

+

97] P.M.D. Gray, A. Preece, N.J. Fiddian,

W.A. Gray, T.J.M. Bench-Capon, M.J.R.

Shave, N. Azarmi, M.Wiegand, M. Ash-

well, M. Beer, Z. Cui, B. Diaz, S.M.

Embury, K. Hui, A.C. Jones, D.M.

Jones, G.J.L. Kemp, E.W. Lawson,

K. Lunn, P. Marti, J. Shao, and P.R.S.

Visser. KRAFT: Knowledge Fusion from

Distributed Databases and Knowledge

Bases. In DEXA, 1997.

[Gru93] Thomas R. Gruber. Portable Ontology

Speci�cations. Technical Report 92-71,

KSL, 1993.

[HS97] Michael P. Huhns and Munindar P. Singh.

Ontologies for Agents. IEEE Internet

computing, November 1997.

[KdRB91] Gregor Kiczales, Jim des Rivi�eres, and

Daniel G. Bobrow. The Art of the

Metaobject Protocol. MIT Press, 1991.

[LRV88] Christophe Lecluse, Philippe Richard,

and Dernando Velez. O

2

, an Object Ori-

ented Data Model, chapter 3.6. Morgan

Kaufmann, 1988.

[Obj] Object Database Group { University of

Aberdeen. P/FDM V10 { User's manual.

[SK97] SRI and KSL. Generic Frame Protocol {

version 2, 1997.

J-C Pazzaglia, S. Embury 7-7

