
UML Profile for MARTE: Time Model and
CCSL

Frédéric Mallet1

Université Nice Sophia Antipolis, Aoste team INRIA/I3S, Sophia Antipolis, France

Frederic.Mallet@unice.fr

Abstract. This 90 minutes tutorial gives a basic introduction to the
UML Profile for MARTE (Modeling and Analysis of Real-Time and
Embedded systems) adopted by the Object Management Group. After
a brief introduction to the UML profiling mechanism, we give a broad
overview of the MARTE Profile. Then, the tutorial shall focus on the
time model of MARTE and its companion language CCSL (Clock Con-
straint Specification Language).

Keywords. UML Profile, Real-Time, Embedded systems, MARTE, CCSL

Key terms. StandardizationProcess, UbiquitousComputing, Concur-
rentComputation, ModelBasedSoftwareDevelopmentMethodology

1 Audience and focus

The targeted audience is academics or industrials interested in high-level mod-
eling with UML and its application to the analysis of real-time and embedded
systems.

The tutorial does not require any preliminary background as it will give a
high-level and broad description of the UML Profile as well as a closer focus on
its time model. To ensure that a large public can follow the presentation, we
should start by a brief overview of UML light-weight extension mechanism, the
so-called profiling mechanism.

2 Topic

The UML profile for Modeling and Analysis of Real-Time and Embedded sys-
tems, referred to as MARTE [1], has been adopted by the OMG in Novem-
ber 2009 and revised in June 2011. It extends the Unified Modeling Language
(UML) [2] with concepts required to model embedded systems.

This ninety minutes tutorial gives a basic introduction to the UML Profile
for MARTE. After a broad view of the Profile, the tutorial shall focus on the
time model of MARTE and its companion language CCSL (Clock Constraint
Specification Language).



290 F. Mallet

2.1 General Introduction to MARTE

Figure 1 shows the general structure of MARTE.
The General Component Modeling (GCM) and Repetitive Structure Mod-

eling (RSM) packages offer a support to capture the application functionality.
GCM defines basic concepts such as data flow ports, components and connec-
tors. RSM provides concepts for expressing repetitive structures and regular
interconnections. It is essential for the expression of parallelism, in both ap-
plication modeling and execution platform modeling; and for the allocation of
applications onto execution platforms.

Fig. 1. Structure of MARTE specification

The Hardware Resource Modeling (HRM) package, which specializes the con-
cepts of GCM into hardware devices such as processor, memory or buses, allows
the modeling of the execution platforms in MARTE. The Allocation (Alloc)
package allows the modeling of the space-time allocation of application func-
tionality on an execution platform. Both the HRM and Alloc packages can be
used with the RSM package for a compact modeling of repetitive hardware (e.g.,
grids of processing elements) and data and computation distributions of a par-
allel application onto such a repetitive hardware.



UML Profile for MARTE: Time Model and CCSL 291

The models described with the previous packages can be refined with tempo-
ral properties specified within the Time package [3]. Such properties are typically
clock constraints denoting some activation rate constraints about considered
components. The concepts of the Time package are often used with the Clock
Constraint Specification Language (CCSL) [4, 5], which was initially introduced
as a non-normative annex of MARTE.

2.2 MARTE Time Model

In MARTE, a clock c is a totally ordered set of instants, Ic. In the following, i
and j are instants. A time structure is a set of clocks C and a set of relations on
instants I =

⋃
c∈C Ic. ccsl considers two kinds of relations: causal and temporal

ones. The basic causal relation is causality/dependency, a binary relation on I:
4⊂ I × I. i 4 j means i causes j or j depends on i. 4 is a pre-order on I, i.e.,
it is reflexive and transitive. The basic temporal relations are precedence (≺),
coincidence (≡), and exclusion (#), three binary relations on I. For any pair of
instants (i, j) ∈ I × I in a time structure, i ≺ j means that the only acceptable
execution traces are those where i occurs strictly before j (i precedes j). ≺ is
transitive and asymmetric (reflexive and antisymmetric). i ≡ j imposes instants
i and j to be coincident, i.e., they must occur at the same execution step, both of
them or none of them. ≡ is an equivalence relation, i.e., it is reflexive, symmetric
and transitive. i # j forbids the coincidence of the two instants, i.e., they cannot
occur at the same execution step. # is irreflexive and symmetric. A consistency
rule is enforced between causal and temporal relations. i 4 j can be refined
either as i ≺ j or i ≡ j, but j can never precede i.

In this paper, we consider discrete sets of instants only, so that the instants
of a clock can be indexed by natural numbers. For a clock c ∈ C, and for any
k ∈ N?, c[k] denotes the kth instant of c.

Specifying a full time structure using only instant relations is not realistic
since clocks are usually infinite sets of instants. Thus, an enumerative spec-
ification of instant relations is forbidden. The Clock Constraint Specification
Language (ccsl) defines a set of time patterns between clocks that apply to
infinitely many instant relations [4].

The uml Profile for marte proposes several specific stereotypes in the Time
chapter to capture ccsl specifications. Figure 2 briefly describes the three main
stereotypes. Boxes with the annotation �metaclass� denote the uml concepts
on which our profile relies, so-called metaclasses. Boxes with stereotype are the
concepts introduced by marte, i.e., the stereotypes. Arrows with a filled head
represent extensions, whereas normal arrows indicate properties of the intro-
duced stereotypes. Clock extends uml Events to spot those events that can be
used as time bases to express temporal or logical properties. ClockConstraint
extends uml Constraints to make an explicit reference to the constrained clocks.
TimedProcessing extends Action to make explicit their start and finishing
events. When those events are clocks, then a ClockConstraint can constrain
the underlying action to start or finish its execution as defined in a ccsl speci-
fication.



292 F. Mallet

Fig. 2. Excerpt of the MARTE Time Profile

2.3 The Clock Constraint Specification Language

On top of marte clocks, the Clock Constraint Specification Language defines
a set of operators (relations and expressions) [4]. As an example, consider the
clock relation precedence (denoted ≺ ), a transitive asymmetric binary relation

on C: ≺ ⊂ C × C. If left and right are two clocks, left ≺ right, read ‘left

precedes right’, specifies that the kth instant of clock left precedes the kth

instant of clock right, for all k. More formally: For a pair of clocks (left, right) ∈
C×C, left ≺ right means ∀k ∈ N?, left[k] ≺ right[k]. Similarly, let us consider
the transitive and reflexive binary relation on C called isSubclockOf and denoted
⊂ . left ⊂ right (read left is a sub clock of right) means that for all k, the

instant left[k] of left coincides with exactly one instant of right. More formally:
left ⊂ right means ∀k ∈ N?,∃n ∈ N?|left[k] ≡ right[n]. The relation ⊂ is
order-preserving. All the coincidence-based relations are based on isSubclockOf.
When both left ⊂ right and right ⊂ left then we say that left and right
are synchronous: left = right.

A ccsl specification consists of clock declarations and conjunctions of clock
relations between clock expressions. A clock expression defines a set of new clocks
from existing ones, most expressions deterministically define one single clock. An



UML Profile for MARTE: Time Model and CCSL 293

example of clock expression is delay (denoted $: C × N? → C). c $ n specifies
that a new clock is created and is the exact image of c delayed for n instants:
o = c $ n defines a clock o ∈ C such that ∀k ∈ N?, o[k] ≡ c[k + n].

By combining primitive relations and expressions, we derive a very useful
clock relation that denotes a bounded precedence. left ≺n right is equivalent

to the conjunction of left ≺ right and right ≺ (left $ n). The special case,
when n is equal to 1 is called alternation and is denoted left ∼ right (reads
left alternates with right).

3 Conclusion

The uml Profile for marte is dedicated to the modeling and analysis of real-
time and embedded systems. Its time model relies on a notion of clock borrowed
from the synchronous languages [6] and their polychronous extensions [7]. Those
clocks can be logical or physical. The time model also provides a support to build
causal and temporal constraints to force the clocks to tick according to predefined
patterns. Thus, the evolution of the clocks imposes an execution semantics on
the underlying uml marte model. Whereas the marte time model provides the
notions of clocks and constraints, its companion language, the Clock Constraint
Specification Language provides a syntax to define the constraints themselves.
This brief tutorial introduces the main concepts of marte time model and gives
an overview of ccsl.

Acknowledgments

This work has been partially funded by the PRESTO Project (ARTEMIS-2010-
1-269362).

References

1. OMG: UML Profile for MARTE, v1.1. Object Management Group. (June 2011)
formal/2011-06-02.

2. OMG: UML Superstructure, v2.4.1. Object Management Group. (August 2011)
formal/2011-08-06.

3. André, C., Mallet, F., de Simone, R.: Modeling time(s). In: 10th Int. Conf. on
Model Driven Engineering Languages and Systems (MODELS ’07). Number 4735
in LNCS, Nashville, TN, USA, ACM-IEEE, Springer (September 2007) 559–573

4. André, C.: Syntax and semantics of the Clock Constraint Specification Language
(CCSL). Research Report 6925, INRIA (May 2009)

5. Mallet, F., André, C., de Simone, R.: CCSL: specifying clock constraints with
UML/Marte. Innovations in Systems and Software Engineering 4(3) (2008) 309–
314

6. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., de Simone,
R.: The synchronous languages 12 years later. Proc. of the IEEE 91(1) (2003) 64–83



294 F. Mallet

7. Le Guernic, P., Talpin, J.P., Le Lann, J.C.: Polychrony for system design. Journal
of Circuits, Systems, and Computers 12(3) (2003) 261–304

8. Mallet, F.: Logical Time in Model Driven Engineering. Habilitation à diriger des
recherches, Université Nice Sophia-Antipolis (November 2010)

Biography

Frédéric Mallet is an associate professor at Université Nice Sophia Antipolis. He
is a permanent member of the Aoste team-project, a joint team between INRIA
and I3S laboratory. He received a PhD in Computer Science in 2000 and his
habilitation degree [8] in 2010. Since 2007, he has been heavily involved in the
definition, finalization and revision of the UML Profile for MARTE1 and has
been a voting member of the successive finalization and revision task forces for
MARTE at the OMG. His main research interests include the definition of models
for the specification of functional and non-functional properties of real-time and
embedded systems. He also develops tools and techniques for the validation and
verification of such models.

1 http://www.omgmarte.org




