

Vol-1004

urn:nbn:de:0074-1004-3

Copyright © 2013 for the individual papers by
the papers' authors. Copying permitted only

for private and academic purposes. This
volume is published and copyrighted by its

editors.

RuleML2013@Challenge, Human
Language Technology and Doctoral
Consortium

Proceedings of the 7th International Rule Challenge, the HLT and the
DC at RuleML2013, the 8th International Symposium on Rules

Seattle, Washington, July 11th-13th, 2013.

Edited by

Paul Fodor *
Dumitru Roman **
Darko Anicic ***
Adam Wyner ****
Monica Palmirani *****
Davide Sottara ******
François Lévy *******

* State University of New York at Stony Brook, USA
** SINTEF, Norway
*** FZI / KIT, Germany
**** University of Aberdeen, UK
***** CIRSFID-University of Bologna, Italy
****** Arizona State University, USA
******* LIPN, Univ. Paris 13, France

Table of Contents

• Preface

Part 1: RuleML2013@Doctoral Consortium

Doctoral Consortium Papers

1. Proposal for Using NLP Interchange Format for Question Answering in
Organizations
Majid Latifi

2. Process Representation Using Transaction Logic
Reza Basseda

3. First Approaches on Knowledge Representation of Elementary (Patent)
Pragmatics
Shashishekar Ramakrishna

Part 2: RuleML2013@Challenge

Invited Demo Papers

4. RAWE: An Editor for Rule Markup of Legal Texts
Monica Palmirani, Luca Cervone, Octavian Bujor, Marco Chiappetta

Challenge Demo Papers

5. R-CoRe: A Rule-based Contextual Reasoning Platform for AmI
Assaad Moawad, Antonis Bikakis, Patrice Caire, Grégory Nain, Yves Le
Traon

6. Interpreting Regulations with SBVR
Elie Abi-Lahoud, Tom Butler, Donald Chapin, John Hall

7. Graph-based Editor for SWRL Rule Bases
Jaroslaw Bak, Maciej Nowak, Czesław Jędrzejek

8. Advanced Knowledge Base Debugging for Rulelog
Carl Andersen, Brett Benyo, Miguel Calejo, Mike Dean, Paul Fodory,
Benjamin N. Grosofz, Michael Kifery, Senlin Liangy, Terrance Swiftx

9. Knowledge-based Highly-specialized Terrorist Event Extraction
Jakub Dutkiewicz, Czesław Jędrzejek, Jolanta Cybulka, Maciej Falkowski

10. SBVR as a Semantic Hub for Integration of Heterogeneous Systems
Ling Shi, Dumitru Roman, Arne J. Berre

11. Grailog KS Viz:A Grailog Visualizer for Datalog RuleML Using an XSLT
Translator to SVG
Martin Koch, Sven Schmidt, Harold Boley, Rainer Herpers

12. Importation Closure that is Robust to Circular Dependencies
Tara Athan

13. Transforming Association Rules to Business Rules: EasyMiner meets Drools
Stanislav Vojíuř, Tomáš Kliegr, Andrej Hazucha, Radek Škrabal, Milan
Šimůnek

Part 3: RuleML2013@Human Language Technology

Human Language Technology Papers

14. Constructing Controlled English for Both Human Usage and Machine
Processing
Ping Xue, Steve Poteet, Anne Kao, David Mott, Dave Braines

15. RECON - A Controlled English for Business Rules
Ed Barkmeyer, Fabian Neuhaus

16. A Study on Translating Regulatory Rules from Natural Language to
Defeasible Logics
Adam Wyner, Guido Governatori

The whole proceedings can also be downloaded as a single file (pdf).

10-July-2013: submitted by Monica Palmirani
10-July-2013: published on CEUR-WS.org

Preface

This volume collects the ten demo papers accepted for presentation at the

RuleML2013 International Rule Challenge (the 7th International Web Rule

Challenge), three papers accepted at the Human Language Technology special

track of RuleML2013 and three selected papers accepted for the RuleML2013

Doctoral Consortium.

The 7th International Web Rule Challenge is one of the highlights at

RuleML2013 Conference, providing a competition among innovative rule-oriented

applications that are aimed at both the research and industrial side. The

International Web Rule Challenge is a forum where new ways of the use of rule-

based systems are presented and practical experiences about implementing these

systems are reported. The Challenge is devoted to disseminating the most

advanced practical experiences with rule-based applications. These papers

include rule-based implementations/tools/applications, editing environments and

IDEs for Web rules, demonstrations of engineering methods, implementations of

rule standards, demos, case studies, use cases, experience reports, best practice

solutions, rule benchmarks and evaluations. The Challenge session also features

an invited demo paper by Monica Palmirani on RAWE, an editor for rule markup

of legal texts and conversion to LegalRuleML based on Akoma Ntoso markup. This

year, the major topics of the Challenge papers were: extensions and

implementations of rule-related standards (W3C RIF, RuleML, SBVR, BPMN, BPEL),

defeasible reasoning, editing environments and IDEs for Web rules, distributed

rule bases and rule services, and e-reports on industrial experience about rule

systems.

The RuleML Doctoral Consortium is part of the RuleML International

Symposium on Rules since 2011. It attracts Ph.D. researchers in the area of Rules

and Markup Languages from different backgrounds (e.g. theoretical, application,

vertical domain-specific) and encourages a constructive and fruitful

interdisciplinary approach. At the doctoral symposium, students present their

ideas in a dynamic and friendly setting as well as interact with academics and

commercial experts in the field, who evaluate their research projects from both

theoretical and application points of view.

The Human Language Technology Track addresses the knowledge

acquisition bottleneck that arises when converting the vast amount of regulatory

text on the Web expressed in natural language to formal, machine-processable

rules. Six papers in total were accepted to the Track, three of which appear in the

associated LNCS volume and three of which appear in this volume. Topics

represented in the Track include using controlled languages, extracting semantic

information from legislative text, and mapping English onto fuzzy logic. There are

six talks and one tutorial.

We warmly thank all authors, students, supervisors, referees, co-chairs,

members of the program committee and the organizing team that made the

RuleML2013 Symposium, International Web Rule Challenge, and Doctoral

Consortium a great success.

July 2013

Paul Fodor, Dumitru Roman, Darko Anicic, Adam Wyner, Monica Palmirani,

Davide Sottara, François Lévy

Proposal for Using NLP Interchange Format for

Question Answering in Organizations

Majid Latifi

Department of Software, Universitat Politècnica de Catalunya – BarcelonaTech(UPC), Barce-

lona, Spain

mlatifi@lsi.upc.edu

Abstract. The growth of technology and sciences has greatly influenced the ar-

ea of management and decision-making procedures, and has dramatically

changed the decision-making processes in different levels, both quantitatively

and qualitatively. Knowledge management plays a vital role in supporting en-

terprise learning, since it facilitates the effective collective intellect of the en-

terprise. Different methods for user-friendly knowledge access have been de-

veloped previously. The most sophisticated ones provide a simple text box for a

query which takes Natural Language (NL) queries as input. Question Answer-

ing (QA) system is playing an important role in current search engine optimiza-

tion. Natural language processing technique is mostly implemented in QA sys-

tem for asking user‟s question and several steps are also followed for conver-

sion of questions to query form for getting an exact answer. Query languages

have complex syntax, requiring a good understanding of the representation

schema, including knowledge of details like namespaces, class and property

names. In this research we proposed an model to implement Conceptual Ques-

tion Answering and Automatic Information Inferences for the enterprise's oper-

ational knowledge management in ontology-based learning organization.

Keywords: Enterprise Ontology, Learning Organization, Question Answer-

ing(QA), Information Inference, NLP.

1 Introduction

Retrieval and extraction processes - for enterprise management and decision-making -

have gained an excessive importance as the mass of data and information stored in

various resources increases. Knowledge is considered a key factor for enterprise pros-

perity at present and future. Knowledge management is an integrated, systematic pro-

cess that applies a suitable combination of information technologies and human coop-

eration in order to identify, manage and share the information capitals. In addition, it

both includes the explicit and implicit knowledge of the staff and it applies various

and extensive methods to retrieve, store and share knowledge in a certain enterprise.

The application of “Semantic Web” technologies to learning processes is receiving

an increasing attention from the perspective of facilitating the selection, delivery and

tailoring of learning experiences. But most of the current approaches are centered on

http://www.lsi.upc.edu/
http://www.upc.edu/

the final interaction of the learner with the “learning objects” provided for him/her,

neglecting the organizational perspective. From the viewpoint of an organization, the

application of Semantic Web technologies should be motivated by the improvement

of learning-oriented mechanisms, including both cultural and structural aspects, and

considering the ideal of achieving a state of continuous improvement in learning be-

havior. Such an approach to achieving a “semantic learning organization” gives a

complementary perspective to existing “educational Semantic Web” propositions [2].

A main need for the semantic enterprise model is one which extracts and displays the

enterprise semantics.

Most knowledge bases provide facilities for querying through the use of some

formal language such as SPARQL or SeRQL. However, these have a fairly complex

syntax, requiring a good understanding of the data schema and being prone to errors

due to the need to type long and complicated URIs. These languages are homologous

to the use of SQL for interrogating traditional relational databases and should not be

seen as an end user tool[13].

The obvious solution to these problems is to create some additional abstraction

level that provides a user friendly way of generating formal queries. It may be possi-

ble to infer from this information for the machine so that we can carry out the deci-

sion-making and planning procedures in enterprise processes through automatic infer-

ence.

2 Statement of the Problem and Related Work

A basic method to transform an organization into a learning organization is to apply

knowledge management within the organization. By facilitating the process of creat-

ing and sharing knowledge, and through providing positive working environments

and effective rewarding systems, knowledge management accelerates enterprise learn-

ing and helps the enterprise adjust itself to today's rapid changes and hence survive in

pace with these changes[9]. By using ontology, we can identify the meanings related

to a domain, an enterprise or a society or even determine these meanings within dif-

ferent societies in details as desired [3]. In Ontology-based QA system, the

knowledge based data, where the answers are sought, has a structured organization.

The question-answer retrieval of ontology knowledge base provides a convenient way

to obtain knowledge for use, but the natural language need to be mapped to the query

statement of ontology. Accessing structured data such as that encoded in ontologies

and knowledge bases can be done using either syntactically complex formal query

languages or complicated form interfaces that require expensive customization to

each particular application domain.

Probably due to the extraordinary popularity of search engines such as Google,

people have come to prefer search interfaces which offer a single text input field

where they describe their information need and the system does the required work to

find relevant results. While employing this kind of interface is straightforward for full

text search systems, using it for conceptual search requires an extra step that converts

the user's query into semantic restrictions like those expressed in formal search lan-

guages. Following are discussed some examples of such query interfaces.

CLOnE[9], presents a controlled language for ontology editing and a software im-

plementation, based partly on standard NLP tools, for processing that language and

manipulating an ontology. The input sentences are analyzed deterministically and

compositionally, which the software consults in order to interpret the input‟s seman-

tics; this allows the user to learn fewer syntactic structures since some of them can be

used to refer to either classes or instances, for example. A repeated-measures, task-

based evaluation has been carried out in comparison with a well-known ontology

editor.

The Controlled Language for Ontology Editing (CLOnE) allows users to design,

create, and manage information spaces without knowledge of complicated standards

(such as XML
1
, RDF

2
 and OWL

3
) or ontology engineering tools. It was implemented

as a simplified natural language processor that allows the specification of logical data

for semantic knowledge technology purposes in normal language. CLOnE is designed

either to accept input as valid or to reject it and warn the user of his errors; because

the parsing process is deterministic, the usual IE performance measures (precision and

recall) are not relevant.

QACID [10] is based on collection of queries from a given domain which are ana-

lyzed and grouped as clusters and those are manually annotated using SPARQL que-

ries. Each query is considered as bag of words, mapping between words in NL queries

into KB by using string distance metrics. SPARQL generator replaces the ontology

with instances mapped for original NL query. It is domain specific and the perfor-

mance depends on the types of questions collected in domain.

ONLI (Ontology Natural Language Interaction) [11] is a natural language question

answering system used as front-end to the RACER reasoner and to nRQL, RACER's

query language. ONLI assumes that the user is familiar with the ontology domain and

works by transforming the user's natural language queries into nRQL. No details are

provided regarding the effort required for re-purposing the system.

QAAL [12] surveys different types of question answering system based on ontol-

ogy and semantic web model with different query format. For comparison, the types

of input, query processing method, input and output format of each system and the

performance metrics with its limitations was analyzed and discussed. There are basi-

cally three types of question classification methods available. Those are machine

learning approaches, knowledge based approach and template based approach. In

QAAL system is used template based approach for fast retrieval of answer. If the

question is already asked in that system, the retrieval takes place within question tem-

plate table, otherwise matching is performed using Graph Matching Algorithm and

uses Spread Activation Algorithm for query matching with the ontology.

1 eXtensible Markup Language
2 Resource Description Framework
3 Web Ontology Language

QuestIO [13] system has a natural language interface for accessing structured in-

formation, that is domain independent and easy to use without training. It brings the

simplicity of Google's search interface to conceptual retrieval by automatically con-

verting short conceptual queries into formal ones, which can then be executed against

any semantic repository. The QuestIO application is open-domain (or customizable to

new domains with very little cost), with the vocabulary not being predefined but ra-

ther automatically derived from the data existing in the knowledge base. The system

works by converting NL queries into formal queries in SeRQL. It was developed

especially to be robust with regard to language ambiguities, incomplete or syntactical-

ly ill-formed queries, by harnessing the structure of ontologies, fuzzy string matching,

and ontology-motivated similarity metrics. It works by leveraging the lexical infor-

mation already present in the existing ontologies in the form of labels, comment and

property values.

PANTO [14] model a Portable nAtural laNguage inTerface to Ontologies which

accepts input as natural language form and the output is in SPARQL query. It is based

on triple model in which parse tree is constructed for the data model using the off-the-

shelf Standford parser. Logic rules are applied for natural language queries as nega-

tion, comparative and superlative form. For mapping WordNet and String metric al-

gorithms are used. The parse tree forms the intermediate representation as Query Tri-

ples Form. Then PANTO converts Query Triples form into OntoTriples form which

are represented as entities in ontology.

OntoTriples are finally interpreted as SPARQL form. The performance of PANTO

is analyzed by using FMeasure type. At the maximum 88.05% Precision is achieved

for Geography domain with tested queries. So this system helps bridge the gap be-

tween the real world users with the semantic web based on logic model.

AquaLog [15] is capable of learning the user's jargon in order to improve his expe-

rience by the time. Their learning mechanism is good in a way that it uses ontology

reasoning to learn more generic patterns, which could then be reused for the questions

with similar context. In this system two major models are used as Linguistic Compo-

nent which is used to convert the NL questions into Query-triple format and Relation

Similarity Service (RSS) which takes Query Triple form into Onto-Triple form. The

data model is triple like {Subject, Predicate, Object} type. The Performance is based

on Precision, Recall and also failure types are referred separately. At average 63.5 %

of successive answers are retrieved from ontology with closed domain environment.

QASYO [16] is a sentence level question-answering system that integrates natural

language processing, ontologies and information retrieval technologies in a unified

framework. It accepts queries expressed in natural language and YAGO [18] ontology

as inputs and provides answers drawn from the available semantic markup which

combining several powerful techniques in a novel way to make sense of NL queries

and to map them to semantic markup. Semantic analysis of questions is performed in

order to extract keywords used in the retrieval queries and to detect the expected an-

swer type. In the QASYO model there are 4 phases: question classifier, linguistic

component, query generator and query processor which characterizing it´s architec-

ture as a waterfall model. One NL query gets translated into a set of intermediate,

triple-based representations, query-triples, and then these are translated into ontology-

compatible triples.

The whole QA process is composed of two consecutive phases: question analysis and

answer retrieval. This model requires both an evaluation of its query answering abil-

ity. Another extension is to provide information about the nature and complexity of

the possible changes required for the ontology and the linguistic component.

Knowledge management system includes methods for obtaining or gathering in-

formation, organizing, distributing and sharing information among the staff in an

organization. In this research, the potential role of the Semantic Web Technology as a

driver for advanced learning organizations and Question Answering system is focused

on providing access to the information stored in a KB by means of natural language

queries.

3 Research Objectives

The current research is aimed to show that using standard NLP tools, ontology and

informal to formal semantic query model proposed in the current research can estab-

lish a relationship among various sectors including duties, activities, resources and

information structure of a certain enterprise so that managerial requirements can be

desirably met through semantic modeling. As a result, we may have a better chance of

using this information for the managers and the users through conceptual queries on

the information system of the enterprise. In attention to the actual state of semantic

web technology and NLP, the recommended path for organizations that are commit-

ted to the view of a learning organization is that of first addressing infrastructural

elements. Such infrastructures can be considered as the study and provision of the

ontologies for each aspect of the semantic learning organization. Therefore, how can

we improve knowledge management in enterprises through an appropriate selection

based on ontology?. Also, how can we respond to the managerial requirements of the

enterprises from simple decisions to strategic ones and how can we perform automatic

extraction of the information?. Consequently, the following objectives are followed in

parallel with works carried out previously:

1. Conceptual framework for the notion of a semantic learning organization with

using semantic search model instead of using normal keyword search model is

provided.

2. Designing and presenting a method to translate user´s semantic queries into well-

defined queries using the results of NLP Interchange Format (NIF) to answer the

semantic questions.

3. The necessity to be robust and ability to deal with all kinds of input including

ungrammatical text, sentence fragments, short queries, etc.

4 Scope of Activity

4.1 Learning Organization Ontology

The existing organizational architecture is faced with a semantic shortage between

humans and systems for having a precise and general understanding of them, which in

turn causes communication problems between humans and systems or vice versa.

These problems prohibit the materialization of the organizations in an assembled and

concordant form with other organizations [7]. Our goal is not only to design a „con-

ceptual‟ ontology model but also to implement it as an operational ontology. This

approach, mainly favored by the research community, may be beneficial for integrat-

ing the domain ontology model with an inference engine for the language. Trying to

match the users´ requests by providing appropriate formal commands is faced with

restrictions, and thus making such semantic query by programmers is demanding,

time consuming and inefficient.

4.2 Translating Natural Language Questions into Well-defined Queries

There is technically too complicated to represent and comprehend the domain for a

domain expert who has little knowledge in the well-defined queries. More important-

ly, from a practical point of view, there is no publicly known robust engine to manage

a large KB with practical performance. On the other hand, we should increase the

machines' capability in understanding the organizational structure (Intelligent-

making). To this end, having analyzed the existing concepts in the scope of

knowledge management of the learning organizations, we reckon the significance of

the information capitals of an enterprise through an ontology-based method. Answer-

ing to semantic questions will help increase the capability of learning organizations.

The growing interest in Semantic Web applications and need to translate natural

language question into a machine-readable format create many uses for such applica-

tions. It is implemented as a natural language processor that allows the specification

of logical data for semantic knowledge technology purposes in normal language, but

with high accuracy and reliability. The components are based on NLP Interchange

Format(NIF) with using statistical machine translation method.

5 Modelling of Conceptual Question Answering Method in

Learning Organizations

We designed an initial model to implement Conceptual Question Answering and Au-

tomatic Information Inferences for the enterprise's operational knowledge manage-

ment in learning organization. To achieve this goal, we evaluate the SPARQL and

SeRQL languages for semantic search. In [5] is shown an application of SPARQL-DL

query language to natural language processing, more especially as a rule engine to use

within a semantic parser. As shown, the use of such formalism for this task has sever-

al advantages including the straightforward conversion of a typed dependency graph

Automatically Gen-

erate Formal Com-

mands Like as

SPARQL Que-

ries(Output to

SPARQL API)

in an ontology. In Fig. 1, the general model of our proposed system is represented. It

has the following modules.

 Query Parsing and Analysis: In this phase, the analytical operation of the ques-

tion is found out. This Analysis is responsible for Natural Language Processing

(NLP). It is a technique to identify the type of a question, type of an answer, sub-

ject, verb, noun, phrases and adjectives from the question. Tokens are separated

from the question and the meaning is analyzed and the reformulation of question is

sent to the next stage. The input is concerted into Natural Language and is imple-

mented using word segmentation algorithm. In word segmentation algorithm the

input query from the user is divided as keywords which is further subdivided and

searched in knowledge base to get correct answers.

Fig. 1. Suggested Model for Semantic Question Answering

 Integration between Semantic Web and NLP: The tools available nowadays for

Natural Language Processing can achieve very good results on many complex

tasks such as the parsing of a sentence. An NLP Interchange Format for integrating

NLP applications is presented by [6]. NIF addresses weaknesses of centralized in-

tegration approaches by defining an ontology-based and linked-data aware text an-

notation scheme. The NLP Interchange Format (NIF) is an RDF/OWL-based for-

mat that aims to achieve interoperability between NLP tools, language resources

and annotations. The core of NIF consists of a vocabulary, which allows to repre-

sent strings as RDF resources. By being directly based on RDF, Linked Data and

SPARQL Engine,

Inference En-

gine(Jena) or

Seasame

ontologies, NIF also comprises crucial features such as annotation type inheritance

and alternative annotations, which are cumbersome to implement or not available

in other NLP frameworks [17].

 Regenerating of Semantic Query: According to the user‟s choice, the formula-

tion of query is generated with the help of YAGO[18] and WordNet [19] which are

implemented as semantic matching model.

 Semantic Search: At next stage, the Search is carried out using Conceptual Graph

Matching algorithm which is the best technique. All the sentences in repository are

framed as conceptual graph and the given question is also framed as conceptual

graph. The matching of question CG with given CG are checked out using CG

matching algorithms and the result us displayed at front-end of the our system.

Graph patterns are important concepts in semantic search. RDF model is organized

and graph patterns are used to formulate and encode constraint queries for locating

sub graph in RDF network.

 Graph Matching in Ontology: Conceptual Graph acts as an intermediate lan-

guage for mapping natural language questions and assertions to a relational data-

base. Conceptual Graph (CG) contains concept, concept relation and argument. It

is a graph which represents logic based on semantic model of artificial intelligence

and existential graphs. Resource Description Framework (RDF) is a framework

which contains triple syntax to express annotations as subject, predicate and object.

Information resources are commonly represented as uniform Resource Identifiers

(URIs). URIs are described by RDF. RDF triples are visualized as directed labeled

graph in which subject; objects are represented as nodes and predicates as arcs.

 Searching Ontology Nodes: Semantic Search Algorithm is based on Conceptual

Graph form of user query and domain ontology. In [8] Spread Activation is a

method for searching the nodes in ontology as in semantic manner. It exploits rela-

tions between nodes in ontology. Nodes may be terms, class, object etc. Relations

are labeled directed or weighted manner. SA algorithm creates initial nodes that are

related to the content of the user‟s query and assign weights to them. After that,

nodes will activate with different nodes on ontology by some rules.

 Template based Approach: There are basically three types of question classifica-

tion methods are available. Those are machine learning approaches, knowledge

based approach and template based approach. In this research we use template

based approach for fast retrieval of answer. If the question is already asked in that

system, the retrieval get from question template table form, otherwise matching is

performed using matching algorithm.

 Answer Retrieval with Entailment Engine: This part of the system is based on

an entailment engine. This module uses entailment techniques to infer semantic

deductions between a users´query collections and the SPARQL query collections

included in the formulation of user semantic query previously obtained. This pro-

cess allows the system to associate new incoming queries with their corresponding

SPARQL expressions in order to retrieve the answer sought from the RDF data-

base.

6 Conclusions

The main undertaking of the current contribution is to present ongoing work in facili-

tating learning organizations and their use of ontology-based tools by striving to

translate natural language queries into well-defined queries and retrieving exact an-

swers, which in turn can be executed in the framework presented here . A model was

introduced to automatically convert semantic query to formal query in a bid to pro-

vide answers for conceptual question and to infer information from organizational

knowledge base.

Answers are retrieved from ontology using semantic search approach interopera-

bility for NIF components, web services and question-to-query algorithm is evaluated

in our system for analyzing performance evaluation. Finally performance of question

answering system of getting exact result can be improved by using semantic search

methodology to retrieve optimum answers from organizational ontology model.

Acknowledgments

I would like to thank our software department (LSI) from KEMLG research group in

Polytechnic University of Catalonia (UPC). Especially, I would like to thank Dr. Mi-

quel Sànchez-Marrè for his helpful comments and guidance. I acknowledge the finan-

cial support of the Generalitat de Catalunya through the AGAUR agency for Consoli-

dated Research Groups. This support (2009SGR 1365) was granted to the Knowledge

Engineering & Machine Learning group (KEMLG).

References

1. Latifi, M., Khotanlou, H., Latifi, H.: An Efficient Approach Based On Ontology to Opti-

mize the Organizational Knowledge Base Management for Advanced Queries Service. In:

3rd IEEE International Conference on Communication Software Networks(ICCSN),

ISBN: 978-1-61284-485-5, pp. 269 – 273 (2011)

2. Sicilia, M., Lytras, M.: The Semantic Learning Organization. In: The Learning Organiza-

tion, Vol. 12 Iss: 5, pp.402 – 410 (2005)

3. Daconta, M., C., Smith, K., T., Obrst, L., J.: The Semantic Web: A Guide to the Future of

XML, Web Services, and Knowledge Management. John Wiley & Sons, USA (2003)

4. Aggestam, L.: Learning Organization Or Knowledge Management: Which Came First,

The Chicken Or The Egg?. In: Information Technology and Control, vol 35, No.3 (2006)

5. Vitucci, N., Arrigoni Neri, M., Tedesco, R., Gini, G.: Semanticizing syntactic patterns in

NLP processing using SPARQL-DL queries. Politecnico di Milano, Dipartimento di Elet-

tronica e Informazione Via Ponzio 34/5, 20133 Milano, Italy (2012)

6. Hellmann, S., Lehmann, J., Auer, S.: NIF: An ontology-based and linked-data-aware NLP

Interchange Format. http:// svn.aksw.org (2012)

7. Kang, D., Lee, J., Choi, S., Kim, K.: An ontology-based Enterprise Architecture, Expert

Systems with Applications, pp.1456-1464 (2010)

8. Suchal, J., Caching spreading activation search. Slovak University of Technology(2007)

9. Funk, Adam, et al.: CLOnE: Controlled language for ontology editing. The Semantic Web,

Springer Berlin Heidelberg, pp.142-155 (2007)

10. Fernandez, O., R. Izquierdo, S. Ferrandez and J.L. Vicedo, Addressing ontology-based

question answering with collections of user queries. Inform. Proces. Manage., 45: 175-188.

DOI: 10.1016/j.ipm. (2008)

11. Shamima Mithun, Leila Kosseim, V.H.: Resolving quantifier and number restriction to

question owl ontologies. In: Proceedings of The First International Workshop on Question

Answering (QA2007), Xian, China (2007)

12. Kalaivani, S., and K. Duraiswamy, Comparison of Question Answering Systems Based on

Ontology and Semantic Web in Different Environment. Journal of Computer Science 8.9,

pp: 1407-1413 (2012)

13. Tablan, V., Damljanovic, D, Bontcheva, K, A Natural Language Query Interface to Struc-

tured Information, Springer-Verlog Berlin Heidelburg, ESWC 2008, pp. 361-375 (2008)

14. Wang, C., M. Xiong, Q. Zhou and Y. Yu, PANTO: A portable natural language interface

to ontologies. Proceedings of the 4th European Semantic Web Conference, (ESWC‟ 07),

Publication post of DBLP, pp: 473-487(2007)

15. Lopez, V., Motta, E.: Ontology driven question answering in AquaLog. In: NLDB 2004

(9th International Conference on Applications of Natural Language to Information Sys-

tems), Manchester, UK (2004)

16. Moussa, Abdullah M., and Rehab F. Abdel-Kader,: QASYO: A Question Answering Sys-

tem for YAGO Ontology. International Journal of Database Theory and Application 4.2

(2011)

17. Schierle, M.: Language Engineering for Information Extraction. Phd thesis, University at

Leipzig, Leipzig (2011)

18. F. M. Suchanek, G. Kasneci and G.Weikum,: YAGO: A Core of Semantic Knowledge

Unifying WordNet and Wikipedia. In Proceedings of 16th International World Wide Web

Conference (IW3C2), pp. 697-706 (2007)

19. Miller, George A.: WordNet: a lexical database for English. Communications of the

ACM 38.11, pp. 39-41 (1995)

Process Representation Using Transaction Logic

Reza Basseda

Stony Brook University, Stony Brook, NY, 11794, USA

Abstract. Representing and answering the queries about the dynamic
behavior of processes in knowledge base systems has become a challeng-
ing research area in the field of logic programming and knowledge repre-
sentation systems. In this report, we are going to show how transaction
logic can be used to efficiently represent dynamic behavior embedded
in different domains. The ability of properly representing state changes
in transaction logic enables us to express dynamic behavior of processes
in different domains. The use of transaction logic to represent dynamic
behavior decreases the size of knowledge bases and the query response
time in comparison with other existing approaches. The efficiency of our
method along with other features of transaction logic and its theoretical
basis makes it an appropriate approach to represent dynamic behavior
of processes in various domains.

Keywords: Process Representation, Transaction Logic

1 Introduction

In many real world applications of knowledge representations systems, effec-
tive representation of processes embedded in the domain knowledge enables the
knowledge base system to answer a wide range of queries about those processes.
For example, in the medical domain, physiology explains different processes by
showing how different organs and parts of a human body interacts with each
other while anatomy discusses the structure of the human body and its organs.
A medical knowledge base system needs to represent both of the physiologi-
cal and anatomical knowledge in order to be able to answer the queries about
diseases and medical experiments.

Let us illustrate this concept via an example. Consider the process of my-
ocardial infarction (MI) or acute myocardial infarction (AMI) in medical science,
which is commonly known as a heart attack. Basically, myocardial infarction re-
sults from the interruption of blood supply to a part of the heart, causing heart
cells to die. This is most commonly due to occlusion (blockage) of a coronary
artery following the rupture of a vulnerable atherosclerotic plaque, which is an
unstable collection of lipids (cholesterol and fatty acids) and white blood cells
(especially macrophages) in the wall of an artery. The resulting ischemia (re-
striction in bloood supply) and ensuing oxygen shortage, if left untreated for a
sufficient period of time, can cause damage or death (infarction) of heart muscle
tissue (myocardium) [?]. The process starts with the step of increasing choles-
terol and other lipids in the blood. This step is followed by the step of lipid

2 Reza Basseda et al.

dysregulation. After the step of lipid dysregulatoin, the formation of atheroscle-
rotic plaque happens. The formation of atherosclerotic plaque causes narrowing
of the coronary arteries and narrow coronary arteries leads to have to have in-
sufficient blood supply for myocardial muscles. Finally, insufficient blood supply
for myocardial muscles results in myocardial infarction. Representation of such
process in a knowledge base system needs various features to exist in the system.
The system needs to represent a process in terms of different steps. Each of those
steps can be defined as an abstract process as well. Each process defines a set of
potential dynamic changes in the system over the set of knowledge base facts.
The execution of each step also depends on the various logical formulas evalu-
ated at the different states of the knowledge base which are created during the
course of the execution. It is apparent that those dynamic and static definitions
of changes and terms are tightly connected to each other.

This example shows that we need to explicitly represent processes in the
knowledge base systems as they are associated with some features which may
be involved in query answering. For example, time duration of execution of a
process or the name of a process may be queried. However, explicit represen-
tation of processes may raise other issues. For example, treating processes as
first class entities of a knowledge base system may require us to express different
relationships between those entities.

There are several logic programming frameworks which can be used to ad-
dress the process representation problem in knowledge base systems. Situation
calculus [1] provides a representation for state changes in logic. The basic con-
cepts in the situation calculus are situations, actions, and fluents. To describe
a dynamic domain in the situation calculus, one specifies a set of actions de-
scribing what changes the situations. A set of fluents is also required to describe
the changing situations. Like the situation calculus, the event calculus [2] has
actions, which are called events. It also has changing properties or fluents. But
unlike the standard situation calculus in which an exact sequence of hypothetical
actions is represented, the event calculus is based on possibly incomplete speci-
fication of a set of actual event occurrences. Different event calculus extensions
addressed the frame problem in different ways [3].

A class of action languages has been developed that is independent of a spe-
cific axiomatization [4] [5] [6]. These languages try to provide high expressiveness,
natural-language-like syntax, and clear formal semantics, which are important in
procedural knowledge representation. [7] uses a modular action language, ALM
in order to represent procedural knowledge. It was used to formalize of biologi-
cal processes, including cell division, in ALM. [8] also uses an action modeling
scripting language to represent and reason about signaling networks. [9] is also
an variation of action language A[10] to represent procedural knowledge in bio-
logical networks. [11] also can be used to represent dynamic behavior in domain
knowledge base systems.

Both of the above mentioned approaches are facing difficulties when it comes
to process representation. Since situation calculus is using monotonic reasoning
and scientific knowledge representation which usually involves non-monotonic

Process Representation Using Transaction Logic 3

reasoning, situation calculus is not suitable for process representation in sci-
entific domain. Process representation in event calculus has several problems.
This formalization of events is intended as a formal analysis of the concepts
rather than as a program or even as a program specification [2]. As updates in
event calculus are additive and do not delete information about events, execu-
tion of a large number of process steps may be impractical. Explicit declaration
of relation between processes also requires a large number of auxiliary predi-
cates and rules. For example, to represent a containment relation between two
processes, several rules and facts may be required. Although action modeling
languages can represent processes in terms of action execution sequences, they
are not scalable knowledge representation languages. Since they don’t support
features required for efficient knowledge representation such as object orienta-
tion and higher orderness, scientific knowledge representation using this type of
languages is harder and less reusable. Action and process definition syntax in
action modeling languages is usually different than regular logic programming
syntax. That difference makes the integration of dynamic behavior and static
specification of domain knowledge difficult using action modeling languages.

Transaction Logic is an extension of classical predicate logic that accounts
in a clean and declarative fashion for the phenomenon of state changes in logic
programs and databases [12]. Our case study shows that T R eases the expres-
sion of dynamic behavior of the processes embedded in different domains. The
logic of state changes provided by T R facilitates the inference about processes
represented in T R. That representation of state changes within the logic for-
mulas provides non-monotonic reasoning for procedural knowledge in scientific
domains. Since T R is a declarative formalism for specifying and executing pro-
cedures that update a logical theory, it can naturally express both the static
knowledge and the dynamic behaviors in different scientific domains. We can
also combine T R with other logical formalism such as F-logic and HiLog in or-
der to have object oriented and higher order formalisms. Those logical formalisms
simplify the representation between processes. As dynamic behavior representa-
tion in T R does not need to have any axiomatization in order to address the
frame problem, the process representation in T R is more scalable in comparison
with other logical formulations of processes.

T R includes a Horn-like fragment which supports logic programming. This
logic programming framework simplifies the integration of dynamic behavior
with other components of knowledge base systems. Specification of processes
in the language used for specification of logical terms and rules makes the ex-
pressiveness of logical formulas and terms available for process representation.
This logic programming framework also helps us to easily express a wide range
of queries about the dynamic behavior of processes. T R is also implemented in
Flora [13], which is a perfect system for knowledge representation and reasoning.

Our process representation approach using T R shows that other features
of T R can also help to have a very expressive and robust process specification
in a knowledge base systems. For example, we took advantage of hypothetical
queries to represent the concept of fault tolerant processes in the knowledge

4 Reza Basseda et al.

base systems. Incremental tabling and other developments in our implementation
framework also may help us to improve query answering time.

We will explain our process representation technique in the next section.
Section 3 will describe our case study experiments. We will also have a brief
analysis of our results in section 3, and section 4 will conclude our study.

2 Methodology

The over all representation of processes in T R is simple and natural. We classify
processes into two groups: complex processes and primitive processes. A complex
process is a sequence of complex or primitive processes and a primitive process is
a single step of execution. The relationships between processes can be represented
by simple logical predicates. For example, suppose process p1 is a sequence of
processes p1, p2, p3. We use complex process/1 and primitive process/1 to in-
dicate the type of process. first step(p, p1) says that process p1 is the first step
of process p. next step(p, p1, p2) and next step(p, p2, p3) show that p1 in p is
followed by p2 and p2 in p is followed by p3. We do not provide the formal
explanation of these concepts due to space limit.

To keep track of the execution of complex processes, we need a structure
maintaining the execution status of the complex process. The current step of
a process, current step(P, SP), is an example of such a structure. A primitive
process does not have internal structure.

Sequential execution of subprocesses can be defined recursively as shown
below.

execute(P)←−complex process(P) ∧ current step(P,CS)⊗
execute(CS)⊗ advance(P,CS)⊗ execute(P). (1)

A complex process will be successfully executed if all of its subprocesses
successfully complete their execution.

execute(P)←−complex process(P)∧
current step(P,CS)∧ ∼ next step(P,CS,). (2)

advance(P,CS) in (1) above refers to changing the execution status of pro-
cess P . For example, it can represent the current step change as follows. Note
that elementary transactions of insert and delete are defined in our transition
oracle as shown in [12].

1 In this section, capital letters denote logical variable and lower case is used to denote
constant and predicate symbols

Process Representation Using Transaction Logic 5

advance(P,CS)←−complex process(P) ∧ current step(P,CS)

∧ next step(P,CS,NS)

⊗ current step.delete(P,CS)⊗ current step.insert(P,NS).
(3)

Execution of primitive processes can be defined in terms of elementary trans-
actions insert and delete. We also can extend the transition oracle and define
a specific primitive process execution as a elementary transaction. For example,
assume the transaction doit(P) executes the elementary transaction associated
to the primitive process P . We can show the successful and failed execution of
P as in (4) and (5). Note that no matter doit(P) finishes successfully or not,
execute(P) will finish successfully. However the value of result(P,R) in the final
state of knowledge base will depend on the execution of doit(P).

execute(P)←−primitive process(P)⊗ doit(P)⊗
result.insert(P, success). (4)

execute(P)←−primitive process(P)⊗ ∼ doit(P)⊗
result.insert(P, failure). (5)

Execution of primitive process may also include some conditional statements.
We can use such precondition and postcondition statements to guard the exe-
cution of a primitive process. precondition(P) and postcondition(P) predicates
can simply express those postcondition and precondition statements for a prim-
itive process P . Now, we can show the successful and failed execution of P as
in (6) and (7). In this formulation of execute(P), the evaluation of this pred-
icate will depend on the evaluation of precondition(P) and postcondition(P).
For example, assume that the execution of process p3 is guarded with the con-
junction of g and the successful execution of process p1 and it does not have any
postcondition. This can be represented as (8) and (9).

execute(P)←−primitive process(P) ∧ precondition(P)⊗ doit(P)⊗
result.insert(P, success) ∧ postcondition(P). (6)

execute(P)←−primitive process(P) ∧ precondition(P)⊗ ∼ doit(P)⊗
result.insert(P, failure) ∧ postcondition(P). (7)

precondition(p3)←− g ∧ result(p1, success). (8)

6 Reza Basseda et al.

postcondition(p3)←− true. (9)

Serial conjunctions used in our formulas allow sequential execution of subpro-
cesses. Note that in (1), if transaction execute(CS) fails and returns false, the
transaction execute(P) also fails and returns false. One can use hypothetical rea-
soning to have more fault-tolerant processes. For example, (10) redefines (1) such
that if execute(CS) fails, failed(CS) will be executed instead and execute(P)
will be completed and return true. ∼ in (10) denotes default negation and term
∼ �execute(CS) draws if the hypothetical execution of execute(CS) fails. Simi-
larly we can redefine (5) as (11). This kind of reasoning can be useful in exception
handling.

execute(P)←−complex process(P) ∧ current step(P,CS)⊗
∼ �execute(CS)⊗ failed(CS)⊗
advance(P,CS)⊗ execute(P). (10)

execute(P)←−primitive process(P)⊗ ∼ �doit(P)⊗
result.insert(P, failure). (11)

A sample implementation of this approach is available in our demo.

3 Example: A cell mitosis division process

Through a simple implementation of mitosis cell division process, we compared
our T R process representation technique with action modeling languages. We
used Flora-2 [13], an object oriented knowledge base reasoning system, to develop
an abstract biological knowledge base including mitosis cell division process. We
compared our T R-based system with those obtained by a manual translation of
the same knowledge base to the ALd action modeling language [7]. We also com-
pared our implementation with an implementation based on the event calculus
concepts in Flora-2.

As shown in Figure 1, the comparison of systems in terms of lines of code
shows that T R provides a more succinct representation by far. Generating aux-
iliary rules for inertia axioms, completeness of states, and execution possiblity,
complicates ALd programs. We should also mention that the ALd program is
including just one test query but T R and the event calculus based solutions
responds to 7 queries. This means that for the equal test conditions, the size of
ALd program would be much more than 707 lines.

As shown in Figures 2 and 3, via a set of sample queries, we considered
the response time of above mentioned implementations. The execution time also
shows that, T R is much faster than ALd. Moving to T R from event calculus,

Process Representation Using Transaction Logic 7

Method Lines of Code

event calculus 1196

ALd 707

T R 490

Fig. 1. Length of sample knowledge base system implemented using different methods

the overhead of transactional updates leads to decrease in the response time to
test queries, which we are yet to understand. Our solution in T R also suffered
from a bug in XSB which prevented us from taking advantages of incremental
tabling. Because of that we had to refresh several tables after each transactional
update. Fixing that bug will improve T R’s response time.

Fig. 2. Comparison of response time in event calculus and T R for different test cases

This example apparently shows that T R is promising candidate for repre-
senting processes in knowledge base systems.

There are other features in Flora-2, which we used in our development. Object
orientated syntax and higher order rules are examples of these features. As those
features are beyond the scope of this report, we do not consider them here.

4 Conclusion

In this paper, we discussed several methods for representing processes, which are
included in knowledge representation systems as part of domain knowledge. As
mentioned before, dynamic domain languages require a large number of auxil-
iary rules and axioms, which complicates knowledge representation. They also
lack many features that facilitate knowledge representation and process specifi-
cation such as higher order rules and object orientation. T R allows definitions
of processes as first class entities. Through an experiment, we showed that, it
also simplifies programs and makes them more extensible and reusable. It also
apparently improves the response time in comparison with methods based on
action modeling languages.

8 Reza Basseda et al.

Fig. 3. Comparison of response time in different methods

We are planning to investigate T R’s scalability in terms of size and complex-
ity of process descriptions. Expansion of elementary updates to domain specific
updates are useful. In addition, we are planning to consider other capabilities
of T R as a process representation tool. For example, we can study how T R
can represent concurrent behaviors. In this way, we should consider how T R
can encode other process specification conventions such as process algebra. For
example, encoding process algebra’s concepts and operational structural seman-
tics in T R would enable it to act as a a theorem prover engine in the process
algebra’s domain.

References

1. Mccarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In: Machine Intelligence. Volume 4. (1969) 463–502

2. Kowalski, R., Sergot, M.J.: A logic-based calculus of events. New Gen. Comput.
4 (January 1986) 67–95

3. F. van Harmelen, V.L., Porter, B.: Event Calculus. In: Handbook of Knowledge
Representation. Elsevier (2007)

4. Baral, C., Gelfond, M. In: Reasoning agents in dynamic domains. Kluwer Academic
Publishers, Norwell, MA, USA (2000) 257–279

5. Lin, F.: Embracing causality in specifying the indirect effects of actions. In:
Proceedings of the 14th international joint conference on Artificial intelligence -
Volume 2. IJCAI’95, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.
(1995) 1985–1991

6. Gelfond, M., Inclezan, D.: Yet Another Modular Action Language. In: Proceedings
of SEA-09, University of Bath Opus: Online Publications Store (2009) 64–78

7. Inclezan, D., Gelfond, M.: Representing Biological Processes in Modular Action
Language ALM. In: Proceedings of the 2011 AAAI Spring Symposium on Formal-
izing Commonsense, AAAI Press (2011) 49–55

8. Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge
based approach for representing and reasoning about signaling networks. Bioinfor-
matics 20(1) (January 2004) 15–22

Process Representation Using Transaction Logic 9

9. Tran, N., Baral, C.: Reasoning about non-immediate triggers in biological net-
works. Annals of Mathematics and Artificial Intelligence 51(2-4) (December 2007)
267–293

10. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17 (1993) 301–322

11. Lesprance, Y., Kelley, T.G., Mylopoulos, J., Yu, E.S.K.: Modeling dynamic do-
mains with congolog. In: In Proceedings of the Eleventh Conference on Advanced
Information Systems Engineering (CAiSE99) (Lecture Notes in Computer Science,
Springer (1999)

12. Bonner, A.J., Kifer, M.: An overview of transaction logic. Theoretical Computer
Science 133 (1994)

13. : Flora-2 : Users Manual

First Approaches on Knowledge Representation
of Elementary (Patent) Pragmatics

Shashishekar Ramakrishna1,2

1 Freie Universität Berlin, Königin-Luise-Str. 24-26, 14195 Berlin, Germany,
2 Teles PRI GmbH, Ernst-Reuter-Platz 8, 10587 Berlin, Germany,

s.ramakrishna@teles.de

Abstract. The focus of this article is to provide first approachs to a
possible key solution representation and construction of legal norms, es-
pecially the national patent law norms. A semantic-system based on these
approaches, complementary to the FSTP/IES-Expert system, would aim
at (semi)-automatically translating the parts of the notion legal certainty
from its natural language non procedural presentation to a declarative
logical presentation by formal modeling through interpreting the prag-
matics facts based within a National Legal Systems. This paper covers
the initial abstract solutions and possible outcomes as gathered during
the first year of PhD research3.

Keywords: Facts Screening and Transformation Processor (FSTP), In-
novation Test, 35 U.S.C (§§ 112, 102/103, and 101)

1 Motivation

Current emerging technologies are mostly ’Model’ based inventions i.e. intangible
subject matter based. In general, an innovation claimed through its patent ap-
plication, can be seen as a pair <claim, its claimed invention>, wherein the
specification (including drawings) forms the second part of the pair. An inventive
property/statement of an invention, disaggregated on levels of abstraction or on
grains of mental resolution into elementarily properties henceforth referred as bi-
nary inventive concept. It provides the required degrees of separation of concerns
for evaluating such properties independently in the light of its subject matter.
Next to trivial elementary inventive concepts are logically error resistant as they
represent a single/separated concern. The same holds for a non-inventive concept
of a claimed inventions element, describing one of its non-inventive properties.

(Semi)-/Automatic evaluation by means of applying elementary pragmat-
ics, ’EP’ and National Patent Laws on such binary (non-)inventive concepts re-
quires a semanticsystem for reasoning against the considered concepts, capable of
the acquisition and processing of enormous amounts of background knowledge
in a machine understandable format, keeping in mind its interdependence to

3 This Ph.D thesis is being supervised by Prof. Adrian Paschke, Freie Universität
Berlin, Germany.

each other. Such a (sub)-system working in conjunction with the existing Facts
Screening and Transformation Processor, FSTP [1]/Innovation Expert System,
IES [2], enables a person of pertinent skill, who is needed for recognizing non-
elementary pragmatics, to recognize automatically and/or guided interactively
by the FSTP/-IES to consider whether such elementary properties of an inno-
vation at issue (after its disaggregation) can be considered as Anticipate (A),
Not-Anticipate (N) to its prior arts/considered reference set (RS).

2 Background - The Fact Screening and Transformation

As described in [1], [2] an innovation/creation over existing knowledge, provided
as a reference set RS of prior art documents, is representable by a technique
teaching, TT.0 which goes beyond the knowledge of the RS - just as in a paten-
t/application. This compound of knowledge, representing an innovation, is called
“PTR”, standing for a “pair of TT.0 and RS”.

The Innovation Expert System (IES) thus is the PTR Expert System, defined
by the epistemological and practical requirements it meets: For any PTR to
which it is applied, it is supporting its user in

1. deriving from it all technical and legal facts alias relations between TT.0 and
a given RS respectively a given context, such as a given legal system (in the
U.S e.g. to 35 U.S.C §§ 112, 102/103, and 101) and then

2. leveraging on this analysis instantly recognizing and answering any reason-
able query for any such relation

The PTR Expert System (ES) is built around the PTRs “FSTP Test” [3],
hence is also called FSTP ES. The FSTP Test of a PTR supports structuring
of its PTR. This PTR-DS is disaggregated into three levels of knowledge rep-
resentations (KR), “o/AD/BID”-KR. Wherein, o refers to “original”, AD to
“Aggregated ∧ Disclosed”, and BID to “Binary ∧ Independent ∧ Disclosed”.
IES supports, initially screening its documents/technical teachings for elemen-
tary building blocks of its creativity/inventivity, i.e. for its inventive and non-
inventive concepts. Technical informal inventive and non inventive concepts/
properties are then transformed into technical formal inventive concepts/facts,
then transforming those into the technical primary facts, and finally transform-
ing them into the technical secondary facts, called basic resp. semantic (alias
creative) resp. textbfpragmatic (alias innovative) facts. These technical sec-
ondary facts use metrics induced by the Highest Courts precedents on creativi-
ty/innovation by their numbers of BID-inventive concepts embodied by TT.0.
From these BID-inventive concepts, the classical yes/no answer to the question,
whether TT.0 is indicated obvious over RS, can be derived by this metric. The
semantic/creative and pragmatic/innovative facts extend this metric much fur-
ther by first defining a PTR plcs specific (plcs = patent law carrying semantic)
innovation geometry, which depicts the plcs-height/-creativity of its TT.0 over its
RS. Based on plcs-height/-creativity, TT.0s pragmat-ic/innovative height over
RS additionally takes into account the PTRs pmgp (pmgp= patent monopoly

granting pragmatics) in any National Patent System (NPS) which represents the
national/socio/economic principles underlying the idea of rewarding an innova-
tion by granting a 20 years monopoly to its TT.0.

3 Goals/Aim

The object of our concern in this thesis is to create a semantic-system, capable of
(semi-) automatically translating the parts of the notion “legal certainty” such
as patent laws (e.g. in U.S, 35 U.S.C §§ 112, 102/103, and 101) from its natural
language non procedural presentation to a declarative logical presentation by
formal modeling through interpreting pmgp based on NLS/ (NNI = National
Normative judicial Interpretation of facts).

Figure 1, shows few (10+) basic tests as proposed in [4] enabled by its inven-
tive concepts, automatically prompting their user through exploratively checking
its meeting the requirements as stated by few NPS’es (e.g.: 35 USC 112, 102/103,
and 101). Applying these tests to inventive concepts requires the requirements
of the NPS’es to be modeled into declarative rules, due to their modular feature
and their capability to use the same knowledge in many different ways. Modeled
rules are used in deductive (non-monotonic) reasoning for legal interpretations.
NPS’es, like complex computer systems, constantly face questions that aim to
ascertain the state of things or the correctness of a certain contention, like these
modeled rules/tests. Hence, the legal questions regarding which of a number of
modeled/competing legal rules could apply in a given situation amount to some
error and inconsistencies, thereby leading to inconsistent reasoned output/le-
gal interpretations. One such non-trivial approach would be that such modeled
rulebases are updated manually/guided by the system using inductive learning
techniques (applying rules on case laws). Such an approach would be a long term
goal and is not considered for the current use-cases shown in this thesis. The list
below re- expresses the intended aim, providing possible approaches/solutions
to the research question stated in Section 4 of this thesis in detail:

1. To manually(and/guided-by-system) analyze and extract the rules and on-
tological concepts described in the natural language descriptions of NPS’es.

2. To identify the required semantics and inference rules needed for legal rea-
soning with NPS’es and for the legal interpretation enabling the separating
of novel innovations from obvious steps.

3. Logic-based declarative representation of these chains of complex rules for
legal reasoning on top of structured formal ontology domains representing
the conceptualization of the NPS’es and the underlying domains of skill and
elementary pragmatics.

4. Developing a legal reasoning sub-system to the FSTP ES which allows pmgp
dependent information to be derived from the NPS knowledge bases and to
be used in the FSTP for semi-automated legal decision support and compli-
ance checks with the applicable NPS for a PTR. This includes
(a) Address the trade-off between required expressiveness of the knowledge

representation and its computational complexity of the legal reasoning
in FSTP.

(b) Provide support for the different roles involved, such as inventor, per-
son of pertinent skill, examiner, patent agent etc. This requires different
representation languages from natural language format for expressing
questions, answers, proofs and explanations to platform-independent se-
rializations in XML and Semantic Web formats to platform-specific ex-
ecutable formats on the logical reasoning layer.

(c) Provide support for life cycle management of knowledge. This addresses
e.g., collaborative knowledge engineering and management (versioning,
different roles such as author, maintenance), updates in the NPSes by
new decisions which lead to corresponding isomorphic updates in the
NPSes knowledge bases, integration of internal and external (semantic)
background knowledge e.g. about skill, elementary pragmatics, usage
data (annotations, proofs, etc.).

Fig. 1. 10+ In-C tests to be applied on an inventive concept for patent eligibility, in
accordance to US patent law

4 Research Questions

The research question will be refined and detailed after the literature review
and baseline study, from the following general problem domains of a knowledge
representation.

1. Syntax:
(a) Which representation and interchange format for the representation of

the knowledge on different representation layers? (human-oriented com-
putational independent, platform-independent supporting integration and
interchange, platform-specific logical reasoning).

2. Semantics:
(a) Which inference and interpretation semantics (non-monotonic vs. mono-

tonic, expressiveness vs. computational complexity, closed-world vs. open
world, “ontologies vs./and rules”,)

3. Association problem:
(a) How to connect the formal representation with the real-world resources

and norms?

Requirements derived from these knowledge representation problem domains
can be distinguished according to functional requirements for the concrete knowl-
edge representation and non-functional requirements during design time (devel-
opment / engineering of the knowledge) and run time (use of the knowledge).

1. Functional Requirements:
(a) e.g., expressiveness, ...

2. Non functional requirements at design time:
(a) e.g., composability and extensibility, interoperability, declarative imple-

mentability, modifiability and evolvability, reusability and interchange-
ability,...

3. Non functional properties at runtime:
(a) e.g., usability, understandability and explanation, correctness and qual-

ity, scalability and efficiency, safety and information hiding (need-to-
know principle),...

5 Proposed Approach

An abstract model of the system envisioned as a solution to the problem can
be seen in Figure 2. An existing state-of-the-art prior art search module, using
a semantic search engines like, Cognition [5], DeepDyve, etc retrieves patents
through large databases which forms the required RS (if previously not specified
by the jury) for the TT.0. Thus formed PTR-DS will be transformed from their
natural language texts into some standard representation formats like XML,
using text-mining, semantic recognition and annotation techniques supporting
human knowledge engineers in the fact screening and transformation process.
Similar to the PTR-DS, the existing patent rules from NPS have to be trans-
formed from their natural language format to more standardized rule represen-
tation formats. We propose to use LegalRuleML [6], an XML standard for legal
knowledge representation based on RuleML [7] which supports the modeling of
norms.

Parallely, we map patent norms as used in landmark case law decisions to
a workflow using some configurable workflow model. Where, each node on the

Fig. 2. Cognitive system (abstract model)

workflow (B-tree) represents a complex legal rule represented using the Reac-
tionRuleML [8] representation format. This resolves complex legal questions and
automates the analysis of a large number of patent norms with respect to their
logical coherence in a given NPS. The workflow itself is represented using Legal-
RuleML, which provides the functionalities likes reusability, lifecycle manage-
ment of nodes or the entire workflow to capture the changes over time of the
rules when the legal binding text changes.

LegalRuleML is also be used to point out logical inconsistencies in current
case law decisions and can also be used to evaluate the compliance of semantic
facts with case law and positive law. Thereby, providing a powerful and declar-
ative way to control and reuse such semantically linked meanings with the help
of independent micro-ontologies about the NPSs and domain specific pragmatic
contexts (skill ontologies, elementary pragmatics, standards etc.) for flexible pro-
cessing and legal reasoning. The required (patent) rules/constraints are built by
the rule creator module, which uses a distributed rule inference services network
like Prova [9], a java based open source rule language for reactive agents and
event processing.

Figure 3 shows the process of generating a generic workflow pertaining legal
rule from landmark decisions’ specific workflow. This allows capturing the differ-
ent interpretations of the same law on different use cases and, thereby, arriving
at a generalized workflow.

6 Elementary Pragmatics

Elementary Pragmatics are disclosures (explicit/implicit) of certain art which
can be easily understood by a person of pertinent skill. According to certain
National Patent Systems, an EP must not be just claimed to exist, but must be
documented in an enabling way.

Fig. 3. specific workflow to generic workflow

EP can be divided into 4 types as shown in Figure 4 :

1. EP from Formal Rules for Filing, EP-PFP

2. EP from Patentability Conditions, EP-P

3. EP from Post Grant Procedures, EP-PGP

4. EP from Litigation, EP-L

Fig. 4. Classification of EP in a National Patent System.

We narrow down our focus on Elementary Pragmatics from Patentability
Conditions, EP-P. Specifically on four paragraphs (35 USC §§ 112, 102/103, and
101) of the U.S patent system [10]. Figure 5 shows the general evaluation pro-
cedure for an inventive concept under patentability. A set of inventive concepts
is patent eligible, ’pe’ if and only if it satisfies all the patentability criterias or
EP- P’s.

Fig. 5. Evaluation procedure.

7 Proposed Framework

Fig. 6. Proposed Framework.

We propose a legal information system framework [11] as shown in Figure 6. The
proposed framework is based on a general information system research frame-
work [12]. The central ’Research’ module is fed with information from both
’Environment’ and ’Knowledge Base (KB)’ modules. Information/raw material
such as FSTP facts, which include the norms from various NPS’es, are fed by the
’Environment’ module and the syntax, semantics, pragmatics and instantiations

encompassing a norm are fed by the ’Knowledge Base’ module. The central re-
search module works towards building the inference rules required for the legal
reasoner. The ’develop/build’ sub-module including legal reasoner is evaluated
for the norms expressiveness, extensibility and interoperability criteria’s. Based
on the results, the rules and the reasoner are refined again. This iterative process
of (re-)assessing and refining is completed when all criteria are effectively evalu-
ated. Processed information is fed back to the environment module for its actual
usage within the FSTP ES. Additional information for the lifecycle management
of a norm and its contexts is sent back to KB module.

7.1 Methodologies

Elaborating on the process of mapping patent norms to workflow models we start
with the representation of all landmark case-law decisions concerning a specific
norm onto a workflow. Wherein, LegalRuleML is used for such representation.
We reiterate the formal template of LegalRuleML showing the most general
representation syntax as defined in [13].

/<lrml:LegalRuleML >

<!-- Referencing the textual provisions -->

<lrml:LegalSource > ... </lrml:LegalSource >

<!-- Capturing the ex -ternal temporal dimensions of the rules are represented -->

<lrml:TimeInstants > ...</lrml:TimeInstants >

<lrml:TemporalCharacteristics > ...</lrml:TemporalCharacteristics >

<!-- Agent and the authority of the rules for provenance -->

<lrml:Agents > ... </lrml:Agents >

<lrml:Authorities > ... </lrml:Authorities >

<!-- Associates property values to rules and also adds metadata such as jurisdiction , role , and strength --

>

<lrml:Context >

<lrml:appliesRole >

<lrml:appliesStrength >

<lrml:appliesAuthority >...</lrml:appliesAuthority >

<lrml:appliesJurisdiction >..</lrml:appliesJurisdiction >

</lrml:appliesStrength >

</lrml:appliesRole >

</lrml:Context >

<!-- Rules (constitutive and prescriptive) are modelled -->

<lrml:Statements >

<Rule>

..

<!-- ReactionRuleML -->

..

</Rule>

</lrml:Statements >

</lrml:LegalRuleML >

Listing 1.1. General LegalRuleML syntax

Each node on the workflow represents a disaggregated rule/norm. Such rule
or set of rules are embedded inside < lrml: Statements > using Reaction-
RuleML. Listing 1.2 shows a formal template of ReactionRuleML, showing the
most general representation syntax as defined in [8].

/<Rule>

<!--rule info and life cycle management , modularization -->

<!--(semantic) metadata of the rule -->

<meta> ... </meta>

<!--scope of the rule e.g. a rule module -->

<scope> ...</scope>

<!--rule interface description -->

<!--intended semantic profiles -->

<evaluation > ... </evaluation >

<!--rule interface signature and modes -->

<signature > ... </signature >

<!--rule implementation -->

<!--qualifying declarations , e.g. priorities , validity -->

<qualification > ... </qualification >

<!--quantifying declarations , e.g. variable bindings -->

<quantification > ... </quantification >

<!--event part -->

<on> ... </on>

<!--condition part -->

<if> ... </if>

<!--(logical) conclusion part -->

<then> ... </then>

<!-- action part -->

<do> ... </do>

<!--postcondition e.g. to check effects of execution -->

<after> ... </after >

<!--(logical) else conclusion -->

<else> ... </else>

<!--alternative action , e.g. exception handling -->

<elsedo > ... </elsedo >

</Rule>

Listing 1.2. General ReactionRuleML syntax

7.2 Develop/Build (Legal Reasoner)

Disaggregated patent rules are wrapped to form a reactive agent as shown in
Figure 7. A generic module “semantic- interface” here is used to depict the need
for hybrid reasoning due to the fuzzy nature of patent rules. ReactionRuleML
messaging is used for distributed reasoning. Listing 1.3 shows general message
syntax.

Fig. 7. Reactive agent with hybrid reasoning.

/<Message directive="PRAGMATIC CONTEXT" >

<oid> <!-- conversation ID--> </oid>

<protocol > <!-- transport protocol --> </protocol >

<sender > <!-- sender agent/service --> </sender >

<receiver > <!-- receiver agent/service --> </receiver >

<content > <!-- message payload --> </content >

</Message >

Listing 1.3. ReactionRuleML Messaging syntax

8 Examples

8.1 35 U.S.C § 112 6th paragraph

Consider the latest Court of Appeals of Federal Circuit (CAFC) decision on
§ 112 6th paragraph in Lighting Ballast Control LLC v. Philips Electronics
and Universal Lighting Technologies, Inc’ [14]. Under this decision the court re-
explained the norms within the 6th paragraph of § 112 (35. U.S.C Patent law).
For our analysis, we map the decision and its citations into workflow. Figure 8[a]
shows some excerpts from the decision itself. Figure 8[b] shows the workflow
mapped from the decision for the analysis of “Means-Plus-Functions-Claiming”
In its decision, the CAFC with the help of citations explains how other factors
influencing this decision have to be handled.

Fig. 8. CAFC decision ’Lighting Ballast v Philips Electron’ [14] mapped to a workflow.

We propose to use inductive approaches by populating the workflow with
related decisions (’Biomedino LLC v. Water Techs Corp’ [15], ’MIT v. Abacus
Software’ [16], ’Greenberg v. Ethicon Endo Surgery, Inc’ [17] etc) to obtain a

generic workflow for 6th paragraph of § 112 as shown in Figure 9. Where, the
norm in workflow format is represented using LegalruleML representation format
described before and the nodes/rules are represented using ReactionRuleML. For
this example we use Stanford parser, SentiwordNet, Prova and Pre defined legal
lexicons, PUBPAT as semantic interface for reasoning the norms. A person of
pertinent ordinary skill and creativity (posc) as defined by USSC affirms every
reasoned result.

Fig. 9. 6th paragraph of § 112 (35. U.S.C Patent law)..

9 Conclusion and Future Steps

The solution to have a sub-system, based on configurable EP which connects
the FSTP ES, thus making it full/-semi automatized in handling queries per-
taining to EP and NLS thereby, providing a uniform platform for standardizing
the generation and representation of complex rules (built using fewer NPS goal
clauses/(patent) rules. Such a system would serve as a ready reckoner in draw-
ing legal conclusions on top of scientific fact determined during FSTP analysis.

This would then help in applying the (elementary) cognitive norms required for
interpretation and evaluation of such identified facts.

10 Acknowledgements

The author would like to thank Prof. Adrian Paschke and Prof. Sigram Schindler
for their constructive comments and suggestions. This work has been partially
supported by the Fact Screening and Transformation Project (FSTP) funded by
the TelesPRI GmbH: www.fstp-expert-system.com.

References

1. Schindler S.: THE FSTP EXPERT SYSTEM, WO 2012/022612 A1 (to Sigram
Schindler Beteiligungsgesellschaft mbh [DE/DE]; Ernst-Reuter-Platz 8 10587
Berlin (DE)), 23 February 2012.

2. Schindler S.: INNOVATION EXPERT SYSTEM, IES, AND ITS PTR DATA
STRUCTURE, PTR-DS(to Sigram Schindler Beteiligungsgesellschaft mbh
[DE/DE]; Ernst-Reuter-Platz 8 10587 Berlin (DE)), May 2013.

3. Ramakrishna S., Karam N., Paschke A.: The FSTP Test: a novel approach for an
invention’s non-obviousness analysis, JURIX 2012, pp 129-132, 2012.

4. Brief of Amicus Curiae Sigram Schindler Beteiligungsgesellschaft mbH in support
of neither party, LIGHTING BALLAST v. PHILIPS ELECTRON (2008), No.
2012-1014 (USSC, pending), 28 May 2013.

5. Dahlgren K.: Technical Overview of Cognition s Semantic NLP (as Applied to
Search), ReCALL, pp. 120, 2007.

6. Palmirani M., Governatori G., Rotolo A., Tabet S., Boley H., and Paschke
A.:LegalRuleML: XML-Based Rules and Norms, in Rule - Based Modeling and
Computing on the Semantic Web, vol. 7018, Springer Berlin Heidelberg, 2011, pp.
298-312.

7. Boley H., Paschke A., and Shafiq O.:RuleML 1.0: The Overarching Specification of
Web Rules, in RuleML, 2010, pp. 162-178.

8. Paschke A., Boley H., Zhao Z., Teymourian K., and Athan T.:Reaction RuleML
1.0: Standardized Semantic Reaction Rules, in RuleML 2012, 2012.

9. Kozlenkov A.:Prova Rule Language Version 3.0 User’s Guide, Internet:
http://prova. ws/index. html, 2010.

10. Title 35 of the United States Code. 1952.
11. Ramakrishna S.: Cognitive System for Knowledge Representation of Elementary

Pragmatics, in Proceedings of the RuleML2012 Challenge, at the 6th International
Symposium on Rules, 2012, online ceur-ws.org/Vol-874/paper2.pdf.

12. Hevner A R., March S T., Park J., and Ram S.:Design science in information
systems research, MIS Quarterly, 2004.

13. Athan T., Boley H., Governatori G., Palmirani M., Paschke A., and Wyner
A.:OASIS LegalRuleML, in Proceedings of 14th International Conference on Arti-
ficial Intelligence and Law (ICAIL 2013), 2013.

14. Lighting Ballast Control LLC v. Philips Electronics and Universal Lighting Tech-
nologies, Inc No. 2012-1014 (Fed. Cir. January 2, 2013).

15. Biomedino, LLC v. Waters Techs. Corp., 490 F.3d 946, 949 (Fed. Cir. 2007).
16. MIT v. Abacus Software, 462 F.3d 1344, 1353 (Fed. Cir. 2006).
17. Greenberg v. Ethicon Endo-Surgery, Inc., 91 F.3d 1580, 1583 (Fed. Cir. 1996).

RAWE: A Web Editor for

Rule Markup in LegalRuleML

Monica Palmirani1, Luca Cervone1 Octavian Bujor1, Marco Chiappetta1

1CIRSFID, University of Bologna.

{monica.palmirani, luca.cervone, octavian.bujor, marco.chiappetta}@unibo.it

Abstract. This paper presents a Web editor (RAWE: Rules Advanced Web

Editor) for marking up legal rules starting from legally binding texts. The Web

editor exploits the legal information embedded in the Akoma Ntoso markup, in

combination with and XML techniques, so as to help the legal-knowledge

engineer model legal rules and convert them into LegalRuleML, an OASIS

XML standard candidate.

Keywords: Legal Reasoning, Akoma Ntoso, LKIF-core, LegalRuleML.

1. Introduction

This paper presents a Web editor for marking up legal texts in a legal document’s

main structure, normative references, and legal metadata using the Akoma Ntoso [2]

[13] [25] XML standard, now undergoing the OASIS standardization process. The

same Web editor exploits the legal information embedded in legal markup, in

combination with XML techniques, to help the legal-knowledge engineer model legal

rules using a logic formalism and convert them into LegalRuleML [1] [23][24],

another OASIS XML standard candidate. The two standards—Akoma Ntoso and

LegalRuleML—are complementary in implementing the legal-knowledge modelling

and representation of legal documents. The main goal of the RAWE Web editor is to

provide a tool capable of managing in an integrated way the advantages of the Akoma

Ntoso and of LegalRuleML, applying the isomorphism principle [3][9][22] to

connect, as far as possible, legally binding textual provisions with the logic formalism

expressed using rules. Usually, AI&Law experts are too focused on the task of

applying a logic formalism to achieve isomorphism, but the legal experts (judges,

lawyers, and administrators) are interested in verifying the results of the legal

reasoning engine and in finding evidence in the legally binding text.

Secondly, a legal text changes over time, and so the rules need to be updated

accordingly. If the isomorphism principle is not applied, it is quite difficult to

determine whether those rules need to be updated. The RAWE editor helps to

maintain text and rules aligned and to minimize manual markup activity.

Thirdly, the aim of the RAWE is to show how it is possible to export

LegalRuleML in RDF serialization to favour Linked Open Data interoperability.

Finally, in the future, the same editor will export LegalRuleML files in other

proprietary languages, like SPINdle [15] or Carneades [8][11], so as to permit legal

reasoning.

2. From Open Text to Open Rules

The first point to be made in clarifying the goals RAWE would like to achieve is to

draw a distinction among three conceptual layers: norms (abstract mandatory

commands concerning rights or duties), textual provisions (sequences of texts), and

rules (rendering of the text into logical rules).

A norm, following Kelsen’s definition [14], is an abstract mandatory command

concerning rights or duties. A norm is usually expressed in writing using legal texts or

in an oral way (e.g., a social norm, an oral contract) or in other representations (e.g.,

symbolic road signs).

Textual provisions (or simply provisions) are the instantiation of general norms

in one possible textual representation (a sentence, article, or paragraph).

Legal rules are interpretations of one or more provisions formalized using logical

rules in the form of antecedent and consequent. Sometimes several provisions will

form a single rule, or a single provision may include multiple rules.

Usually, in the state of the art, AI&Law scholars focus their attention only on the

rule modelling and on the foundational logical theory, and apart from the

isomorphism principle [3], the connection with the text over time and the ontology

aspects have been neglected. There is an important theoretical debate in the AI&Law

community on the interpretation of the legal textual provisions expressed in natural

language and on the canonization of rules using logical formalisms [4]. The prevalent

theory is now oriented towards hybrid interpretation [27] (rather than pure textualism,

or pure interpretation). We want to make visible in the text the “evidence” that there

is a minimal but reasonable interconnection, following the legal theory of

interpretation, with a logical rule in a formal representation. This exercise sometimes

forces the legal-knowledge expert to split the original provision into two or more

rules, or to duplicate the rules, or to compress several sentences into a single rule. In

this scenario, we have to manage an N:M relationship among norms, textual

provisions, and the ontology that we want to capture and represent maintaining a

strong separation among these three levels.

Nevertheless, it is obvious that the isomorphism approach alone presents some

exceptions and limitations that need to be balanced in a reasonable way. We have at

least three cases where the legal rules have no textual link: (i) when we have implicit

rules deriving from the general principles of the legal system (e.g., lex superior, lex

specialis, lex posterior); (ii) when the legal-knowledge engineer includes a personal

interpretation as a summary of his/her expertise; and (iii) when the legal-reasoning

engine produces rules. In these cases the Web editor provides metadata to distinguish

those rules deriving from the legal text from those that are a free interpretation of the

rules’ author. The RAWE editor permits multiple interpretations of the same legal text

and makes it possible to follow the isomorphism principle, but also to derogate from it

if need be.

Finally, the Web editor exports all the metadata in RDF format to favour the

interconnection of Legal Open Data with Linked Open Data. The goal is to release

RDF triples about the rule knowledge base, in such a way as to connect that with

other datasets available in the Linked Open Data Cloud. This permits more-effective

filters of the legal resources in the Semantic Web domain (e.g., geo-localizing legal

resources on the map using the jurisdiction and the temporal metadata filter to find the

legal rules relevant to a given context, such as environment law or construction law).

Fig. 1 – Scenario of relationships among different layers

in legal knowledge modelling

3. Related Work

The AI&Law community itself [27] has spent the last two decades modelling legal

norms using different logics and formalisms, usually fed manually to a legal-

reasoning engine. Some visual tools [11] or editors [15][19] in the past have been

developed to model rules, but the methodology used starts from a reinterpretation of

the legal source text by a legal-knowledge engineer who extracts the norms, applies

models and theory using a logic representation, and finally represents them with a

particular formalism. The RAWE approach is different: it starts from the legal text

marked up in some Legal XML standard and, exploiting the text’s regularity, detects

some metadata that is also useful for modelling rules.

Over the last decade, several Legal XML standards have arisen for describing

legal texts (Akoma Ntoso, CEN Metalex [5] [16]) and rules (RuleML, RIF, SWRL,

etc.), but the two communities are mostly separated, and they pursue their goal

separately. In the meantime, the Semantic Web, and in particular legal ontology

research, combined with the NLP extraction of semantics, has given a great impulse

to the modelling of legal concepts [17][18][20][7][6][12][26]. In this scenario there is

an urgent need to close the gap between the text description, represented using XML

techniques, and the norms formalized with logical rules, this in order to realize an

integrated and self-contained representation. There are three main reasons:

• Legal knowledge is currently presented in a disjointed way in the original text that

inspired the logical modelling. This disconnection between legal-document

management and the logical representation of the embedded rules strongly affects

the real usage of the legal-document knowledge in favour of citizens, public

administrations, and businesses (e.g., contracts, insurance regulation, banking soft

law).

• Management of changes undergone over time by legal documents—especially acts,

regulations, and contracts—that by nature are variable and subject to frequent

modifications, significantly affecting the coordination between the text and the

rules that should be remodelled.

• The legal validity of the text as authentically approved by the competent entities

(e.g., contractors) should be preserved across all manipulations. On the other hand,

it is important to connect legal document resources, which themselves include

many legality values (e.g., authenticity, integrity, evidence in trial, written form,

etc.), with the multiple interpretations coming from legal-knowledge modelling.

Certainly, one of the main challenges over the last five years has been to acquire

the ability to capture, with the help of NLP techniques, all the relevant legal

knowledge embedded in a legal document and to represent it in an appropriate formal

model. However, there hasn’t been significant progress on the state of the art in this

respect, especially in languages other than English. So it is important to improve the

user interface technique to help the legal-knowledge expert to easily model legal rules

and prepare an environment for a future NLP integration. RAWE is the only Web

editor in the state of the art that can model legal texts and rules in a coordinated and

consistent way using a WYSIWYG interface exploiting two important legal XML

standards: Akoma Ntoso and LegalRuleML.

4. Akoma Ntoso and LegalRuleML Synergy

As mentioned before, Akoma Ntoso and LegalRuleML are two XML standards for

modelling and representing legal documents. RAWE can coordinate the knowledge

captured with these two standards so as to help the end user mark up the legal rules

using a logic formalism enriched with temporal parameters.

Akoma Ntoso is specifically designed to model a legal document’s structure and

legal metadata, like the preface, preamble, sections, conclusions, normative

references, dates, and signatures. The Akoma Ntoso metadata block additionally

defines the conditions under which the legal textual fragment is valid, effective and in

force, while also defining jurisdiction, the document’s authority, and other relevant

legal metadata, like modifications. All those metadata are also significant in defining

the context of a legal rule, helping the legal reasoning engine filter the rules pertinent

to a particular case (e.g., infringement of the rule at a given date in 1999).

The following example displays as <temporalGroup id="t5"> the block that

defines the interval of efficacy and enforceability of Section 504 of the US Code.

<akomaNtoso>

 <act name="act">

<meta>

 ... meta data about the legal document ...

 </meta>

 <coverPage>

 Cover page content

 </coverPage>

 <preface>

 ... the preface of the document ...

 </preface>

 <preamble>

 ... the preamble of the document ...

 </preamble>

 <body>

 <clause id="tit17-chp5-sec504-clsc" period="#t5">

 ... the normative part of the document ...

 </body>

 </act>

</akomaNtoso>

LegalRuleML is designed to model in logical formalism the norms expressed in a

legal text. It does so especially using deontic operators: obligation, right, permission,

prohibition. LegalRuleML is also intended to define the context for each rule by

providing a set of metadata like the temporal parameters, the original textual sources,

the jurisdiction, the author, and the authority of the rules. The fragment below shows

the main structure of a LegalRuleML document composed of different metadata

blocks defining the author who modelled the text into rules (<lrml:Agents>),

recording the original legal resources IRI (<lrml:References>), and providing the

temporal parameters (<lrml: TemporalCharacteristics>), the context, and each

rule’s date of creation (<lrml:Context key="ruleInfo1" hasCreationDate

="#t8">). The <lrml:Contex> provides the environment in which the rules are

valid (time, author, jurisdiction, etc.).

<lrml:LegalRuleML>

 <lrml:Agents>

 <lrml:Agent key="aut1"

sameAs="&unibo;/person.owl#m.palmirani"/>

 </lrml:Agents>

 <lrml:References>

 <lrml:Reference refersTo="ref2"

refID="/us/USCode/eng@/main#tit17-sec504-clsc-pnt1"

refIDSystemName="AkomaNtoso2.0-2012-10"/>

 </lrml:References>

 <lrml:TimeInstants>

 <ruleml:Time key="t6">

 <ruleml:Data xsi:type="xs:dateTime">1999-12-

09T00:00:00.0Z</ruleml:Data>

</ruleml:Time>

</lrml:TimeInstants>

 <lrml:TemporalCharacteristics key="tblock1">

 <lrml:TemporalCharacteristic key="e2-e">

general

definition of

Agent with value

an uri to

m.palmirani

definition of

legal text

fragment

definition of

instant time

definition of

intervals and

 <lrml:forRuleStatus iri="&lrmlv;#Efficacious"/>

 <lrml:hasStatusDevelopment iri="&lrmlv;#Ends"/>

 <lrml:atTimeInstant keyref="#t6"/>

 </lrml:TemporalCharacteristic>

 </lrml:TemporalCharacteristics>

 <lrml:Context key="ruleInfo1"

hasCreationDate="#t8">

 <lrml:appliesTemporalCharacteristics

keyref="#tblock1"/>

 <lrml:appliesStrength iri="&lrmlv;defeasible"/>

 <lrml:appliesRole>

 <lrml:Role iri="&lrmlv;#Author">

 <lrml:filledBy keyref="#aut1"/>

 </lrml:Role>

 </lrml:appliesRole>

 <lrml:appliesAuthority keyref="#congress"/>

 <lrml:appliesJurisdiction

keyref="&jurisdictions;us"/>

 <lrml:appliesSource keyref="#ref2"/>

 <lrml:toStatement keyref="#rule1"/>

 </lrml:Context>

 <lrml:hasStatements key="rulebase-v2">

 <lrml:ConstitutiveStatement key="rule1">

 <ruleml:if> ...</ruleml:if>

 <ruleml:then>... </ruleml:then>

 </lrml:ConstitutiveStatement>

 </lrml:hasStatements>...

</lrml:LegalRuleML>

situations

definition of

the rule context

rule base block

Entering all the <lrml:Contex> information manually for each rule is a really

time-consuming task, especially when the legal text has gone through several

modifications over time. Moreover, it is difficult to maintain consistency between

legal textual provisions and rules in the dynamicity of the legal system. For this

reason the RAWE Web editor exploits the information embedded in the Akoma Ntoso

text proposition (e.g., section, article), and it reuses those data to define the context of

the rules when accurately connected to the legal provision.

The following example presents a fragment of Section 504 of the US Code

concerning copyright infringement and the related rules. Section 504 is presented in

the version updated at time t5, which in Akoma Ntoso is defined in the

<temporalGroup id="t5"> block.

When the end-user selects a portion of the legal text with the mouse in the Web

editor window, all the related metadata recorded in Akoma Ntoso are detected and

exported in LegalRuleML to model the rules.

The following example shows in the two standards (i) the correspondence among

temporal events; (ii) the correspondence among temporal intervals; and (iii) how it is

possible to reuse the Akoma Ntoso information in LegalRuleML (compact form).

i) Event definition in the Akoma

Ntoso metadata block

Event definition in LegalRuleML,

automatically extracted from the

Akoma Ntoso text using mouse-over

<lrml:TimeInstants>

<eventRef source="#rp5" id="e6"

type="amendment" date="1999-12-

09"/>

 <ruleml:Time key="t6">

 <ruleml:Data

xsi:type="xs:dateTime">1999-12-

09T00:00:00.0Z</ruleml:Data>

 </ruleml:Time>

</lrml:TimeInstants>

Intervals definition in Akoma

Ntoso in the metadata block

 <temporalData

source="#palmirani">

 <temporalGroup id="t5">

 <timeInterval

refersTo="#inforce" start="e6"/>

 <timeInterval

refersTo="#efficacy" start="e6"/>

 </temporalGroup>

 </temporalData>

Intervals definition in LegalRuleML

<lrml:TemporalCharacteristics

key="tblock1">

 <lrml:TemporalCharacteristic

key="e2-e">

 <lrml:forRuleStatus

iri="&lrmlv;#Efficacious"/>

 <lrml:hasStatusDevelopment

iri="&lrmlv;#Ends"/>

 <lrml:atTimeInstant

keyref="#t6"/>

 </lrml:TemporalCharacteristic>

</lrml:TemporalCharacteristics>

 Context of rule1 in LegalRuleML,

automatically built using Akoma

Ntoso information

<lrml:Context key="ruleInfo1" >

<lrml:appliesTemporalCharacteristics

keyref="#tblock1"/>

 <lrml:appliesStrength

iri="&lrmlv;defeasible"/>

 <lrml:appliesAssociations>

 <lrml:Associations

key="sourceBlock1">

 <lrml:Association>

<lrml:appliesSource keyref="#sec504-

clsc-lst1-pnt2"/>

 <lrml:toTarget

keyref="#rule1"/>

 </lrml:Association>

 </lrml:Associations>

 </lrml:appliesAssociations>

 <lrml:toRuleText

keyref="#rule1"/>

 </lrml:Context>

Text in Akoma Ntoso

<clause id="tit17-chp5-sec504-

clsc">

 <num>(c)</num>

 <heading>Statutory

Damages.</heading>

 <list id="tit17-chp5-sec504-

clsc-lst1">

Rule definition in LegalRuleML

connected to the textual provision

selected by mouse-over

<lrml:Penalty key="rule3-penalty1">

 <lrml:Obligation key="rule3-

penalty1-obl1">

 <ruleml:And>

 <ruleml:Atom key="rule3-

penalty1-obl1-axm1">

 <ruleml:Rel

 <point id="tit17-chp5-

sec504-clsc-lst1-pnt1">

 <num>(1)</num>

 <content>

<p>-Except as provided by clause

(2) of this subsection, the

copyright owner may elect, at any

time before final judgment is

rendered, to recover, instead of

actual damages and profits, an

award of statutory damages for

all infringements involved in the

action, with respect to any one

work, for which any one infringer

is liable individually, or for

which any two or more infringers

are liable jointly and severally,

in a sum of not less than <span

period="#t5">$750 or more

than <span

period="#t5">$30,000 as

the court considers just. For the

purposes of this subsection, all

the parts of a compilation or

derivative work constitute one

work.</p>

 </content>

 </point>

iri="&lrmlv;payFine"> min Pay

</ruleml:Rel>

 <ruleml:Var>X</ruleml:Var>

 <ruleml:Ind>750

</ruleml:Ind>

 </ruleml:Atom>

 <ruleml:Atom key="rule3-

penalty1-obl1-axm1">

 <ruleml:Rel

iri="&lrmlv;payFine"> Pay max

</ruleml:Rel>

 <ruleml:Var>X</ruleml:Var>

 <ruleml:Ind>30,000

</ruleml:Ind>

 </ruleml:Atom>

 </ruleml:And>

 </lrml:Obligation>

 </lrml:Penalty>

5. From LegalRuleML Meta-model to RDF Serialization

LegalRuleML was designed based on a meta-model1 that defines relationships among

different classes of the elements in the XML-schema. For helping this approach the

technical author of the XML-schema (Tara Athan) implemented also several rdfs

schemas. The following fragment of rdfs schema shows the relationship among the

element <lrml:Role> and the property <lrml:appliesRole>. Following this

approach all the elements that start with lower case are edges and the elements that

start with upper case are nodes of a graph.

<rdfs:Class rdf:about="#Role">

 <rdfs:isDefinedBy rdf:resource="&lrmlmm;#"/>

 <rdfs:label>Role</rdfs:label>

 <rdfs:comment>The class of roles played by agents relative to

LegalRuleML things.</rdfs:comment>

 <rdfs:subClassOf rdf:resource="#Thing"/>

</rdfs:Class>

<rdf:Property rdf:about="#appliesRole">

 <rdfs:isDefinedBy rdf:resource="&lrmlmm;#"/>

 <rdfs:label>appliesRole</rdfs:label>

1 Meta model is now under revision and the authors take this version from the OASIS

repository: https://tools.oasis-open.org/version-
control/browse/wsvn/legalruleml/trunk/schemas/?rev=71&sc=1

 <rdfs:comment>A role applied to the targets by

 the subject association or rule context.

 </rdfs:comment>

 <rdfs:domain rdf:resource="#AssociationOrContext"/>

 <rdfs:range rdf:resource="#Role"/>

</rdf:Property>

Using this meta-model it is possible to extract some relationships among elements.

Some assertions in RDF format about the knowledge base rules are possible

especially from the <lrml:Context>. These assertions build a set of RDF triples

useful for improving information retrieval of the legal rules, and related legal textual

sources, in the Semantic Web. The contextualization of the legal rules (e.g.

Jurisdiction, Author, Authority, etc.) permits to create enriched connection with the

Linked Open Data Cloud (e.g. geo-localization of the legal rules on the maps):

<rdf:RDF xmlns:rdf="&rdf;#" xmlns:rdfs="&rdfs;#" xmlns:xs="&xs;"

xmlns:rulemlmm="&rulemlmm;#" xmlns:lrmlmm="&lrmlmm;#">

 <rdf:Description rdf:about="www.example.2.1.1.xml#rule1">

 <lrmlmm:appliesRole>

 <lrmlmm:Role rdf:about="&lrmlv;#Author">

 <lrmlmm:filledBy

rdf:resource="http://monica.palmirani.cirsfid.unibo.it"/>

 </lrmlmm:Role>

 </lrmlmm:appliesRole>

 <lrmlmm:appliesSource rdf:resource="&akn;#sec504-clsc-pnt1"/>

 <lrmlmm:appliesSource rdf:resource="&akn;#sec504-clsc-pnt1"/>

 <lrmlmm:appliesStrength rdf:resource="&lrmlv;defeasible"/>

 <lrmlmm:appliesJurisdiction rdf:resource="&jurisdictions;us"/>

 <lrmlmm:appliesAuthority rdf:resource="&authorities;congress"/>

 </rdf:Description>

</rdf:RDF>

The same mechanism should be applied to the other assertions included in the
<lrml:Context>.

6. RAWE Functionality

RAWE permits the following functionalities:

• Authentication of the end-user and customization of the environment according

with the personal profile (e.g., legal system, legal tradition, legal guidelines);

• Multilanguage interface and environment;

• Customized interface and buttons on the basis of the user profile;

• Mark-up of a legal text with Akoma Ntoso standard using parsers to automatically

detect the normative references, dates, metadata, and structure of legal documents;

• Record of the XML files in the eXist repository [21];

• Tree of the marked-up elements;

• On-the-fly view in Akoma Ntoso and in LegalRuleML;

• Conversion and export in PDF, XML, ePub, or RDF format;

• Web editor environment with WYSIWIG interface;

• Undo function;

• Contextual functionalities based on the XML tree and XML-schemas;

• Mouse-over for detecting the metadata of a portion of legal text and reuse for

modelling legal rules;

• Toolbar for marking up the document’s structure;

• Toolbar for marking up legal rules.

Fig. 2 – RAWE Web editor for marking up legal texts and normative rules

There are some critical points that we have faced in the RAWE implementation

using HCI techniques:

• Contextual Composition of the Rule. In LegalRuleML we have three groups of

rules: Prescriptive, Constitutive and Behaviors. Each group permits some particular

modeling following the legal theory (e.g. Prescriptive rule is a sequence of deontic

operators, Penalty needs a separate regime, Constitutive rule doesn’t include

deontic operators, etc.). For this reason RAWE needs to take in consideration the

LegalRuleML prescriptive grammar constraints and lead the end user to compose

the rules correctly.

• Reparation is a binary relationship between a penalty and a prescriptive rule or

violation. So we found a smart interface way to select the two parts of the

relationship and to connect them to each other.

• Metadata in Context. If we need to refine or readjust the context and the related

metadata, we need a new toolbar and panel. RAWE permits to readjust the

metadata imported by Akoma Ntoso and to add new ones.

• Extra isomorphism rules. Sometimes we need to include extra rules not directly

linked to the legal text. RAWE permits to model this particular situation.

However other some critical issues need to be addressed in the future:

• Ontology. Some elements of the rule modeling need to be enriched with the

definitions of an external vocabulary or ontology (e.g. LKIF[10]).

• Key. We need to create a naming convention to harmonize the ID definition.

• Meta-Rules. In the future LegalRuleML will be also be able to manage meta-rules

(rules about other rules), and we need to find a mechanism for linking rules as

antecedents and consequents.

• Multiple interpretation. In this version of the editor is not possible to have

multiple interpretations of the same legal textual document fragment.

• Granularity. For now the granularity of the isomorphism is on the rule. In the

future we will be able to also manage the same functionality on the body, head, and

atom.

Fig. 3 – RAWE conversion of a rule in the LegalRuleML standard

7. The RAWE Architecture

RAWE is a specialized Web editor developed using several open-source technologies,

such as Sencha ExtJS 4.1 and TinyMCE.

Sencha ExtJS is an MVC framework that makes it possible to build an

extraordinarily rich Web application. It supplies the instruments with which to easily

develop the core of the application based on the Model View Controller pattern, and,

moreover, it comes with a big range of user interface widgets. The other core strength

of ExtJS lies in its component design. If the developer needs a new component that is

not yet developed, the default components can be extended and the result is

encapsulated in the default components. ExtJS is also completely cross-browser, so it

is possible to deliver the application on a wide range of browser and operating

systems. The latest smart phone and tablet browser are also covered, so it is possible

to use ExtJS-based applications with touch screens and gestures.

TinyMCE is a platform-independent Web-based Javascript HTML WYSIWYG

editor control. It can convert HTML text area fields or other HTML elements into

editor instances. We integrated it into ExtJS, developing a new component for the

framework. The component retains all the functionality of the TinyMCE editor, but

the effects of those functionalities are intercepted by the core of the ExtJS application.

With this strategy, each event handled by the editor simply fires other events handled

by the other components of the application. This means that there is no specific

semantic on which TinyMCE itself

relies, and TinyMCE can be

substituted on demand with other

open-source WYSIWYGs.

The editor uses the HTML5

standard in order to mark up

documents. When an element is

marked up, it is wrapped by a

generic HMTL element (such as

span or div), and various classes are

assigned to it in order to give to it

semantic meaning for the editor

itself and for the tool in charge of

translating it into the desired

document format. This means that

there is not a meta markup language

in the middle of a translation from

HTML to another document format,

and this carries the benefit of

preventing data loss and having

immediate access to the HTML version of the document without further conversions.

8. Conclusion

We have presented RAWE, a Web editor for marking up legal rules exploiting the

previous markup of legal texts in Akoma Ntoso. RAWE is developed to enable

application of the isomorphism principle; nevertheless, it is also open to the addition

of rules not properly linked with the legal textual provisions, this in order to permit

multiple interpretations or the inclusion of implicit rules. RAWE transforms all the

rules in LegalRuleML and it saves them in a native XML repository, eXist. It is also

possible to export the outcomes to a XML file. Finally, RAWE can convert in RDF

the <lrml:Context> for creating a repository capable, in the future, of implementing

an endpoint SPARQL for managing a better filter of legal resources in the Linked

Open Data Cloud. Future work will be focused on the critical points stressed in the

paper for managing advanced features.

References

[1] Athan T., Boley H., Governatori G., Palmirani M., Paschke A., Wyner A.: OASIS LegalRuleML. In

Bart Verheij, ed, Proceedings of 14th International Conference on Artificial Intelligence and Law

(ICAIL 2013). ACM, 2013.

[2] Barabucci G., Cervone L., Palmirani M., Peroni S., Vitali F.: Multi-layer Markup and Ontological

Structures in Akoma Ntoso. In: LNCS 6237/2010, pp. 133-149, Springer, 2010.

[3] Bench-Capon T. and Coenen F.: Isomorphism and legal knowledge based systems. Artificial

Intelligence and Law, 1(1):65–86, 1992.

[4] Boella G., Governatori G., Rotolo A., Torre L.V.D.: A Formal Study on Legal Compliance and

Interpretation. ;In AICOL Workshops(2009), Springer, 162-183, 2011.

[5] Boer A., Hoekstra R., de Maat E., Hupkes E., Vitali F., Palmirani M., Rátai B.: CEN Metalex

Workshop Agreement (2009-08-28 proposal). http://www.metalex.eu/WA/proposal.

[6] Breuker J., Boer A., Hoekstra R., Van Den Berg C.: Developing Content for LKIF: Ontologies and

Framework for Legal Reasoning, in Legal Knowledge and Information Systems, JURIX 2006, pp.41-

50, ISO Press, Amsterdam, 2006.

[7] Brighi R., Lesmo L., Mazzei A., Palmirani M., Radicioni D.: Towards Semantic Interpretation of

Legal Modifications through Deep Syntactic Analysis. JURIX 2008: 202-206, 2008.

[8] Ceci, M., and Gordon, T. F.: Browsing case-law: An application of the carneades argumentation

system. In Proceedings of the RuleML2012@ECAI Challenge, H. Aït-Kaci, Y.-J. Hu, G. J. Nalepa,

M. Palmirani, and D. Roman, Eds., vol. 874, pp. 79-95.

[9] Gordon T. F., Governatori G., Rotolo A.: Rules and Norms: Requirements for Rule Interchange

Languages in the Legal Domain. RuleML 2009: pp. 282-296, Springer, 2009.

[10] Gordon T. F.: Constructing Legal Arguments with Rules in the Legal Knowledge Interchange Format

(LKIF). In: Computable Models of the Law, Languages, Dialogues, Games, Ontologies (2008), pp.

162-184, Springer, 2008.

[11] Gordon, T. F.: The Carneades web service. In Computational Models of Argument – Proceedings of

COMMA 2012, B. Verheij, S. Szeider, and S. Woltran, Eds., IOS Press, pp. 517-518.

[12] Hoekstra R., Breuker J., Di Bello M., Boer A.: The LKIF Core Ontology of Basic Legal Concepts. In:

Casanovas P., Biasiotti M.A., Francesconi E., Sagri M.T. (eds.), Proceedings of LOAIT 2007, 2007.

[13] http://www.akomantoso.org/ naming convention of the URI

[14] Kelsen H.: Reine Rechtslehre, 2d. ed., Wien, 1960.

[15] Lam H., Governatori G.: The Making of SPINdle. RuleML 2009 proceeding, pp. 315-322, 2009.

[16] Lupo C., Vitali F., Francesconi E., Palmirani M., Winkels R., de Maat E., Boer A., and Mascellani P:

General xml format(s) for legal sources - Estrella European Project IST-2004-027655. Deliverable

3.1, Faculty of Law, University of Amsterdam, Amsterdam, The Netherlands, 2007.

[17] Mazzei A., Radicioni D., Brighi R.: NLP-based extraction of modificatory provisions semantics.

ICAIL 2009: pp. 50-57, ACM, 2009.

[18] Mommers L.: Ontologies in the Legal Domain. In: Poli R., Seibt J. (eds.), Theory and Applications of

Ontology: Philosophical Perspectives, Springer 2010, pp. 265-276, 2010.

[19] Palmirani M., Brighi R.: An XML Editor for Legal Information Management. Proceeding of the

DEXA 2003, Workshop on E-Government, Praga, 1-5 September, pp. 421-429. Springer-Verlag

Berlin Heidelberg, 2003.

[20] Palmirani M., Brighi R.: Model Regularity of Legal Language in Active Modifications. AICOL

Workshops 2009: pp. 54-73, Springer, 2009.

[21] Palmirani M., Cervone L.: Legal Change Management with a Native XML Repository. A cura di G.

Governatori. Legal Knowledge and Information Systems. JURIX 2009. The Twenty-Second Annual

Conference. Rotterdam. 16th-18th December 2009,pp. 146-156, Amsterdam: ISO press, 2009.

[22] Palmirani M., Contissa G., Rubino R: Fill the Gap in the Legal Knowledge Modelling. In Proceedings

of RuleML 2009, pp. 305-314, Springer, 2009.

[23] Palmirani M., Governatori G., Rotolo A., Tabet S., Boley H., Paschke A.: LegalRuleML: XML-Based

Rules and Norms. RuleML America 2011: 298-312, Springer, 2011.

[24] Palmirani M., Governatori G., Rotolo A., Tabet S., Boley H., Paschke A.: Legal-RuleML: XML-

Based Rules and Norms. RuleML America, Springer, 2011, pp.298-312.

[25] Palmirani M.: Legislative Change Management with Akoma-Ntoso, in Legislative XML for the

Semantic Web, Springer, Law, Governance and Technology Series Volume 4, 2011, pp 101-130.

[26] Sartor G.: Legal Concepts as Inferential Nodes and Ontological Categories. In Artif. Intell. Law 17(3)

2009, pp. 217-251, 2009.

[27] Sartor G.: Legal Reasoning: A Cognitive Approach to the Law. Vol. 5. Treatise on Legal Philosophy

and General Jurisprudence. Berlin: Springer, 2005.

[28] Vitali F., Palmirani M.: Akoma Ntoso Release Notes. [http://www.akomantoso.org]. Accessed 5 July

2013.

R-CoRe: A Rule-based Contextual Reasoning
Platform for AmI ?

Assaad Moawad1, Antonis Bikakis2, Patrice Caire1, Grégory Nain1 and Yves
Le Traon1

1 University of Luxembourg, SnT
firstname.lastname@uni.lu

2 Department of Information Studies, University College London
a.bikakis@ucl.ac.uk

Abstract. In this paper we present R-CoRe; a rule-based contextual
reasoning platform for Ambient Intelligence environments. R-CoRe in-
tegrates Contextual Defeasible Logic (CDL) and Kevoree, a component-
based software platform for Dynamically Adaptive Systems. Previously,
we explained how this integration enables to overcome several reason-
ing and technical issues that arise from the imperfect nature of context
knowledge, the open and dynamic nature of Ambient Intelligence en-
vironments, and the restrictions of wireless communications. Here, we
focus more on technical aspects related to the architecture of R-Core,
and demonstrate its use in Ambient Assisted Living.

Keywords: contextual reasoning, distributed reasoning, Ambient Intel-
ligence, system development

1 Introduction

Ambient Intelligence (AmI) is a new paradigm of interaction among agents act-
ing on behalf of humans, smart objects and devices. Its goal is to transform our
living and working environments into intelligent spaces able to adapt to changes
in contexts and to their users’ needs and desires. This requires augmenting the
environments with sensing, computing, communicating and reasoning capabil-
ities. AmI systems are expected to support humans in their every day tasks
and activities in a personalized, adaptive, seamless and unobtrusive fashion [6].
Therefore, they must be able to reason about their contexts, i.e. with any infor-
mation relevant to the interactions between the users and system.

Reasoning models and methods are therefore essential to: interpret and in-
tegrate context data from various information sources; infer useful conclusions
from the raw context data; and enable systems to make correct context-aware de-
cisions in order to adapt to changes in the environment and to their users’ needs,
intentions and desires. The challenges in these tasks are primarily caused by the

? The present research is supported by the National Research Fund, Luxembourg,
CoPAInS project (code: CO11/IS/1239572).

imperfection of context data, the open and dynamic nature of AmI environ-
ments and the heterogeneity of participating devices. According to [12], context
data in AmI environments may be unknown, imprecise, ambiguous or erroneous.
It is typically distributed among devices with different computing capabilities
and representation models, which may join or leave the environment at random
times and without prior notice. Moreover, devices communicate using wireless
networks, which are unreliable and restricted by the range of transmitters.

In previous works we classified existing contextual reasoning approaches into
three main categories [3]: ontological approaches, which use Description Logics to
derive implicit knowledge from the existing context data; rule-based approaches,
which are based on more expressive logics; and probabilistic approaches, which
use Bayesian networks or other probabilistic models to explicitly model uncer-
tainty in the context data. In the same paper we argued that, compared to oth-
ers, rule-based approaches offer significant advantages, such as simplicity and
flexibility, formality, expressivity, modularity, high-level abstraction and infor-
mation hiding. In [2] we introduced Contextual Defeasible Logic (CDL): a new
distributed, non-monotonic approach for contextual reasoning, which enables
heterogeneous entities to collectively reason with uncertain and ambiguous in-
formation. In order to enable the deployment of CDL in real environments, in
[15] we proposed the integration of CDL in Kevoree [8] - a software framework
that facilitates the development of Distributed Dynamically Adaptive Systems.

In this paper, we present R-CoRe, a Rule-based Contextual Reasoning Plat-
form of Ambient Intelligence, which is the outcome of this integration. The main
features of R-CoRe are:

1. It is totally distributed. Entities are represented as Kevoree nodes and com-
municate through dedicated communication channels.

2. It is rule-based. The local knowledge of each entity is modeled as a CDL
theory and knowledge exchange is enabled by mapping rules.

3. It enables handling inconsistencies that arise from the integration of knowl-
edge from different sources using preferences, which reflect the confidence
that each node has in the quality of knowledge imported by other nodes.

4. It is dynamic and adaptive. Using the auto-discovery capabilities of Kevoree,
it can handle cases of devices that join or leave the system at any time.

We developed R-CoRe for the needs of the CoPAInS project1 (Conviviality
and Privacy in Ambient Intelligence Systems). CoPAInS focuses on the tradeoffs
to be made in Ambient Assisted Living systems [16], particularly as they pertain
to conviviality, privacy and security [7]. In this framework, R-CoRe is used for
the simulation of AAL scenarios, with which we test and validate our methods.

The remaining of the paper is structured as follows: Section 2 briefly presents
the theoretical background of this work. Section 3 describes our running AAL
example. Section 4 presents the main features of Kevoree. Section 5 presents in
detail the R-CoRe architecture, while Section 6 demonstrates its use in Ambient
Assisted Living. Section 7 concludes and presents our plans for future work.

1 http://wwwen.uni.lu/snt/research/serval/projects/copains

2 Background

The underlying reasoning model of R-CoRe is Contextual Defeasible Logic (CDL
[2,5]). CDL is a non-monotonic extension of Multi-Context Systems specifically
designed for the requirements of Ambient Intelligence systems. Multi-Context
Systems (MCS [11,10]) are logical formalizations of distributed context theories
connected through mapping rules, which enable information flow between con-
texts. In MCS, a context can be thought of as a logical theory - a set of axioms
and inference rules - that models local knowledge. CDL extends the original MCS
with defeasible mapping rules to capture the uncertainty of the knowledge that
an agent imports from external sources; and with a preference ordering on the
system contexts, which is used to resolve the potential inconsistencies that may
arise from the information exchange between mutually inconsistent contexts.

In CDL, a MCS C is a set of contexts Ci: A context Ci is defined as a
tuple of the form (Vi, Ri, Ti), where Vi is the vocabulary of Ci (a set of positive
and negative literals of the form (ci : ai)), Ri is a set of rules, and Ti is a
preference ordering on C. Ri consists of a set of local rules, which represent
the local knowledge of an agent, and a set of mapping rules, through which
agents may share parts of their local knowledge. The body of a local rule is a
conjunction of local literals (literals that are contained in Vi), and its head is
labeled by a local literal too. A mapping rule, on the other hand, contains both
local and foreign literals (literals from the vocabularies of other contexts) in its
body, while its head is labeled by a local literal:

rmi : (cj : a1), . . . , (ck : an−1) ⇒ (ci : an)

By representing mappings as defeasible rules and by ordering contexts in terms
of preference, CDL enables handling inconsistencies that arise when importing
conflicting information from different contexts.

We have obtained the following results for CDL: a proof theory [4]; an argu-
mentation semantics [2]; four algorithms for distributed query evaluation and a
complexity analysis [5]. The algorithms proceed roughly as follows: when a con-
text Ci receives a query about one of its local literals (ci : ai), it first attempts
to evaluate its truth value using its local rules only. If this is not possible, it gen-
erates the proof trees for (ci : ai) and its negation ¬(ci : ai), using the local and
mapping rules of Ci. For each of the foreign literals (cj : bj) contained in one of
the two proof trees, it generates a similar query and sends it to the appropriate
context (Cj). In case of conflict, i.e.. the truth values of all literals in both proof
trees are true, Ci compares the proof trees using preference information from Ti.

We applied CDL in real scenarios of Mobile Social Networks [1] and Ambient
Intelligence [5], and showed how it addresses issues that arise from the imper-
fection of context data. In [15], we discussed some of its limitations with regard
to its deployment in real environments, and explained how its integration with
Kevoree enabled us to overcome several technical issues related to communica-
tion, detection, adaptability and dynamicity. Here we focus more on technical
aspects of this integration, and demonstrate the use of the integrated framework,
R-CoRe, in an example scenario from Ambient Assisted Living.

3 An Ambient Assisted Living Example

Below we present an Ambient Assisted Living (AAL) scenario, part of a series
of scenarios validated by HotCity, the largest WI-FI network in Luxembourg, in
the Framework of the CoPAInS project.

In our scenario, visualized in Figure 1, the eighty-five years old Annette is
prone to heart failures. The hospital installed a Home Care System (HCS) at her
place. One day, she falls in her kitchen and cannot get up. The health bracelet
she wears gets damaged and sends erroneous data, e.g., heart beat and skin
temperature, to the HCS. Simultaneously, the system analyzes Annette’s activ-
ity captured by the Activity Recognition Module (ARM). Combining all the
information to Annette’s medical profile, and despite the normal values trans-
mitted by Annette’s health bracelet, the system infers an emergency situation.
It contacts the nearby neighbors asking them to come and help.

emergency

prone to
heart attack normal pulse

lying on
the floor

Fig. 1. Context Information flow in the scenario.

This scenario exemplifies challenges raised when reasoning with the avail-
able context information in Ambient Intelligence environments. Furthermore, it
highlights the difficulties in making correct context-dependent decisions.

First, context knowledge may be erroneous. In our example, the values trans-
mitted by the health bracelet for Annette’s heart beat and skin temperature, are
not valid, thereby leading to a conflict about Annette’s current condition. Sec-
ond, local knowledge is incomplete, in the sense that none of the agents involved
has immediate access to all the available context information. Third, context
knowledge may be ambiguous; in our scenario, the HCS receives mutually in-
consistent information from the ARM and the health bracelet. Fourth, context
knowledge may be inaccurate; for example, Annette’s medical profile may contain
corrupted information. Finally, devices communicate over a wireless network.
Such communications are unreliable due to the nature of wireless networks, and
are also restricted by the range of the network. For example, the health bracelet
may not be able to transmit its readings to HCS due to a damaged transmitter.

4 Kevoree - A component based software platform

On the one hand, in Ambient Assisted Living (AAL), systems need to be adapted
to users preferences and contexts. They also need to combine various data and
reason about it, but the imperfect nature of context makes this task very chal-
lenging. Returning to our use case, the HCS receives data from different devices,
and many situations may occur causing the data to be erroneous, e.g., Annette
may have left her health bracelet next to her bed instead of wearing it, or the
battery capability may be weak and preventing the bracelet from transmitting
any data.

On the other hand, CDL allows to manage uncertainty and reason about
it. The problem remains to apply such theoretical tools to the AAL domain in
order to solve the very concrete challenges affecting patients. In this section,
we present the Kevoree environment, which we use to address such issues by
implementing the CDL reasoning model. This is illustrated in Figure 2.

Fig. 2. Kevoree bridges the AAL needs to the theoretical model of CDL.

4.1 Kevoree: Modeling Framework and Components

Kevoree [8] is an open-source environment that provides means to facilitate the
design and deployment of Distributed Dynamically Adaptive Systems, taking
advantage of Models@Runtime [17] mechanisms throughout the development
process.

This development platform is made of several tools, among which the Kevoree
Modeling Framework (KMF) [9], a model editor (to assemble components to cre-
ate an application), and several runtime environments, from Cloud to JavaSE or
Android platforms. The component model of Kevoree defines several concepts.
The rest of this section describes the most interesting ones in relation to the
content of this paper.

Fig. 3. A component in-
stance, inside the node in-
stance on which it exe-
cutes

The Node (in grey in figure 3) is a topological rep-
resentation of a Kevoree runtime. There exist differ-
ent types of nodes (e.g.: JavaSE, Android, etc.) and a
system can be composed of one, or several distributed
heterogeneous instances of execution nodes.

Component instances are deployed and run on a
node instance, as presented on figure 3. Components
may also be of different types, and one or more, het-
erogeneous or not, component instances may run on

a single node. Components declare Ports (rounds on left and right sides of the
component instance) for provided and required services, and input and output
messages. The ports are used to communicate with other components of the
system.

Fig. 4. An in-
stance of Group
on top, of Chan-
nel on the bot-
tom

Groups (top shape in figure 4) are used to share models
(at runtime) between execution platforms (i.e. nodes). There
are different types of Groups, each of which implements a dif-
ferent synchronization / conciliation / distribution algorithm.
Indeed, as the model shared is the same for all the nodes,
there may be some concurrent changes on the same model,
that have to be dealt with.

Finally (for the scope of this paper), Channels (bottom
shape in figure 4) handle the semantics of a communication
link between two or more components. In other words, each
type of channel implements a different means to transport a
message or a method call from component A to component B,
including local queued message list, TCP/IP sockets connec-
tions, IMAP/SMTP mail communications, and various other
types of communication.

4.2 Kevoree Critical Features

Kevoree appears to be an appropriate choice to provide solutions for the de-
velopment of Ambient Intelligence systems, as it can deal with their dynamic
nature. In such systems, agents are often autonomous, reactive and proactive in
order to collaborate and fulfil tasks on behalf of their users.

In Kevoree, an agent is represented as a node that hosts one or more compo-
nent instances. The node is responsible for the communication with other nodes
by making use of the synchronization Group. Some group types implement al-
gorithms with auto-discovery capabilities, making nodes and their components
dynamically appear in the architecture model of the overall system. The fact
that a new node appears in the model means that an agent is reachable, but it
does not necessarily mean that it participates in any interaction. The component
instances of a node provide the services for the agent. Therefore, for an agent to
take part in a collaborative work, the ports of the component instances it hosts
have to be connected to some ports of other agents’ components.

Some features of Kevoree make it particularly suitable for our needs. First,
it enables the implementation, deployment and management of heterogeneous
entities as independent nodes. Second, it uses communication channels to enable
the exchange of messages among the distributed components. Third, it offers a
common and shared representation model for different types of nodes. Finally,
it is endowed with adaptive capabilities and auto-discovery, which fit with the
open and dynamic nature of AmI environments.

In the next section, we detail how we exploit the features of Kevoree and
integrate them with CDL to create our AAL platform.

5 R-CoRe Architecture

In this section, we describe how CDL and Kevoree are integrated in the R-CoRe
architecture. We should note that the parts of CDL, which were not directly
mapped to existing elements Kevoree, were implemented in Java.

5.1 Java Library

Our Java implementation is composed of a main rcore package containing 4 sub-
packages: agencies, interceptor, knowledge, logic packages and the main Query
component class.

Fig. 5. General overview of R-CoRe.

– The agencies package contains the classes used by the query servant thread,
which implements the reasoning algorithms of CDL [5]. This package con-
tains also the Query class and the QueryResponse class. These classes rep-
resent the massages that will be exchanged between QueryComponents.

– The interceptor package contains the model, the view and the controller of
the interceptor component. The controller is a component developed to run
on the Kevoree platform.

– The knowledge package includes the KnowledgeBase class, which stores the
local rule theory, the mapping rules and the preference order of each node.
This class contains also the methods used to load and save the knowledge
base and preference order from and to files.

– The logic package contains the classes that represent (in memory) the literals
and rules.

– Finally the query package contains the QueryComponent class, which is the
main component developed to run on the Kevoree platform.

Figure 5 shows a UML overview of our implementation.

5.2 Query Component

In our platform, the notion of context, is implemented by a new component type
that we developed, called Query Component. This component has two inputs:
Console In and Query In, and two outputs: Console out and Query Out. The
Query Component has three properties: a Name, an initial preference address
and an initial knowledge base address. In Kevoree, each instance must have a
unique name. In R-CoRe, we use this unique name to specify the sender or the
recipient of a query. The preference address and the knowledge base address
contain the addresses of the files to be loaded when the component starts. The
knowledge base file contains the rule set of a context, while the preference file
contains the preference order of the context implemented as a list.

Each component has two console (in/out) and two query (in/out) ports. The
console input port is used to send commands to the component, e.g. to update
its knowledge base or change its preference order. The outputs of the commands
are sent out to the console output port. The query in/out ports are used when a
component is sending/receiving queries to/from other components. Queries are
sent via the “Query out” port and responses are received via “Query In”.

Internally, the Query Component has some private variables, which represent
its knowledge base, the preference order and a list of query servant threads
currently running on it. When the component receives a new query, it creates
a new query servant thread dedicated to solve the query and adds it to the list
of currently running query threads. When this thread reports back the result of
the query, it is killed and removed from the list.

5.3 Query Servant

When a query servant thread is created, it is always associated with an ID and
with the query containing the literal to be solved, and it is added to the list
of running threads of the query component. The query servant model works as
follows:

1. The first phase consists of trying to solve the query locally using the local
knowledge base of the query component. If a positive/negative truth value
is derived locally, the answer is returned and the query servant terminates.

2. The second phase consists of enumerating the rules in the knowledge base
that support the queried literal as their conclusion. For each such rule, the
query servant initiates a new query for each of the literals that are in the body
of the rule. For foreign literals, the queries are dispatched to the appropriate

remote components. After initiating the queries, the query servant goes into
an idle state through the java command “wait()”.

3. When responses are received, the query servant thread is notified. Phase two
is repeated again, but this time using the rules that support the negation of
the queried literal.

4. The last step is to resolve the conflict by comparing the remote components
that were queried for the two literals using the context preference order. The
result is reported back to the query component.

5.4 Query Interceptor

In order to monitor and control all the exchanges happening between the Query
components, we created a Query Interceptor component. It’s main job is to
capture all the queries transiting on the exchange channel, display them on a
graphical interface to the users, and allow the users to forward them manually
afterwards. This component serves two purposes: It enables demonstrating the
reasoning process using a single graph that is created in a step by step fashion;
it also facilitates debugging the system by centralizing all the exchanges in one
component.

The Graphical interface of the Query Interceptor has two parts: the graph on
the left that is used to visualize the information exchange; and the user controls
on the right. When a query is sent from a component a to a component b through
the interceptor, two vertices, a and b, and an edge from a to b are added to the
graph. If the Interceptor is set to the demo-mode (by selecting a check box
called ”demo mode“ on the Graphical User Interface GUI), the query is paused
at the interceptor, and the user has to click the Next button in order to actually
forward the query from the interceptor to component b. The same happens when
a response is sent from b to a. If the demo-mode is not selected, all the queries
and responses are forwarded automatically without any intervention of the user
as if the Interceptor is transparent or turned off. The Interceptor also contains
Reset button, which clears the graph and restarts the monitoring.

On the Kevoree platform, the Query Interceptor component has two ports:
Query In port that receives all the queries sent from the Query components,
and a Query out port to forward the query back to the components after being
displayed on the Interceptor GUI.

5.5 Query class and loop detection mechanism

The query Java class that we developed for R-CoRe has the following attributes:
the queried literal, the name of the component that initiated the query (query
owner), the name of the component to which the query is addressed (query
recipient), the id of the query servant thread that is responsible for evaluating
the query, a set of supportive sets (set of foreign literals that are used for the
evaluation of a query), and a list that represents the history of the query. The
history is used to track back to the origin of the query by a loop detection
mechanism, which we have integrated in the query evaluation algorithm.

As the query evaluation algorithm is distributed, we cannot know a-priori
whether a query will initiate an infinite loop of messages. The loop detection
mechanism that we developed detects and terminates any infinite loops. The
simple case is when a literal (ci : a) in component Ci depends on literal (ck : b)
of component Ck, and vice-versa. The loop detection mechanism works as follows:
each time the query servant inquires about a foreign literal to solve the current
query, it first checks that the foreign literal in question does not exist in the
history of the current query, and if not, it generates a new query for the foreign
literal by integrating the history of the current query into the history of the new
one. This way, a query servant is only allowed to inquire about new literals.

6 Demonstrating R-Core

6.1 Setup

Fig. 6. The running example implemented, a snapshot of the Kevoree Editor.

Applying the above methodology on the running example described in section
3, we created 5 Query Component instances, each one representing one of the
devices or elements of the scenario: the sms module, the bracelet, the medical
profile, the ARM and the Home Care System. According to the scenario, the sms
module must determine whether to send messages to the neighbors according to
a predefined set of rules. Using a console component of Kevoree that we attached
to the sms module, we are able now to initiate queries on the sms module.

Figure 6 shows our experimental setup, which involves the 5 query compo-
nents, the console connected to the sms module (FakeConsole) and the Query
Interceptor component. Note that all query input and output ports of the query
components are connected to the Interceptor in order to allow us to capture all
the exchanges for our demo session.

Table 1. Initialization of the components of the running example

File Name File contents

SMSModuleKB.txt M1: (hcs:emergency) → (sms:dispatchSMS)

BraceletKB.txt L1: → (br:normalPulse)

MedProfileKB.txt L1: → (med:proneToHA)

ArmKB.txt L1: → (arm:lyingOnFloor)

HCSKB.txt M1: (br:normalPulse) ⇒ ¬(hcs:emergency)

M2: (arm:lyingOnFloor), (med:proneToHA) ⇒ (has:emergency)

HCSPref.txt med, arm, br

Before pushing the model from the Kevoree editor to the Kevoree runtime
(i.e.: the node that will host the instances), we setup the properties of the com-
ponents to initialize their knowledge bases and preference orders as described
in Table 1. For instance, the sms component is initiated with a knowledge base
containing one mapping rule (M1) that states that if (hcs : emergency) of
hcs is true, then (sms : dispatchSMS) of the sms module will also be true.
HCSPref.txt contains the preference order of hcs, according to which the infor-
mation imported by the medical profile is preferred to that coming from the
ARM, which is in turn preferred to that coming from the bracelet.

6.2 Execution

After pushing the model to the Kevoree runtime, a console appears allowing us to
interact with the SMS module. We initiate a query about (sms : dispatchSMS)
on the console by typing dispatchSMS on the console of the SMSModule.2

The SMS module starts a new query servant which initiates in its turn a new
query about (hcs : emergency). This query is captured by the interceptor and it

2 You can run the demo and access its source code and all other necessary files at:
https://github.com/securityandtrust/ruleml13.

https://github.com/securityandtrust/ruleml13

is displayed on the graph GUI; in fact two nodes representing the SMSModule
and HCS are added to the graph. If the demo mode of the interceptor is selected,
the user has to click on Next button each time to forward a query from one
component to another. This step-by-step mode is very useful to understand the
actual interactions and to slow down the exchanges.

The knowledge base of hcs contains one rule supporting (hcs : emergency),
M2, and another one supporting its negation, M1. hcs evaluates both rules and
resolves the conflict using its preference order. Finally, it sends back the result
of the query to the first query servant, which in turn computes and returns a
positive truth value for (sms : dispatchSMS). Each time a query or a query
response is generated from any component and dispatched to any other, the
interceptor captures it, adds it to the graph, and waits for the user to click Next
before forwarding the query or the response to the appropriate component.

Fig. 7. Different steps of execution of the running example.

Screen-shots from the demo during different steps of execution are displayed
in figure 7. Following this, the SMS module will display, on the console connected
to smsModule, the answer for dispatchSMS, which in this case is true.

7 Conclusion and Future Work

In this paper, we presented R-CoRe: a Rule-based Contextual Reasoning frame-
work for Ambient Intelligence and demonstrated its use Ambient Assisted Liv-
ing. Being based on Contextual Defeasible Logic, R-CoRe enables reasoning with
imperfect context data in a distributed fashion. The capabilities of the under-
lying software platform, Kevoree, further enables R-CoRe to overcome several
technical issues related to communication, information exchange and detection.

R-CoRe still has some technical limitations. As it deals with real components,
we must assume limited memory, battery, computation and power resources.
These limitations vary widely from a component to another depending on the
nature of the component, its size and its technical complexity. For the current
implementation, we have limited the knowledge base size to a maximum of 500
literals and rules. We have also limited the time-out for 10 seconds, so that if
a component does not receive an answer to its query within 10 seconds, the
corresponding thread server will send a time-out response, and the query will
automatically expire. This limits the maximum number of hops that a query
can make before it expires, which in turn limits the communication resources, as
some communication channel might not be free (over sms for example). With the
current settings, we can easily implement small-scale AAL scenarios. However,
dealing with more complex scenarios requires a more scalable methodology. To
address such needs, we are already working on solutions that offer trade-offs
between computation time, memory and communication between devices, and
we are redesigning our algorithms so that they are able to adapt between different
strategies depending on the available resources.

Another issue is with the development of the rule theories. In this version of
R-CoRe, users have to use the syntax of CDL to create the rule and preference
bases of each node. A future plan is to develop or integrate appropriate rule-
editing tools that will enable plain users to create and configure the rule and
preference bases using simple natural-language-based constructs. A tool that
we can use for such purposes is S2DDREd [13]: an authoring tool for Defeasible
Logic, which provides the users with semantic assistance during the development
of rule theories.

In the future, we also plan to extend CDL to support shared pieces of knowl-
edge, which are directly accessible by all system contexts, and implement this
extension in R-CoRe using the groups feature of Kevoree (see section 4). This
will enable different devices operating in an Ambient Intelligence environment to
maintain a common system state. We also plan to develop and implement reac-
tive (bottom-up) reasoning algorithms, which will be triggered by certain events
or changes in the environment. Such types of algorithms fit better with the adap-
tive nature of Ambient Intelligence systems, and may be particularly useful in
AAL contexts. We will also study the integration of a low-level context layer
in R-CoRe, which will process the available sensor data and feed the rule-based
reasoning algorithms with appropriate values for the higher-level predicates. For
this layer, we will investigate the Complex Event Processing (CEP) methodology
[14], which combines data from multiple sources to infer higher-level conclusions,

and study previous works on the integration of CEP and reaction rules [18]. We
will test and evaluate all our deployments and extensions to R-CoRe in the Inter-
net of Things Laboratory of the Interdisciplinary Centre for Security, Reliability
and Trust (SnT) in Luxembourg. It is also among our plans to use our platform
to evaluate tradeoffs among requirements of AAL systems, e.g., privacy, security,
usability/conviviality and performance. Finally, we plan to investigate how the
same reasoning methods may be applied to other application areas with similar
requirements, such as the Semantic Web and Web Social Networks.

References

1. Antoniou, G., Papatheodorou, C., Bikakis, A.: Reasoning about Context in Am-
bient Intelligence Environments: A Report from the Field. In: KR. pp. 557–559.
AAAI Press (2010)

2. Bikakis, A., Antoniou, G.: Defeasible Contextual Reasoning with Arguments in
Ambient Intelligence. IEEE Trans. on Knowledge and Data Engineering 22(11),
1492–1506 (2010)

3. Bikakis, A., Antoniou, G.: Rule-based contextual reasoning in ambient intelligence.
In: RuleML. pp. 74–88 (2010)

4. Bikakis, A., Antoniou, G.: Contextual Defeasible Logic and Its Application to
Ambient Intelligence. IEEE Transactions on Systems, Man, and Cybernetics, Part
A 41(4), 705–716 (2011)

5. Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with
conflicts in Ambient Intelligence. Knowledge and Information Systems 27(1), 45–84
(2011)

6. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: Technologies, ap-
plications, and opportunities. Pervasive and Mobile Computing pp. 277–298 (2009)

7. Efthymiou, V., Caire, P., Bikakis, A.: Modeling and evaluating cooperation in
multi-context systems using conviviality. In: Proceedings of BNAIC 2012 The 24th
Benelux Conference on Artificial Intelligence. pp. 83–90 (2012)

8. Fouquet, F., Barais, O., Plouzeau, N., Jézéquel, J.M., Morin, B., Fleurey, F.: A
Dynamic Component Model for Cyber Physical Systems. In: 15th International
ACM SIGSOFT Symposium on Component Based Software Engineering. Berti-
noro, Italie (Jul 2012), http://hal.inria.fr/hal-00713769

9. Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N., Jézéquel,
J.M.: An Eclipse Modelling Framework Alternative to Meet the Models@Runtime
Requirements. In: Models 2012. Innsbruck, Autriche (Oct 2012), http://hal.

inria.fr/hal-00714558

10. Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reason-
ing=locality+compatibility. Artificial Intelligence 127(2), 221–259 (2001)

11. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do
without modal logics. Artificial Intelligence 65(1) (1994)

12. Henricksen, K., Indulska, J.: Modelling and Using Imperfect Context Information.
In: Proceedings of PERCOMW ’04. pp. 33–37. IEEE Computer Society, Washing-
ton, DC, USA (2004)

13. Kontopoulos, E., Zetta, T., Bassiliades, N.: Semantically-enhanced authoring of
defeasible logic rule bases in the semantic web. In: WIMS. p. 56 (2012)

14. Luckham, D.C.: The power of events - an introduction to complex event processing
in distributed enterprise systems. ACM (2005)

http://hal.inria.fr/hal-00713769
http://hal.inria.fr/hal-00714558
http://hal.inria.fr/hal-00714558

15. Moawad, A., Bikakis, A., Caire, P., Nain, G., Traon, Y.L.: A Rule-based Contextual
Reasoning Platform for Ambient Intelligence environments. In: RuleML. LNCS,
Springer (2013)

16. Moawad, A., Efthymiou, V., Caire, P., Nain, G., Le Traon, Y.: Introducing con-
viviality as a new paradigm for interactions among IT objects. In: Proceedings of
the Workshop on AI Problems and Approaches for Intelligent Environments. vol.
907, pp. 3–8. CEUR-WS.org (2012)

17. Morin, B., Barais, O., Nain, G., Jezequel, J.M.: Taming dynamically adaptive
systems using models and aspects. In: Proceedings of the 31st International Con-
ference on Software Engineering. pp. 122–132. ICSE ’09, IEEE Computer Society,
Washington, DC, USA (2009), http://dx.doi.org/10.1109/ICSE.2009.5070514

18. Paschke, A., Vincent, P., Springer, F.: Standards for complex event processing and
reaction rules. In: RuleML America. pp. 128–139 (2011)

http://dx.doi.org/10.1109/ICSE.2009.5070514

Interpreting Regulations with SBVR

Elie Abi-Lahoud1, Tom Butler1, Donald Chapin2, John Hall3

1University College Cork
e.abilahoud@ucc.ie, tbutler@afis.ucc.ie

2Business Semantics Ltd
donald.chapin@businesssemantics.com

3Model Systems
john.hall@modelsystems.co.uk

Abstract. The wide and complex spectrum of regulations, especially in the
financial services industry, calls for machine assistance in making sense of, and
in consuming, regulatory text. This paper describes an approach to interpreting
regulations with SBVR. The purpose is to clarify ambiguity in regulations by
developing a shared vocabulary and shared guidance based on the regulatory
text. The on-going work presented in this paper is part of the Governance, Risk
and Compliance Technology Centre’s (Ireland) current research activities that
include the development of policy advice on compliance with US Anti-Money
Laundering (AML) regulations for companies that are governed by these
regulations. The approach is based on the navigation of US public databases –
Federal Register, Code of Federal Regulations and US Code – to identify
subsets of AML regulation relevant to companies based outside the USA.
These subsets are imported into an SBVR toolset, where they are analysed and,
if necessary, interpreted by the legal and financial experts on the team. A
standardized vocabulary for AML is being developed in SBVR, together with
advice on regulatory intent and formal expression of rules with which regulated
companies must comply.

Keywords : case study, compliance, human language, regulation, SBVR.

1 Introduction
1.1 Overview

The work described here is a proof of concept undertaken by Ireland’s Governance, Risk and
Compliance Technology Centre (GRCTC) - an application of the Semantics of Business
Vocabulary and Business Rules (SBVR) [11]. It consists of:

• Analysis of US regulations that are relevant to companies based in Ireland;
• Interpretation of the regulation source text and editing it into more formal

representations using SBVR tools;
• Development of policies and rules for enforcement of the regulations, and advice to

regulated companies on compliance.
The concept definitions developed in SBVR will eventually become part of two OWL2
ontologies being developed by GRCTC for the financial industry.

1.2 GRCTC

The GRCTC is an industry led, collaborative programme of research and innovation into
Governance, Risk and Compliance (GRC) of the financial services industry. It has a
consortium of academic partners and an industry steering consortium. Membership is open to
companies and research providers with an office in Ireland and an interest in developing
competence, outputs and technologies related to GRC in the financial services industry.

The programme is led by a multidisciplinary team of computer scientists and legal and
financial subject matter experts (SMEs) at University College Cork. Its mission is to research

and develop industry-ready GRC solutions for the financial services industry to help industry
stakeholders commercialise related GRC technologies.

1.3 Context

A major strand of GRCTC’s activity is development of the Financial Industry Regulatory
Ontology (FIRO) and the Financial Industry Governance Risk and Compliance Ontology
(FIGO). FIRO will enable efficient access to the wide and complex spectrum of financial
industry regulations, relying on formal semantics and regulatory rules. FIGO will provide
formal semantics, a GRC knowledge base, and data models to inform and integrate GRC
practices and data in the financial industry.

GRCTC has been invited by the Finance Domain Task Force of the Object Management
Group (OMG) to submit FIRO for progression to an international standard.

1.4 SBVR

In 2013, GRCTC adopted the OMG’s SBVR as its basis for FIRO and FIGO. SBVR is a
vocabulary – more precisely, an ISO terminological dictionary – for defining business
concepts and rules, represented in simplified natural language. It is based on ISO terminology
standards and practice.

SBVR is business-oriented. It was developed for definition of things in a business (rather than
the data that would represent them in information systems) and policies and rules that
constrain the relationships between them and govern the activities in which they play roles.

 An SBVR terminological dictionary + rulebook (“business vocabulary + rules”) comprises:
• Noun concepts, which correspond to things in a business
• Verb concepts, which correspond to relationships between defined things
• Definitional rules, which constrain these relationships
• Behavioral rules, which govern business activities in which defined things play roles

SBVR contains the noun concepts, verb concepts and definitional rules needed to define the
noun concepts, verb concepts, definitional rules and behavioral rules for a specific business or
business domain, such as Anti-Money-Laundering. SBVR is itself defined in SBVR, and any
domain-specific terminological dictionary + rulebook is an extension of SBVR.

SBVR itself does not include behavioral rules. SBVR is a terminological dictionary that
defines what SBVR is, including what behavioural rules are and how to specify them. But
behavioral rules govern business activities and SBVR contains no business activities. The
rules that govern how SBVR should be used are a matter for tool developers, methodologists,
trainers and quality auditors.

Behavioral rules are typically defined for operational business activities. For GRCTC’s work
they are the rules that govern what regulated companies must do in order to comply with the
AML regulations.

A terminological dictionary + rulebook defined with SBVR should be complete and
consistent:

• Each noun concept must be explicitly defined, or adopted from an authoritative
source, or acknowledged as ‘implicitly understood’ (the everyday natural language
meaning of the term used).

• Only recognized noun concepts may play roles in verb concepts
• Rules may be built only from defined verb concepts and a defined set of structure

elements (obligation, necessity, if … then, that, at least…).
SBVR does not have a normative syntax; any syntax that has adequate expressive power is
acceptable. SBVR is specified in SBVR Structured English (SE), a simplified version of
natural English, and SBVR SE is probably the most widely used syntax for domain-specific
SBVR models. The conceptual model is separated from the external representation, and any
(suitable simplified) natural language may be used.

SBVR definitions and rules are intended for people in the business. They can be transformed
to machine-readable ontologies, or to data models and rules for information systems that
would support a business defined using SBVR.

1.5 Proof of Concept (PoC)

The GRCTC is developing a number of proofs of concept for FIRO and FIGO. One is the
work described here. This focuses on the application of US Anti-Money-Laundering (AML)
regulations. Some financial companies based in Ireland, including Irish companies that trade
in the USA and Irish subsidiaries of US companies, are governed by a subset of these
regulations. The scope of this PoC, however, is broader because the US Anti-Money-
Laundering regulations apply to all Financial Services companies, in Europe or elsewhere,
doing business in the US.

The purpose of the proof of concept is to demonstrate the capture of relevant US AML
regulations and the formalisation of their vocabulary and rules as a basis for guidance on
compliance. The results are:

• The relevant subsets of US AML regulations
• Interpretation of regulatory intent
• Behavioral rules with which industry partners must comply, and the vocabulary that

defines their meaning, expressed in SBVR SE
• AML content for FIRO and FIGO

1.6 Related Work

The basis of the approach used by GRCTC originated in OntoRule [http://ontorule-project.eu],
an EU Framework 7 project that ran from 2009 – 2011. The OntoRule case study for
interpretation of regulation was undertaken by Laboratoire d'Informatique de Paris Nord
(LIPN) and Audi AG, using a subset of EU regulations for car safety systems (seatbelts,
airbags, brakes). The approach for the case study used SBVR constructs as patterns for
analysis of regulation source text, using LIPN’s Terminae software; it is described in [12].
LIPN has continued to develop the approach, as described in [9], [10] and [11].

2 The US Regulatory Framework
The approach taken for the proof of concept is enabled by the framework of US law and
regulation.

US laws are created by Congress and most are codified in the United States Code (USC) [2].
Congress delegates authority for rules and regulations to departments and executive agencies,
such as the US Treasury Department, which publish enforceable regulations that implement
the laws. The division of authority is summarised in Figure 1.

Congress passes Laws Executive Agencies Issue Rules/Regulations

Publish in Slip Law/Statutes at Large:
codified in US Code (USC)

Publish in Federal Register (FR): codified in Code of
Federal Regulations (CFR)

Power is determined by Constitution
Courts review for:
• Constitutionality

Power is delegated by Congress
Courts review for:
• constitutionality & limits of delegated authority
• arbitrary and capricious actions
• Administrative Procedure Act requirements

Congress acts collectively to represent the
will of the people

Agencies must seek and consider public comment on
benefits of rules vs. burdens and costs

Set broad social and economic goals and
legal requirements

Prescribe specific legal requirements to meet goals

Figure 1: US Regulatory Authority

Regulations (‘rule’ and ‘regulation’ are synonyms in the US regulatory domain) are published
in the Federal Register (FR) [3], a daily journal that includes all proposed and final rules.
The Code of Federal Regulations (CFR) [4] is the codification of the final rules published in
FR, showing the aggregated effect of related rules. Rules published in FR are defined as
changes to be made to CFR.
Entries in CFR refer to laws in USC for authorizations and definitions. The relationship
between FR, CFR and USC is illustrated in Figure 2.

Figure 2: US Regulatory Framework

There is a statutory obligation to publish rules in FR, first as proposed rules, open for public
discussion, and then as final rules, which define explicit changes to CFR. Final rule
documents include the public discussion and responses from the regulatory agency, which is
helpful for SMEs in understanding the intent of the rules.

The Code of Federal Regulations is organized as:
• 50 Titles, each naming a broad subject area for regulation (e.g. 12: Banks and

Banking)
• Chapter: the rules of a single agency
• Part: rules on a single program or function
• Section: one provision of program/function rules

Sections are composed of paragraphs, numbered to up to 6 levels of subparagraph. A rule
published in FR is normally within the remit of a single agency, and usually specifies CFR
changes as addition, deletion or replacement of individually-identified paragraphs or
subparagraphs.

3 Proof of Concept
3.1 Scope

The base document for the proof of concept was the FR final rule (76 FR 45403) “Bank
Secrecy Act Regulations - Definitions and Other Regulations Related to Prepaid Access” [5],
an 18-page document from the Financial Crimes Enforcement Network of the Treasury
Department. Its scope is illustrated in Figure 3.

Like many FR rules, the direct scope was fairly narrow; it changed only 5 sections of 31 CFR
Chapter X (namely, §1010.100, §1022.210, §1022.320, §1022.380, §1022.420). The open-
ended aspect was the dependence on definitions in USC and other sections of CFR, which
were needed for full understanding of the business impact of the changes.

The solution adopted was to introduce ‘stubs’, determined by the SMEs who were interpreting
regulatory text. If a reference is encountered to a concept that would be familiar to people
working in the domain (e.g. “investment company as defined in section 3 of the Investment
Company Act of 1940 (15 U.S.C. 80a–3)”), an SME can declare it as a ‘stub’ and no further
referencing will be followed. Over time, this truncation will be corrected. When the scope of

Laws US Code
(USC)

Code of Federal
Regulations

(CFR)

Federal Register
(FR)

Regulatory agency writes rules

Codified in

Codified in

Refers to

Published in

the work extends into areas that affect the concept, the stub will be replaced by the full
definition, together with any further referencing needed.

Figure 3: Scope of Proof of Concept

3.2 Selection of Regulatory Content

The regulations are presented in CFR. Two approaches were considered for selection of
relevant subsets:

• Analysing the full content of 31 CFR X. This at first seemed the simpler approach,
but would require consideration of over 100,000 words of source text, before
following references to USC.

• Starting with the FR rule and following its changes through 31 CFR X. This resulted
in a text of less than 26,000 words (equivalent to a little over 38 pages of 10-point
type), including 28 references to USC, 16 to parts of 31 CFR X not directly changed
by the rule, and 6 stubs.

The second approach was adopted. It provided a more ‘digestible’ text size for SMEs, and
focused on the regulatory intent of the published rule. Also, it provides an approach that can
be used directly with new rules as they are published.

3.3 Analysis and Formalization

The sections of 31 CFR 1022 amended by 76 FR 45403 use terms defined in section
§1010.100 “General Definitions”. Before capturing in SBVR the interpretation of sections
amended by 76 FR 45403, the SMEs captured, in SBVR SE, the definitions of §1010.100.
These definitions are reused, in their SBVR format, while interpreting 76 FR 45403. The
SMEs were able to capture in SBVR SE the definitions of 66 terms/concepts directly from
section §1010.100. They also identified another set of 180 external terms/concepts. Those
terms are not directly defined in §1010.100. Domain practitioners implicitly understand more
than half, while the rest could be defined using business dictionaries or standardised industry
vocabularies. In this proof-of-concept, terms defined in the Financial Industry Business
Ontology1 (FIBO [6]) were identified.

Having the “general definitions” in SBVR, the next step is to capture the interpretations of the
four sections of 31 CFR X amended by 76 FR 45403. The task was assigned to a team of four
SMEs. A straightforward division of labour could be done by attributing a section to each
SME. However, a quick read of the amended sections reveals overlaps between them. To
minimise having two or more SMEs modelling the same ‘Things’ (i.e. defining the same
SBVR elements for the same Thing - noun concepts, verb concepts, etc.), a theme-based

1 FIBO is an Industry standard being developed by the Enterprise Data Management Council and the
Object Management Group. As a common language, it bridges the language gap between business and
technology. As a machine-readable knowledge model, it facilitates the development of semantic
applications for the financial industry.

USA PATRIOT
Act

of 2001

USC Titles
5, 7, 12, 15, 18,
22, 25, 26, 31

31 CFR
Parts 1010 &

1022

76 FR 45403
(July 29, 2011)

Rules written by Treasury

Codified in

Codified in

Published in Uses definitions from
31 CFR

parts

division of labour was adopted. First, the content of each section is broken down into themes
or categories. For example, §1022.380 Registration of money service business could be
broken down in three themes or categories as follows:

1. Agency related provisions: 1022.380 (a) (3) and (4) (d)(1)(2) (E) (F) (G)(H)(ii)
2. Registration related provisions: (a)(1)(b)(1)(i)-(iii) (a)(2)(3)(4)(c)
3. Compliance related provisions: (e) (f)

Second, the identified themes are cross-referenced between sections and consolidated under
theme headers. The result is eleven consolidated themes, which are then regrouped in four
work streams, one for each SME. Appendix B details the division of labour aiming to attribute
a (cross-sections) theme to each SME.

Each SME starts interpreting the rules assigned to him/her following the protocol described in
Figure 4. The aim is to identify modified verb concepts, supporting verb concepts and noun
concepts.

Figure 4: SBVR-based Rule Interpretation Protocol

To illustrate the previously described protocol, take for example, §1022.210 (d)(iv):
“iv) Money services business […] must establish procedures to verify the identity of a
person who obtains prepaid access under a prepaid program and […]”

The first part of this rule expresses the obligation to “establish procedures to verify […]”. The
obligation is on the verb “establish”. It will be stylised in the SBVR verb style (blue italic in
SBVR SE). The first role is played by “Money services business” which is a general noun
concept in SBVR (styled as green underlined in SBVR SE). According to Figure 5, Money
services business is stylised as a noun concept and added to the noun concepts list to be
further defined. The second role is played by “procedures to verify […]”. Procedures is styled
as a noun concept, “to verify” as a verb, “the” as a keyword (styled orange in SBVR SE), etc.
Below is a suggested formalisation of the rule based on the protocol described in Figure 5:

It is obligatory that each money services business establishes procedures to verify the
identity of the person obtaining prepaid access under a prepaid programme.

The modified verb concept is ‘money services business establishes procedures’. One
supporting verb concept is ‘person obtaining prepaid access under a prepaid programme’.
Note each of the noun concepts are added to the noun concepts list and defined in a later phase
(if the definition is not given by the current section or the general definitions section).
Appendix C describes a more detailed example of SBVR interpretation of § 1022.210 (a).

1- Read the text

2- Identify modalities (Obligations, prohibitions, etc.)

3- For each modality

a. Add the relevant modality keyword

b. Identify the English verb on which the modality is applied

c. Stylise this verb using the SBVR verb style

d. Identify the noun concepts (general, individual, etc.) or the
verbal phrase(s) playing the roles in this verb

e. If the verb roles are played by noun concepts, complete the
SBVR modified verb concept by stylising the identified the
noun concepts

i. Add all the stylised noun concepts the
noun_concepts_list

f. If the verb roles are played by verbal phrases, stylise each
verbal phrase by identifying English verbs, SBVR noun
concepts and keywords

i. Add each verbal phrase to the
supporting_verb_concepts_list

4- For each noun concept in noun_concepts_list
i. Start enriching by identifying the characteristic of

each noun concept (if any)
ii. Identify other definition elements

4 Implementation and Future Work
Two software tools assist the SMEs in their SBVR interpretation along with a rich text editor
(MS Word in this case). First, Confluence by Atlassian is a shared wiki with commenting
functionalities that serves as a collaborative editing platform. Second, Designs for
Management™ by Business Semantics is an SBVR editing suite that validates SBVR
interpretations and generates machine-readable vocabularies and rules in the XML Metadata
Interchange format based on the SBVR metamodel.

4.1 Phase 1: Collaborative Interpretation

The first phase consists of collaborative interpretation of the regulatory text limited in scope
as described in section 3.1. An MS-Word template is used to capture the interpretations
following the protocol described in Figure 4, whereas a classic collaborative wiki is mainly
used to capture definitions of noun concepts. Its commenting functionalities allow the SMEs
to interact on a given concept definition and discuss potential semantic precisions. They could
vote on a definition or on a revision leaving an audit trail of the Vocabulary development.
Appendix D illustrates how the SMEs used this wiki in the context of this proof of concept.

This phase resulted in identifying more than 300 noun concepts. Those concepts were (i)
defined within the scoped regulation or (ii) commonly understood or (iii) defined by SMEs
using domain authoritative sources. It also resulted in formalizing around 200 behavioral rules
based on 76 FR 45403. This number along with the number of definitional rules is expected to
evolve after the completion of phase 2 described hereafter.

4.2 Phase 2: Validation and Generation of a Machine-readable Vocabulary

Having a candidate vocabulary and a set of candidate behavioral rules, the second phase
consists of validating and presenting them in a machine-readable format using Designs for
Management™ (DesignsForManagement.com). The latter is an SBVR-based software suite. It
is used to ensure that the SBVR regulatory business vocabulary, and the regulatory guidance
rules content are complete, consistent and compliant with the SBVR standard.

Designs for Management provides three ways to capture SBVR content:
1. Import from MS Word documents that use an SBVR SE template. This capability

was used by the Object Management Group to import the SBVR and Date-Time
Vocabulary standards as well as the SBVR EU-Rent Example.

2. Convert text in existing documents into SBVR terms and definitions with a right
mouse menu option in the module: Smart Documentation™ editor.

3. Add new SBVR business vocabulary and business policy & rule entries using a
forms interface that is supported by an AutoComplete function that inserts defined
terms; definitions can be viewed by moving the mouse over the terms.

Once SBVR interpretations are entered in Designs for Management™, it validates them
against the SBVR specification using several techniques. SBVR Terminological Dictionaries
and Rulebooks, whether validated on under construction, can be displayed, printed and saved
in HTML, MS Word and PDF formats. Moreover, SBVR model content can be exchanged in
conformance with clause 2 of the SBVR specification [11] in the XML Metadata Interchange
format. Appendix E, further describes the software architecture of Designs for Management™
and briefly presents its major modules, namely, Smart Glossary™, Smart Documentation™
and Clear Guidance™.

On-going work currently consists of importing the templates populated in phase 1 into
Designs for Management™. This import/validation exercise helped identifying
inconsistencies and/or omissions to be addressed by the SMEs. At the time of writing this
paper, the curation and the consolidation of the vocabulary and the rules from phase 1 is not
complete. However, a demonstration of a consistent SBVR vocabulary and rulebook for the
EU Rent example 1.2 from the SBVR specification is publicly available in Designs for
Management™ (at DesignsForManagement.com).

4.3 Future work

Part of the GRCTC research roadmap (cf. section 1) consists of creating a set of ontologies
and data models for the financial industry using the developed SBVR vocabularies and rules
as a starting point.

Currently, there is limited support for automated transformation. The SBVR-based
vocabularies in the work done by LIPN, described above, were transformed to OWL
ontologies, but this was done with LIPN’s own software rather than SBVR-specific tools.

 In general, transformation from SBVR to machine-readable ontologies involves manual
intervention by SMEs. The process is well understood, but the transformation requires
business decisions about business content that is not easily represented in formal information
structures such as logical data models (other than as carried-forward text, perhaps styled in
SBVR SE). Chapin and Hall [2] present a tutorial on transformations from an SBVR
terminological dictionary to one or more logical data models. Tool support is currently
experimental.

The OMG’s Date-Time Vocabulary, developed as a foundation vocabulary to extend SBVR,
has been transformed to an OWL2 Ontology [7]. Aspects of SBVR that have no OWL
equivalents are carried forward as OWL annotations. This approach is one option raised in [8],
which suggests several possibilities for separating SBVR content that is not easily represented
in OWL.

There is less experience in transforming rules. SBVR has two kinds of rules: definitional
(alethic) and behavioral (deontic). Definitional rules are the basis of constraints on
associations in data models and ontologies and are addressed in the work referenced above.
Behavioral rules govern or support activities. In SBVR they are declarative – they define
states the business must be in (e.g. “a customer’s debt must not exceed his credit limit”). They
can be directly supported in relational database systems by stored procedures and data base
triggers, but many rules-based applications use production rules, which are procedural (e.g. “if
the price of a new order would take the customer’s debt over his credit limit, then reject the
order”). There is a fairly simple tutorial for transforming SBVR behavioral rules into
production rules compliant with the OMG’s Production Rule Representation (PRR) standard,
referencing the data model derived from the corresponding SBVR terminological dictionary.

Future work will, therefore, consist of leveraging the techniques previously mentioned to
transform the SBVR interpretations to machine-readable ontologies, data models and rules.

5 Conclusions
This paper described a proof-of-concept on interpreting regulations using Semantics of
Business Vocabulary and Business Rules (SBVR). This work was carried out as part of the
research program of the Governance, Risk and Compliance Technology Centre in Ireland
(GRCTC). After a brief description of the research context and the US Regulatory
Framework, the proof of concept was detailed. First, the approach taken to limit to scope of
interpretation within a regulatory document is described. Second, the division of labour
between Subject Matter Experts (SMEs) is discussed. Third, the SBVR-based rule
interpretation protocol was described and illustrative examples were provided. Finally, the
software tools assisting the SMEs in their SBVR interpretation were presented.

The described approach is a step towards rendering the wide and complex spectrum of
regulations more accessible. It tackles uncertainty and imprecision in regulations by
combining Subject Matter Expertise and SBVR precision in representing domain knowledge.
The produced vocabulary and guidance rules allow several practitioners to share their
respective views on, and understanding of, the regulatory requirements while broadening their
perception of the regulations. Capturing regulations in SBVR could also play a role in
providing the regulators with national/ international view on the way the regulated perceive
the regulations. However, the impact of the produced vocabulary and guidance rules is subject
to their accessibility in terms of size and coherence. A large vocabulary including a high

number of fine grained and redundant concepts is likely more precise than a smaller, less
expressive one, but might be less accessible in terms of complexity (harder navigation due to
its size, contains more definitions, etc.). We believe that seeking an appropriate trade-off
between accessibility and expressiveness is the key to a successful adoption of an SBVR
based vocabulary and guidance rules.

Acknowledgements

This work was supported by Enterprise Ireland and the Irish Development Authority (IDA)
under the Government of Ireland Technology Centre Programme. The authors would like to
acknowledge the major role played the Subject Matter Experts, Leona O’Brien, John
Lombard, Patrick O’Sullivan and Peter O’Sullivan, in building the described proof of concept,
and thank them for their contribution.

References
1 Bennett, Mike 2011. “Semantics standardization for financial industry integration,” in

Collaboration Technologies and Systems (CTS), IEEE, 23-27 May 2011, pp. 439-445, doi:
10.1109/CTS.2011.5928722.

2 Chapin Donald and Hall John: From SBVR to Logical Data Models. Data Management &
Information Quality Europe Conference, London, Nov 3-6, 2008

3 Code of Federal Regulations
(http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=-1&go=Go)

4 Date Time Vocabulary Specification V1.0, Object Management Group
(http://www.omg.org/spec/DTV/1.0/Beta3)

5 Federal Register (https://www.federalregister.gov)
6 Federal Register Final Rule “Bank Secrecy Act Regulations - Definitions and Other

Regulations Related to Prepaid Access” (http://www.gpo.gov/fdsys/pkg/FR-2011-07-
29/pdf/2011-19116.pdf)

7 Karpovic Jaroslav, Nemuraite Lina and Stankeviciene Milda: Requirements for Semantic
Business Vocabularies and Rules for Transforming Them into Consistent OWL2
Ontologies. In proc. 18th International Conference, ICIST 2012. Springer Berlin
Heidelberg, 2012.

8 Kendall Elisa and Linehan Mark: Mapping SBVR to OWL2. IBM Research Paper 2013.
(http://domino.research.ibm.com/library/cyberdig.nsf/papers/A9777F4EDB2552AE85257
B34004C4EB3)

9 Lévy François, Guissé Abdoulaye, Nazarenko Adeline, Omrane Nouha, Szulman Sylvie:
An Environment for the Joint Management of Written Policies and Business Rules. ICTAI
(2) 2010: 142-149

10 Lévy François and Nazarenko Adeline - Formalization of Natural Language Regulations
through SBVR Structured English RuleML 2013

11 Nazarenko Adeline, Guissé Abdoulaye, Lévy François, Omrane Nouha and Szulman
Sylvie: Integrating Written Policies in Business Rule Management Systems. RuleML
Europe 2011: 99-113

12 Omrane Nouha, Nazarenko Adeline, Rosina Peter, Szulman Sylvie and Westphal
Christoph: Lexicalized Ontology for a Business Rules Management Platform: An
Automotive Use Case; RuleML America 2011; 179-192

13 Semantics of Business Vocabulary and Business Rules
(http://www.omg.org/spec/SBVR/1.1)

14 United States Code (http://uscode.house.gov)

Appendix A - Glossary of Abbreviations
Acronym or Term Meaning or Definition
AML Anti-Money-Laundering
CFR Code of Federal Regulations
FIBO Financial Industry Business Ontology
FIGO Financial Industry GRC Ontology
FIRO Financial Industry Regulatory Ontology
FR Federal Register
GRC Governance, Risk and Compliance
GRCTC Governance, Risk and Compliance Technology Centre
ISO International Organization for Standardization
OMG Object Management Group
OWL Ontology Web Language
OWL2 Ontology Web Language 2
RDF Resource Description Framework
SBVR Semantics of Business Vocabulary and Business Rules
SBVR SE SBVR Structured English
SME Subject Matter Expert
USC United States Code

Appendix B - Attributing cross-sections themes to SMEs from 76
FR 45403
Part One – each section broken down into different categories

§1022.380 Registration of money service business could be broken down in three themes or
categories as follows:

1. Agency related provisions: 1022.380 (a) (3) and (4) (d)(1)(2) (E) (F) (G)(H)(ii)
2. Registration related provisions: (a)(1)(b)(1)(i)-(iii) (a)(2)(3)(4)(c)
3. Compliance related provisions: (e) (f)

§1022.210-Anti money laundering program for money service businesses could be broken
down in five themes or categories as follows:

1. Definition related provision-1022.210 (a)
2. Required Standards for AML MSB programs-(b), (c), (d), (1)(i)(A)-(D), (d) (ii),

second part of (iii) and (2)(i)-(ii), (e).
3. Identity related provisions-(d)(iv)
4. Educational\Training related provisions-(2)(iii), (3)
5. Compliance date related provisions-(4)

§1022.320 Reports by money services businesses of suspicious transactions could be broken
down in five themes or categories as follows:

1. Reporting and Identification related provisions-§1022.320 (a)(2)(i)-(iv), (a) (3)-(4).
2. Filing related provisions- (b)(2)-(3)
3. Retention of Records related provisions-(c)
4. Confidentiality/Disclosure of SARs related provisions-(d)(1)(i)-(ii) (A) (1)-(2),

(B)(2), (e).
5. Other areas in this provision-(a)(1), (f) and (g)

§1022.420 Additional records to be maintained by providers and sellers of prepaid appears to
be a self-contained provision

Part Two - Cross-referencing and consolidating break down of provisions
between sections

1. Agency provisions
- §1022.380 (a) (3) and (4) (d)(1)(2)(i)- (ii)

2. Identity and Reporting related provisions
- §1022.210 (d)(1)(iv)
- §1022.320 (a)(2)(i)-(iv), (a) (3)-(4)

3. Compliance related provisions
- §1022.380 (e), (f), 1022.320 (f)
- §1022.210 (d)(4)

4. Registration related provisions
- §1022.380 (a)(1), (b)(1)(i)-(iii), (b)(2)(3)(4), (c)

5. Definition related provision
- §1022.210 (a)

6. Required Standards for AML MSB programs
- §1022.210 (b), (c), (d) (1)(i)-(ii), second part of (iii) and (d)(2)(i)-(ii), (e)

7. Educational\Training related provisions
- §1022.210 (d)(2)(iii), (3)

8. Filing related provisions
- §1022.320 (b)(1)-(3)

9. Retention of Records related provisions
- §1022.320(c), 1022.420

10. Confidentiality/Disclosure of SARs related provisions
- §1022.320 (d)(1)(i)-(ii) (A) (1)-(2), (B)(2), (e).

11. Other areas in this provision
- §1022.320 (a)(1), and (g).
- §1022.380 (a)(2)

Part Three - Regrouping themes and allocating to four SMEs

SME 1: 1) Agency Provisions, 2) Identity and Reporting related provisions and 3)
Compliance related provisions.
SME 2: 4) Registration related provisions, 5) Definition related provision and 6) Required
Standards for AML MSB programs.
SME 3: 7) Educational\Training related provisions, 8) Filing related provisions and 9)
Retention of Records related provisions.
SME 4: 10) Confidentiality/Disclosure of SARs related provisions and 11) Other areas in this
provision.

Appendix C - An Example of SBVR Interpretation of §1022.210
(a)

§ 1022.210 Anti-money laundering programs for money services
businesses.

(a) Each money services business, as defined by § 1010.100(ff) of this chapter,
shall develop, implement, and maintain an effective anti-money laundering program.
An effective anti-money laundering program is one that is reasonably designed to
prevent the money services business from being used to facilitate money
laundering and the financing of terrorist activities.

Business Rules

It is obligatory that each money services business develops an anti-money laundering
programme

It is obligatory that each money services business implements an anti-money laundering
programme
It is obligatory that each money services business maintains an anti-money laundering
programme
It is obligatory that each anti-money laundering programme is effective
It is obligatory that each anti-money laundering programme prevents money services business
being used to facilitate money laundering and terrorist activities

Verb Concepts

Modified verb concepts

anti-money laundering programme is developed by money services business
anti-money laundering programme is implemented by money services business
anti-money laundering programme is maintained by money services business
anti-money laundering programme is effective

Necessity: Each anti-money laundering programme is reasonably designed
anti-money laundering programme prevents money laundering and terrorist activities

Supporting verb concepts

money services business is defined by § 1010.100(ff)
anti-money laundering programme prevents money laundering and terrorist activities

Noun concepts

anti-money laundering programme
money services business
money laundering and terrorist activities

Appendix D - Using Confluence for Collaboration

This screenshot presents the wiki editing interface. Here the definition of monetary
instruments is displayed along with a necessity identifying what should not be considered as a
monetary instrument. The left frame presents a tree list of vocabulary entries with several
search capabilities.

This screenshot illustrates an example of interaction between SMEs working on detailing the
definition of Bank in the context of 31 CFR X.

Appendix E - Using Designs for Management to Capture and
Validate SME Interpretations
The Designs for Management™ software suite is hosted as a MS Windows Azure cloud
service and uses an Azure-hosted SQL Server database. On the user’s computer, it runs
entirely within an Internet Browser and requires nothing additional to be installed on the
user’s computer. The four major browsers, Internet Explorer, Firefox, Chrome and Safari, are
supported in all the environments for which they are available. This software suite is
developed as a Visual Studio .Net Web Forms application, supplemented with Telerik cross-
browser components and the Kendo UI HTML5/CSS3 JavaScript framework. It uses .Net
Framework Forms Authentication for user authentication and authorization.

Smart Glossary™

This is a screenshot of Smart Glossary™. It is used to capture SBVR vocabulary elements.
The terms identifying business concepts, their definitions, characteristics (if any) and other
related elements are entered manually in the right frame. Smart Glossary™ provides the SME

creating vocabulary entries with a list of SBVR predefined keywords and autocomplete
functionalities taking into account previously entered vocabulary elements. The left frame
displays an hierarchy of concepts in the vocabulary being edited.

Smart Documentation™

This is a screenshot of Smart Documentation™. This module allows the SME to upload a
regulatory text and start constructing the vocabulary by highlighting SBVR elements (general
noun concepts, individual noun concepts, etc.) in the original text. Further refinement of the
vocabulary entries identified in Smart Documentation™ could be done in Smart Glossary™.
This functionality was not used in the described proof of concept since the SMEs drafted their
vocabularies in an MS Word template that was later imported into Designs for Management.

Clear Guidance ™

This is a screenshot of Clear Guidance™. The interface of this module resembles to Smart
Glossary™. The left frame displays a list of operational rules (captured from the regulation in
this case). The right frame allows the SME to build or edit the rule using built in SBVR
keywords and elements from the previously created vocabulary.

Seeing the Semantic Connections

A Meaning and Representation Explorer displays all or a selected part of the SBVR content
and enables the browsing from any SBVR entry following the chain of semantic relations to
anywhere in the SBVR content. The ability to choose at every point which kind of semantic
relation(s) to browse next is available. In every context the full display of the entry, any styled
term, other designation or verb concept wording can be seen

1

Graph-based Editor for SWRL Rule Bases

Jaroslaw Bak, Maciej Nowak, Czeslaw Jedrzejek

Institute of Control and Information Engineering,
Poznan University of Technology,

M. Sklodowskiej-Curie Sqr. 5, 60-965 Poznan, Poland
{firstname.lastname}@put.poznan.pl

Abstract. In this paper we present a prototypical implementation of a graphical
tool for creating and editing (DL-safe) SWRL rules. The tool uses a graph-
based approach to model rules expressed in the SWRL language. Rules are
built from concepts and roles defined in an OWL ontology. Such a knowledge
base can be visualised and edited in a user-friendly interface. Moreover, the
presented tool provides methods for graphical representation of data and results
of reasoning performed with the Pellet engine. We present a process of creating
a knowledge base of family relationships as an example case. Perspectives of
our future work are also presented.

Keywords: graphical rule representation, SWRL, ontology visualisation, rea-
soning

1 Introduction

The Semantic Web1, which is the extension of the World Wide Web, is still in active
research and development. However, emerging technologies provide methods and
standards for processing data according to the defined semantics. The semantics of
data can be expressed by ontologies and rules which are of a special significance in
the layered architecture of the Semantic Web. An ontology and a set of rules consti-
tute a knowledge base of some particular domain. Using the knowledge base and data
with an appropriate reasoner, we can perform reasoning tasks. Thus, additional
knowledge can be inferred.

An ontology can be expressed using one of the OWL family of languages (OWL
1.12 and OWL 2 Profiles3), whereas a rule can be written in the Semantic Web Rule
Language (SWRL) [1] or OWL 2 RL Profile4.

Despite the clear advantages and availability of semantics-based technologies,
there are many software application areas where they do not occur or occur in a rela-

1 http://www.w3.org/standards/semanticweb/
2 http://www.w3.org/Submission/owl11-overview/
3 http://www.w3.org/TR/owl2-profiles/
4 Other appropriate languages also exist (e.g. RDF(S) for simple ontologies, RuleML for rules

etc.) but currently we do not consider them in our work.

2

tively simple form (e.g. ontologies as vocabularies, rules as filters). The main reason
for this is because ontologies and rules are too complex to handle by an ordinary user
[2]. The process of acquiring ontology- and rule-based knowledge can be simplified
with the use of a graphical representation and a user-friendly interface.

Since SWRL provides more powerful reasoning capabilities than OWL and some
of the ontologies can be transformed into rules (e.g. Horn-SHIQ [3]) we focus on the
development of a graph-based environment which will provide an easy way of creat-
ing and managing SWRL rule bases.

The main goal of this paper is to present a graph-based tool, in which an untrained
user is able to construct a set of simple (DL-safe [4]) SWRL rules and to use them in
order to obtain new (inferred) information according to the semantics defined in an
OWL ontology. Both rules and the ontology constitute a knowledge base of a given
domain. The ontology provides necessary concepts and roles, whereas the rules con-
stitute additional knowledge mixing concepts and roles in a way which is not allowed
in OWL. Additionally, a set of facts represents data. The constructed knowledge base
and facts are expressed graphically in the form of directed graphs. The knowledge
base can be applied to facts using a reasoning engine. After the inference process, a
user gets the result, which is also represented graphically.

The paper is organized as follows. Section 2 presents the main overview of the
proposed approach, a set of employed tools and related work. Section 3 describes a
prototypical implementation with a demonstration of creating a simple knowledge
base of family relationships. Section 4 contains concluding remarks and our future
work.

2 Graph-based Representation of an Ontology and Rules

2.1 Existing Methods and Tools

Visualising data in the form of graphs is connected to a problem of knowledge rep-
resentation (KR). Many investigators have created standardized notations for KR
(Unified Modeling Language/Object Constraint Language (UML/OCL) [5], UML-
based Rule Modeling Language (URML) [6], Object Role Modeling (ORM) [7], or
SBVR5 to name a few), however, so far many commercial tools tend to use their own
standards. Other popular KR methods include: decision tables, decision trees and
eXtended Tabular Trees [8]. Most commercial applications use those representations
directly, or in a form of guided textual editors. In our approach, we aim to provide
similar ways of representing both knowledge bases and rules. That is why the ORM
approach, combined with a graph-based representation, seems to be sufficient to start
with.

5 Semantics of Business Vocabulary and Business Rules, http://www.omg.org/spec/SBVR/1.0/

3

There are a number of tools implementing graphical rules representations:
• Visual Rules6 – it allows building of flow rules, decision tables and decision

trees. It is focused on business logic and directs the flow of decision making
by a defined life cycle. Events causing state changes are controlled by the
rules. Both states and rules are converted and executed as Java code. Visual
Rules lacks the ontology background, and focuses solely on business rules
and decision flows.

• Drools Guvnor7 – it provides many guided ways of creating rules: decision
tables, rule flow and a single rule editor. It is a data repository for the Drools
system. Guvnor offers many useful features: versioning and packaging of
rules, models, functions and processes connected to knowledge bases and
supervision of access to rule bases. We considered Drools as our reasoning
module, but the Pellet reasoner is sufficient for the needs of SWRL rules.

• VisiRule8 – it is an extension to Win-Prolog and it only allows creating deci-
sion flow models using a graphical paradigm. It offers a graphical representa-
tion of forward chaining rules with access to Prolog. VisiRule offers collabo-
ration features; diagrams expressed in it may consist of nested parts. It is an-
other platform designed for business flows rather than deductive rules.

• OntoStudio Graphical Rule Editor9 – it is based on Object Logic [9], and
operates on OL and SPARQL10 queries. Diagrams here consist of concepts,
their attributes and connections between them. It handles many known ontol-
ogy formats (OWL, RDF, SPARQL, RIF) as well as UML 2.0. OntoStudio
allows testing and debugging of rules. It does not allow the comparison of
variables (comparisons between value and variable are allowed only). This
approach is similar to ours, except that our tool visualises both ontology and
reasoning results on a graph.

• CoGui11 – it is a visualization tool for creating knowledge bases and concep-
tual graphs. It is based on the conceptual graph model introduced in [10].
The knowledge base of CoGui consists of hierarchies of concepts and rela-
tions, a set of individuals and a set of conceptual rules. It uses the CoGitant
engine for inference tasks. The structure of graphs can be nested; relations
are not restricted to unary or binary relations (n-ary relations are allowed).
This tool does not support the OWL ontology format, nor does it operate on
standardized rule notations.

6 http://www.bosch-si.com/technology/business-rules-management-brm/visual-rules-suite.html
7 http://www.jboss.org/drools/drools-guvnor.html
8 http://www.lpa.co.uk/vsr.htm
9 http://www.semafora-systems.com/en/products/ontostudio/
10 http://www.w3.org/TR/rdf-sparql-query/
11 http://www2.lirmm.fr/cogui/

4

• Protégé OWLViz12 plugin – it creates a hierarchical view of the selected part
of an ontology in the form of a directed graph. It does not allow manipulation
of objects on the graph nor does it visualise SWRL rules.

• Protégé Axiomé13 [11, 12] plugin – it supports visual rule base management,
exploration, automated rule categorization, rule paraphrasing and rule elicita-
tion functionality. It does not provide a way to create SWRL rules; instead it
is designed to help users understand the meaning of rules. Axiomé can repre-
sent rules as a graph where each rule is represented as a node and direct edg-
es between nodes indicate that SWRL atoms are shared by the rules.

• TopBraid Composer14 – it is a visual modelling tool designed to create and
manage ontologies in the Semantic Web standards. It is based on the
Eclipse15 platform and the Jena API16. TopBraid Composer offers drag-and-
drop way of creating and editing OWL ontologies. It allows consistency
checking and debugging of OWL Inference engine. Users are able to incor-
porate SPARQL rules (SPIN17) into the process of class definition to create
some constraints.

• Snoggle18 – a graphical SWRL-based ontology mapper. It creates directed
graphs representing structures of source and destination ontologies and ena-
bles creation of mapping relations between concepts from both ontologies.
Those mapping relations are then converted into SWRL rules.

2.2 Overview of the Approach

The main goal of this paper is to present a graph-based environment, in which a
user can: load an ontology, create and edit SWRL rules, perform reasoning and obtain
results. Moreover, an ontology, rules and data are represented graphically as directed
graphs. Additionally, an ontology can be represented as simple (and calculated) tax-
onomies of concepts and both types of roles (datatype and object properties). As a
result, we obtain a graphical representation of a knowledge base constructed from
concepts, roles, rules and facts (data). The knowledge base can be easily understood
by an ordinary user who tries to work with ontologies and rules. Our aim is to provide
an easy-to-use and easy-to-understand tool which can be used in many domains where
ontologies, rules and graphs can be employed to support a user’s work.

The process of rule creation consists of creating two graphs which represents two
parts of a rule: the body (left hand side) and the head (right hand side). In the present-
ed approach, rules are of the following form: if the body then the head. Both the body

12 http://protegewiki.stanford.edu/wiki/OWLViz
13 http://protegewiki.stanford.edu/wiki/Axiomé
14 http://www.topquadrant.com/products/TB_Composer.html
15 http://www.eclipse.org/
16 http://jena.apache.org/
17 http://spinrdf.org/
18 http://snoggle.semwebcentral.org/

5

and the head consist of positive conjunctions of atoms that are defined in an ontology
as classes (concepts), object properties (roles) and datatypes. Thus, the left hand side
(LHS) of a rule should be perceived as conditional elements that need to be fulfilled
in order to execute instructions written in the right hand side (RHS). The execution of
a rule can add new statements to the given knowledge base in the form of new rela-
tions between objects and new classifications of them. For example, using rule (1) we
can infer that a person which has a male child has a son.

 ����? ��, 	
����? ��, ℎ���ℎ����? �, ? �� → ℎ�����? �, ? ��, ���? �� (1)

In rule (1) ���, 	
��� and �� are OWL classes, ℎ���ℎ��� and ℎ���� are ob-
ject properties and ? �, ? � are variables. By executing this rule we obtain a new rela-
tion between objects under both variables from rule (1) and a new classification of
object under variable ? �.

As mentioned before, we represent rules, an ontology and facts in a graphical form.
Each of them is a different directed graph. Each graph consists of nodes and edges.
The nodes are a graphical representation of OWL classes (or objects in data visualisa-
tion) whereas edges represent appropriate relations between classes (objects); or clas-
ses (objects) and datatypes. Usually, an object may belong to a number of OWL clas-
ses, for example an object of class �� belongs also to the following classes: ���
and 	
���. In our method we decided to use the most detailed class, which is often
represented as the most bottom concept in the taxonomy of OWL classes. The rest of
the applicable classes are shown in a tooltip after moving the mouse above the object.
Moreover, a user can choose which class she/he wants to see on a graph. The same
approach is applied in the object and datatype property taxonomies. An example of
choosing a visible class is presented in Figure 1.

Figure 1. Selecting a visible class is done by clicking on a class name from a popup menu.

When loading an ontology, we can obtain two kinds of visualization. The first one

is a Protégé-like view of taxonomies as trees. We provide three trees: the taxonomy of
classes, the taxonomy of object properties and the taxonomy of datatype properties.
The second visualization type is a graph-based view in which taxonomies are repre-
sented as directed graphs. Since a (rooted) tree is a special kind of directed graph, the
visualization in both types is very similar. The main difference between them is that,
in the graph mode, we can manipulate the graph structure by using specialised layouts
or by manual rearrangement. Both types of OWL classes visualisation are presented
in Figure 2.

6

Figure 2. Visualisation methods of OWL classes.

Our graph-based editor supports the reasoning performed by the Pellet engine (see

Section 2.3). Results are presented to a user as a new graph of objects or as a pair of
graphs representing calculated taxonomies of classes and object properties. Moreover,
a user can check the consistency of an ontology and verify results obtained from on-
tology- and rule-based reasoning.

2.3 Applied Tools

In the presented graph-based editor we apply the Semantic Web Rule Language with
its syntax and semantics to read/write rules from/to an ontology. We employ the
OWL Web Ontology Language version 1.1 as a way to express the semantics of a
given domain. SWRL Built-ins [13] are used as comparison predicates between val-
ues of datatype properties or variables. Since we adapt SWRL as an OWL-based rule
language we follow its semantics. As a result, negated atoms or disjunctions are not
allowed. Moreover, we apply the DL-safe rules [4] approach, which considers decid-
able combinations of OWL DL and rule axioms. Decidability is preserved by forcing
each rule to be DL-safe, which means that each variable is bound only to the individ-
uals that explicitly occur in the assertional part (data) of the knowledge base. In other
words, only facts that are explicitly stated can be used in the reasoning process.

We employed the OWL API19 tool to parse and write OWL ontologies. The Pel-
let20 engine is used as an OWL and SWRL reasoner. As a result of reasoning we can:
check the consistency of an ontology and rules, calculate taxonomies, obtain potential

19 http://owlapi.sourceforge.net/
20 http://clarkparsia.com/pellet/

7

inconsistences and infer new facts. In the editor, we can visualise an ontology before
and after the calculation of taxonomies. Additionally, we can obtain a graph of facts
before and after the reasoning process.

Visualization uses two Java libraries: Gephi21 and Processing22. We use Gephi to
manipulate graph structures. It is also responsible for managing the layout of the
nodes on the graph. Nodes can be rearranged manually or placed according to their
graph-based parameters (centrality, modularity, PageRank, etc.). We use Processing
as a software sketchbook to create the views of an ontology structure and a set of
facts, as well as to create the rule editor.

Our graph-based rule editor for SWRL rule bases is fully implemented in the Java
language.

3 Graph-based Editor

3.1 Rule Creation and Edition Method

Our graph-based editor consists of three tabs: ontology view, rule creation graph and
instances view. The ontology view tab shows a visualisation of an ontology. The user
can select a hierarchical structure of classes, datatypes or object properties to be visu-
alised. Every edge in this view represents a subClassOf or subPropertyOf relation
from the ontology. Our system proposes a calculated layout of classes, however this
graph can be manually rearranged in order to improve the user impression and under-
standing. The hierarchy of classes is represented as grey circle nodes connected with
edges. Structure of object properties is represented as blue square nodes connected
with edges, whereas data properties are represented as green triangle nodes also con-
nected with edges. All edges in the ontology view tab reflect the subsumption relation
between two nodes.

The rule creation tab consists of 3 parts: conditions side, which represents the
body of a rule; conclusions side, which reflects the head; and the class hierarchy pre-
sented in a tree structure. In order to create a rule, a user drags a class from the Class
Hierarchy tree and drops it onto one of the rule sides (conditions or conclusions side).
She/he is asked for a variable name or a value, which indicates the added object. Class
concepts are presented as circles on the graph, with their class name and variable
(value) as their labels. Both datatype properties and comparisons of variables can be
added by right clicking on an object on the graph and selecting an appropriate option.
The system limits datatype properties to those which can be linked with the selected
object type (the selected class is in the domain of that datatype property or the domain
constraint does not occur). Datatype properties are displayed in the form of a triangle
connected by an edge with the corresponding object. The name of datatype is shown
on the edge, and its value as a label of the triangle.

21 https://gephi.org/
22 http://processing.org/

8

Table 1. Representations of main elements in our Graph-based Editor for SWRL rules.
Element Graph-based representation

OWL Class

OWL Class instance

Object property between
two OWL instances

Datatype property between
an object and a value

Relation between objects (object properties) can be added in a similar manner. Af-
ter selecting a node and right clicking the other node, a list of available object proper-
ties is presented. After selecting one of them, it is displayed as an edge between se-
lected nodes. In order to save a rule, the user needs to select an option from the top
menu (File, then Save as…). A user can choose to save the ontology combined with
the created rules.

The instances tab visualizes individuals (facts) stored in a knowledge base. They
are represented as purple rhombs connected with each other by edges (roles from the
ontology). Individuals can have datatype properties, which are visualized in the same
way as in the rule creation panel, by triangles. After the reasoning, objects can belong
to many OWL classes. This fact is impossible to represent on a static graph, however
we present a method to solve this problem. After moving the mouse above an individ-
ual, a tooltip with all inferred classes appears. User can select which class should be
visible on the graph as a default one.

The graphical representation of particular elements, which is applied in our editor,
is presented in Table 1.

3.2 An Example Case

An example application of our tool is performed with an ontology describing family
relationships. We slightly modified an ontology developed by Christine Golbreich
presented in [14]. Her ontology is publicly available23. It contains the usual classes,
e.g. 	
���, ���, ����, �ℎ���, 	��
��, etc., and relationships within a family,
e.g. ℎ�������, ℎ���ℎ���, ℎ��	��
��, etc.

23 http://protege.cim3.net/file/pub/ontologies/family.swrl.owl/family.swrl.owl

9

The main difference between the original family ontology and our version of it, is
the addition of:

• Classes: ��������
��, ��������ℎ
�, �������ℎ
�, ��
����������
��,
��
����������ℎ
�, ��
���������ℎ
�.

• Object properties: ℎ�������, ℎ����������
��, ℎ����������ℎ
�,
ℎ���������ℎ
�, ℎ����
����������
��, ℎ����
����������ℎ
�,
ℎ����
���������ℎ
�.

• Datatype property: ℎ����
.
Since the aforementioned new elements of the ontology are self-explanatory we do
not provide more detailed descriptions. The modified version of the family ontology
was then loaded into our editor. In the tool we created rules which are responsible to
obtain instances of the following:

• Classes: ��������ℎ
�, �������ℎ
�, ��
����������ℎ
�,
��
���������ℎ
�.

• Object properties: ℎ�������, ℎ����������ℎ
�, ℎ���������ℎ
�,
ℎ����
����������ℎ
�, ℎ����
���������ℎ
�.

In this paper, we present two rules created with our editor. Rule (2) asserts an in-
stance of relation ℎ������� which reflects that children of siblings are cousins of
each other (ℎ������� is defined as a symmetric property). Rule (2) is presented in
Figure 3.

	
����? ��,				
����? ��,				
����? �,				
����? !�,		
ℎ��	��
���? , ? !�,			ℎ��	��
���? �, ? ��,			ℎ����"�����? �, ? !�
→ ℎ�������	�? �, ? � (2)

Figure 3. Creation of rule (2).

Rule (3) asserts an instance of class ��
����������ℎ
� and an instance of a role
ℎ����
����������ℎ
�. The rule expresses that a father of our grandparent is our
great grandfather. Rule (3) is presented in Figure 4.

	
����? ��,				
����? ��,				
����? �,		
ℎ����������
���? �, ? ��,			ℎ��#��ℎ
��? �, ? �
→ ℎ����
����������ℎ
�	�? �, ? �,			��
����������ℎ
��? � (3)

10

Figure 4. Creation of rule (3).

Created rules need to be applied to the set of facts in the ontology. After the rea-
soning process, executed by Pellet, a user obtains results presented in a new graph (in
contrast to the graph before execution). Thus, new relations between objects and the
classification of them are obtained. Figures 5 and 6 present two graphs: before reason-
ing (Figure 5) and after reasoning (Figure 6). These figures represent a part of the
knowledge base to which rules (2) and (3) can be applied. Instances preceded by the
letter ‘M’ represent men and instances preceded by ‘F’ represent women.

Figure 5. Graph of instances before reasoning.

11

Figure 6. Graph of instances after reasoning.

4 Conclusions and Future Work

In this paper we have demonstrated a tool which supports graph-based creation and
edition of SWRL rules. The tool provides a visualisation of an OWL ontology, SWRL
rules and data. The graph-based representation is very convenient and intuitive. It is
an initial implementation which supports the creation of SWRL rules in a graphical
manner. The work presented in this paper is based on our previous experiences with
graph-based representation of rules [15].

The developed graph-based editor can be used in many domains where ontologies,
rules and graphs can be employed to support users in their work. Moreover, changes
in a SWRL rule base can be made by business specialists without engaging an experi-
enced programmer. As a result, the usual process of consultation between them is
omitted or shortened in time. Thus, the tool can significantly increase their work’s
efficiency.

In further work, we will implement a query method for searching a knowledge base
in a graphical manner. Moreover, we will provide a relational database interface. As a
result, a semantic query will be posed into an integrated environment which will in-
clude a relational database, a set of rules and an ontology. In this case any graph con-
taining nodes and edges could be entered as a search phrase. The reasoning engine
will search the whole knowledge base for a given set of conditions, and return all
objects that meet the specified requirements.

Another desired feature is to support OWL 2, which contains profiles designed for
reasoning with rules and query answering, the RL and QL profiles respectively. A
method of comparison between inferred and non-inferred knowledge bases is also
planned.

12

Finally, we are going to make our tool available online for download and use with
a free academic license (for non-commercial users) [16].
Acknowledgement. This work was supported by DS-MK 45-102/13 and 45-085/12
DS-PB grants.

References

1. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl: A semantic web

rule language combining owl and ruleml. W3C Member Submission (May 21 2004),

http://www.w3.org/Submission/SWRL/

2. Shotton D., Catton C., Klyne G., Ontologies for Sharing, Ontologies for Use,

http://ontogenesis.knowledgeblog.org/312?kblog-transclude=2

3. Hustadt U., Motik B., Sattler U., Data Complexity of Reasoning in Very Expressive Description

Logics, In IN PROC. IJCAI 2005, pages 466–471. Professional Book Center, 2005. (Cited on pages

5and 37.)

4. Motik B., Sattler U., Studer R., Query Answering for OWL-DL with Rules. In Journal of Web Seman-

tics, pages 549–563. Springer, 2004.

5. Object Constraint Language (OCL), v2.0. http://www.omg.org/spec/OCL/2.0/

6. UML-based Rule Modelling Language, http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=URML

7. Lukichev S., Jarrar M.: Graphical Notations for Rule Modeling. In: A. Giurca, D. Gasevic, and K.

Taveter (Eds), Handbook of Research on Emerging Rule-based Languages and Technologies: Open

Solutions and Approaches, IGI Publishing, 2009

8. Grzegorz J. Nalepa, Antoni Ligęza, and Krzysztof Kaczor. 2011. Overview of knowledge formaliza-

tion with XTT2 rules. In Proceedings of the 5th international conference on Rule-based reasoning,

programming, and applications (RuleML'2011), Nick Bassiliades, Guido Governatori, and Adrian

Paschke (Eds.). Springer-Verlag, Berlin, Heidelberg, 329-336.

9. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object oriented and frame-based

languages. J. ACM, 42(4):741–843, 1995

10. Sowa J. F., Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1984.

11. Hassanpour S., O'Connor M. J., Das A. K., A Rule Management and Elicitation Tool for SWRL Rule

Bases, 3rd International Rule Challenge at RuleML 2009, Las Vegas, NV.

12. Hassanpour S., O'Connor M. J., Das A. K., Exploration of SWRL Rule Bases through Visualization,

Paraphrasing, and Categorization of Rules, International RuleML Symposium on Rule Interchange

and Applications, Las Vegas, NV, 5858, 246-261, 2009.

13. SWRL Built-ins, http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

14. Golbreich C., "Combining rule and ontology reasoners for the semantic web.", Rules and Rule

Markup Languages for the Semantic Web. Springer Berlin Heidelberg, 2004. 6-22.

15. Nowak M., Bak J., Jedrzejek C., Graph-based Rule Editor, in Hassan Aït-Kaci, Yuh-Jong Hu, Grze-

gorz J. Nalepa, Monica Palmirani and Dumitru Roman, editors, RuleML2012@ECAI Challenge and

Doctoral Consortium at the 6th International Symposium on Rules, Montpellier, France, August 27th-

29th, 2012, volume 874 of CEUR Workshop Proceedings. CEUR-WS.org, 2012.

16. Demo site: http://draco.kari.put.poznan.pl/ruleml2013_SWRLEditor/

Advanced Knowledge Base Debugging for
Rulelog?

Carl Andersen??, Brett Benyo∗∗, Miguel Calejo? ? ?, Mike Dean∗∗, Paul Fodor†,
Benjamin N. Grosof‡, Michael Kifer†, Senlin Liang†, and Terrance Swift§

Abstract. We present a novel approach to debugging expressively rich
knowledge representation and reasoning (KRR) logic Rulelog. Rulelog
is an extended form of declarative logic programs (LP) under the well-
founded semantics, which allows higher-order logic formulas as axioms
in combination with defeasibility mechanisms that include rule cancel-
lation and priorities, along with default and explicit negation. Rulelog
also supports strong knowledge interchange with all current major se-
mantic web standards for logical KRR. Rulelog has been implemented
in Flora-2 and Silk, both on top of XSB; and (less completely) in Cyc.
The debugging approach described here is part of an integrated devel-
opment environment, most fully implemented in Silk. The approach in-
cludes: reasoning trace analysis, based on tabled LP inferencing tables
and forestlog; and justification graphs, which treat why-not and defea-
sibility as well as provenance. The reasoning trace analysis treats per-
formance and runaway computations, including non-termination as well
as classic subgoal-ordering issues that arise in database query optimiza-
tion. Non-termination can be prevented entirely by leveraging the re-
straint (bounded rationality) feature of Rulelog. Revision/authoring of
knowledge is interactive, based on a rapid edit-test-inspect loop and in-
cremental truth maintenance.

1 Introduction

1.1 Rulelog

Rulelog is an expressively rich knowledge representation and reasoning (KRR)
logic, based on a unique set of features that include:

1. defeasibility, based on argumentation theories (AT’s) [21], i.e., AT-defeasibility.
These theories provide features such as rule cancellation and priorities, along
with default and explicit negation.

? The order of the authors is alphabetical. Copyright c© 2013 by the authors.
?? Raytheon BBN Technologies, USA

? ? ? Declarativa, Portugal
† Stony Brook University, USA
‡ Benjamin Grosof & Associates, LLC, USA
§ CENTRIA, Universidade Nova de Lisboa, Portugal.

2

2. higher-order syntax, based on HiLog [1], and other meta-knowledge enabled
by rule id’s, i.e., hidlog ;

3. classical-logic formula syntax, including existential as well as universal quan-
tifiers, i.e., omniformity ([5] gives a compressed description); and

4. bounded rationality, based on restraint ([7] gives the basic radial form) which
utilizes the undefined truth value of the well-founded semantics to represent
“not bothering.”

Omniformity together with HiLog allows higher-order logic (HOL) formulas as
axioms. The omniformity feature also includes and extends the Lloyd-Topor
transformation [12] on rule bodies. Omniform rules are called “omni rules” or
“omnis”, for short. The hidlog feature also includes reification, i.e., a formula
can be treated as a term. The rule id’s aspect of hidlog enables meta-info about
axioms to be specified easily within the KB itself, e.g., meta-info about priori-
tization and about provenance. Other features include: object-based knowledge
modeling (frame syntax), and aggregates (e.g., setof, sum, average, etc.).

Rulelog is the logic that was used in the Silk system [17] developed as part
of Vulcan’s Project Halo [8] advanced research effort, and grows out of earlier
work on RuleML [15] and Semantic Web Services Framework [20]. A W3C Rule
Interchange Format (RIF) dialect based on Rulelog is in draft [9], in cooperation
also with RuleML.

The semantics of Rulelog is specified transformationally, into logic programs
(LP) that are normal: those with logical functions and with default negation
under the well-founded semantics. Using these transformations, Rulelog has been
implemented most fully to date in Silk, which is architected as a Java layer that
sits on top of Flora-2 [4]. Flora-2 sits in turn on top of XSB [22,19], which
implements normal LP. Rulelog also has been implemented, less completely, in
Cyc [2]. Both XSB and Flora-2 are available open source; Silk (i.e., the Java
layer), purposed primarily as a scientific research effort, is proprietary.1

Rulelog supports strong semantic knowledge interchange with not only LP
but also with first-order logic (FOL), and thus with all current major seman-
tic technology standards for logical KRR, including RDF(S), SPARQL, SQL,
XQuery, OWL-RL, OWL-DL, RIF-Core, and RIF-BLD, as well as with ISO
Common Logic and thus SBVR.

Rulelog provides a good target for text-based authoring of knowledge [5],
because of its ability to express defeasible HOL formulas as axioms.

Rulelog has been application-piloted in the domain of college-level biology for
the task of question-answering in e-learning, in Project Halo. However, Rulelog is
applicable to many other domains and tasks, e.g., that involve policies, contracts,
law, and/or information integration.

1 The Silk development effort, including maintenance, ended in April 2013.

3

1.2 Challenge of Debugging Knowledge in a Rulelog System

The expressivity of Rulelog raises a number of issues both in debugging and in
understanding the behavior of Rulelog derivations.

The justification problem is a problem of explaining missing or unexpected
(e.g., wrong or unintended) answers. This task is complicated not only by the
types of inference used, but also by the transformations used to implement
Rulelog reasoning. Answers to a query may be different than expected due to
defeasibility or due to unexpected inferences made by the use of the higher-order
reasoning provided by the HiLog component.

The performance/termination problem is a problem of indicating why a deriva-
tion has taken up more resources than expected — including non-termination
as an extreme case. To explain the context of this problem, one of the major
objectives of the Silk implementation of Rulelog was to be usable by knowledge
engineers (KE’s) who are competent in logic, but who are not necessarily com-
puter programmers. Such usage can give rise to knowledge bases constructed in
a declarative manner, but with little attention to procedural aspects. Queries to
such knowledge bases may lead to derivations that take longer than expected.
In addition, as mentioned earlier, Rulelog uses logical functions both explicitly
and implicitly (the later due to existential quantification, which is part of omni-
formity), and this use of logical functions can lead to non-termination.2 While
some performance issues can be addressed by optimizing compilers, users still
need to understand what parts of a knowledge base give rise to poor performance
or non-termination, so that these parts can be remedied.

Understanding Rulelog derivations is complicated by the semantics of Rulelog,
which unlike first-order logic, is a fixed-point logic that supports recursive defi-
nitions. A Rulelog derivation, therefore, can be seen as a sequence of evaluations
of recursive components in which the answers to a given subquery may be mutu-
ally dependent on answers to numerous other subqueries. Such a derivation can
be partially modeled via a graph whose vertices are Rulelog atoms and whose
edges are direct dependencies of the truth of one Rulelog atom on another. As
will be shown later, such dependencies are implicit in our solution to the justifi-
cation problem, but are explicit in our solutions to the performance/termination
problem.

To partially address the justification and performance/termination problems,
support is given by the tabled resolution of XSB, which serves as the computa-
tional underpinning of Rulelog in Silk. Although the details of tabling are quite
complex, at a high level it handles recursive query evaluation by registering each
tabled subgoal in a derivation. The first time a subgoal S is encountered in a
derivation, a table is created for S and program clause resolution is used to
derive answers for S, which are added to the table for S as they are derived.
Subsequent calls to S need only resolve against answers in its table. In addition,

2 FOL and normal LP also have this potential for non-termination in inferencing, for
the same reason.

4

tabling keeps partial track of dependency information in order to determine the
truth values of atoms in the 3-valued well-founded semantics. Although tables
are central to the derivation strategy of Silk, they can also be examined by users
to help understand features of a derivation.

A basic requirement in debugging is that the edit-test-inspect loop be rapid.
This is addressed in Silk (and XSB and Flora-2) by the use of incremental
methods for tabling in XSB and Flora-2. Such incremental tabling essentially
constitutes truth maintenance.

The considerations so far indicate that a creative approach must be taken to
understanding correctness, performance, and termination. Note that because of
the complications of the transformations from Rulelog to normal logic programs,
together with the technical details of tabled resolution, an interactive-debugger
approach like that used in Prolog and other languages is impractical. Instead, we
have developed a number of novel tools, each of which has an analytic compo-
nent, which examines the internal structures of the engine and produces textual
output, and a presentation component that makes the textual output more com-
prehensible to the user. The presentation components were incorporated into an
overall graphical integrated development environment (IDE) for Silk, based on
Eclipse, called Silklipse [6]. All of the tools described below have either been
completed or are in the advanced stages of development.

2 Justification

Explanation of inferencing results, often called justification, has a long history
in KRR, starting with the venerable truth maintenance systems [13]. The most
practical previous approach to justification in LP is the method proposed for
XSB’s tabled computations in [14]. Silk takes the previous ideas much further
in several ways. First, it provides an attractive and easy-to-use visualization
of the justification process through its Silklipse environment ([6] described an
early version). Second, unlike XSB and other logic systems with explanation
mechanisms, Silk supports defeasible reasoning through argumentation theories
[21]. In the presence of defeasibility, a fact might be false or undefined because
it is derived by the rules that are defeated by other rules. In those cases, it is
necessary to explain how and why those rules were defeated. Silk provides such
explanations. A key aspect is to explain why literals or rules have false (in the
sense of NAF) truth value, i.e., why-not. Another key aspect is to explain how
prioritization, or its lack, is involved. Third, unlike [14], justification is done not
by transforming the original rules and blowing up the size of the knowledge base
but through a separate small set of meta-rules, which is invoked on-demand when
the user requests justification. Fourth, Silk supports rule-based transformation
of the justification information: displaying it via automatically generated English
text, and/or summarizing or otherwise reorganizing it.

Figure 1 shows a screenshot of a navigable justification in the Silk GUI. Some
lines have been transformed into English text, while others have not been and

5

thus appear directly in Silk’s main logical syntax. E.g., the first line has been
transformed into English text: “It is not the case that cell52 has a nucleus.” But
lines 4 and 13 (among others) appear in the Silk logical syntax:

cell52 # red(blood(cell)))
red(blood(cell))##eukaryotic(cell)

Here “#” means “is an instance of” and “##” means “is a subclass of.” Next we
explain the icons that appear on the left in each line. “G” indicates a (sub)goal
literal. “A” indicates an argument, i.e., a rule body supporting such a goal literal.
Here, “argument” is in the sense of prioritized argumentation in defeasibility.
Black bar (“—”) indicates a neg-argument, i.e., an argument for the neg (strong
negation) of the goal literal. “F” indicates a fact, i.e., a literal that was directly
asserted. “P” indicates prioritization info, i.e., that one rule’s tag has higher
prioritization than another tag. Green indicates true, while red indicates false
(in the naf sense). Green bang (“!”) indicates a undefeated (“live”) argument.
Red down arrow (“↓”) indicates an argument that has been refuted, i.e., defeated
by another conflicting argument that has higher priority. Plus (“+”) just to the
right of “G” indicates that there are more arguments to see. When the “+” is
black it indicates there are both pro (i.e., positive/for) and con (i.e., strong-
negative/against) arguments to see; when green, it indicates there are more pro
arguments but not more con arguments to see.

In this example, the relevant asserted logical rules in the KB can be described
in English as follows:

cell52 is a red blood cell.
Eukaryotic cells have nuclei. (This rule has tag r1.)
Red blood cells are a subclass of eukaryotic cells.
Red blood cells do not have nuclei. (This rule has tag r2.)
r2 has higher priority than r1.

3 Trace-based Analysis

3.1 Table dump: Examining Subqueries, Answers, and Rules

Table dump is a tool that produces a report on the subgoals that are among the
most heavily called and the subgoals that have the most answers. This tool also
lets the user know the rules that are the most heavily called ones. It thus helps
to identify the bottlenecks in the knowledge base and then take measures such
as to add appropriate guards to rules and to reorder subgoals within rules.

Figure 2 shows a screenshot of a navigable view of table dump info in the
Silk GUI.

6

Fig. 1. Justification example

3.2 Forest logging

Although simple and powerful, the table dump approach lacks two main features
needed to fully address the performance/termination problem. First, it does not
provide an overview of how given subqueries in a derivation relate to one another
through rules, and does not display information about the recursive components
whose computation is central to a Rulelog derivation. Second, no information is
provided about the order of events in a derivation, such as when subqueries were
made, answers derived, and so on.

Within Silk, details of a Rulelog derivation can be reconstructed through
another kind of trace-based analysis. XSB provides a mechanism to create a
more dynamic trace or log of a derivation, called a forest log [18]. Using such a
log, the structure of even very large recursive components can be analyzed, and

7

Fig. 2. Table dump example

non-terminating derivations detected. This subsection first overviews forest logs,
and afterwards discusses the analysis routines based on the logs.

The form of tabling used by XSB is called SLG resolution. The operational
semantics of SLG evaluation (and hence a Rulelog derivation) can be modeled as
a sequence of forests of trees, where each tree corresponds to a tabled subquery
S, and represents the immediate subqueries that S produces along with any
answers to S. In fact, each SLG operation is modeled as a function from forests
to forests that creates a new tree, or adds a node or label to an existing tree.

Within XSB, SLG resolution is executed using a byte-code virtual machine
analogous to that used by Java. An internal XSB flag can be set so that any
byte-code instruction that corresponds to a tabling operation will log information
about itself and its operands as a Prolog-readable term. For instance, if (tabled)
subgoal S1 is called in the context of subgoal S2, and it is the first time S1 is
called in an evaluation, a fact of the form

table call(S1,S2,new,ctr)

is logged, where ctr (mnemonic for “counter”) is a sequence number for the fact.
When a derivation ends or is interrupted, the log can be loaded into XSB and
analyzed as a set of Prolog facts. Within XSB, the logging system is written at a
very low level for efficiency. Turning on full logging usually does not slow down
Flora-2 performance by more than 70-80%. XSB also provides routines to load

8

logs and index their facts on various arguments. Based on the logging libraries,
logs containing hundreds of millions of facts have been loaded and analyzed.

3.3 Analyzing Recursive Components

Once a log has been loaded, a user may ask for an overview of a computa-
tion, which provides information on the total number of calls to tabled subgoals,
the number of distinct tabled subgoals, the number of answers, and so on. In
addition, the overview provides aggregate information on the number of mu-
tually recursive components, and the number of subgoals in the components.
Finally, the overview contains information indicating how stratified the negation
(negation-as-failure, i.e., naf) was in a derivation by listing the total number of
atoms whose truth value was undefined, along with a count of the various SLG
operations used to evaluate well-founded negation.

Some derivations may give rise to very large recursive components—due to
an unanticipated effect of higher-orderness, a knowledge base that is not suffi-
ciently modularized, or other reasons. The analysis routines allow given recursive
components to be examined, by listing the subqueries in the component, along
with the pairs of calling and called subgoals within the components.

By examining this output, users can usually fix whatever problems gave
rise to large recursive components. However for a very large component C, the
number of subqueries in C may be on the order of 105 or more and the number
of calling/caller pairs may be on the order of 106. In such a case diplaying every
subquery or pair may be confusing at best. The analysis routines thus provide
several abstraction routines that allow a user to coalesce similar atoms. For
instance, if a component contained the subqueries p(a,X), p(b,X), p(c,X) ..., the
analysis routines could use mode abstraction to coalesce all of these terms to
p(bound,free), or even predicate abstraction to coalesce all these terms to p/2.
Recursive component analysis together with abstraction of atoms has been used
to analyze the behavior of reasoning that was translated from Cycorp’s inference
engine into the Silk implementation of Rulelog, for example.

3.4 Analyzing Runaway: Terminyzer

Runaway computation occurs when a query does not terminate or takes too long
to come back with an answer. The first type of problem occurs typically due to
the presence of function symbols and the second is largely due to computations
that produce very large intermediate results most of which could be avoided
with smarter evaluation strategies, such as subgoal reordering. The problem of
determining whether a query is terminating or not has long been known to be
undecidable, and the known sufficiency tests for them are weak for practical
purposes. Cost-based optimization of LP via subgoal reordering has not been
well studied for the case when recursion and logical functions are present.

9

The first tools we have developed for runaway give the user the means to
interrupt the computation and inspect various statistics and the table dump,
as described earlier. The user can also request the computation to stop after
producing the desired number of answers.

One sophisticated diagnostic tool we have developed to tackle the non-termi-
nation problem is called the Terminyzer (short for “(non-)Termination Ana-
lyzer”) [11,10]. This tool relies on the previously described forest logging mech-
anism, which records the various tabling events that occur in the underlying
inference engine XSB [19]. Among others, forest logging records when the dif-
ferent subgoals are called and when they receive answers. Terminyzer performs
different kinds of analysis, such as call-sequence analysis and answer-flow anal-
ysis, and identifies the sequences of subgoals and rules that are being repeatedly
called and in this way cause non-terminating computation.

Terminyzer also has a heuristic that may suggest the user to allow the sys-
tem to reorder subgoals at run time and this avoid non-termination. For in-
stance, in a composite subgoal p(?X,?Y), q(?X) , Terminyzer may detect
that p(?X,?Y) is an infinite predicate. However, this infinity may be due to
the infinite number of ?X-values. If q(?X) binds ?X to a concrete value first,
non-termination will not occur. In such a case, Terminyzer may suggest the user
to wrap the offending subgoal with a suitable delay quantifier—a novel facility
supported by Flora-2 and Silk. For instance, if the above subgoal is rewritten
as wish(ground(?X))^p(?X,?Y), q(?X), the system will not try to evaluate
p(?X,?Y) unless ?X is bound. If it is not bound, the evaluation of p(?X,?Y) is
postponed and q(?X) will be evaluated next. If this binds ?X then all is well and
p(?X,?Y) can be evaluated next without a runaway. If ?X is still unbound, some
other subgoal may, perhaps, bind it, so p(?X,?Y) remains delayed. Only when
the system determines that ?X cannot be bound no matter what, p(?X,?Y) is
submitted for evaluation. If this happens, the user would have to use the infor-
mation provided by Terminyzer to decide whether the runaway is a mistake or
is semantically justified. In the first case, this information will help the user fix
the mistake; in the second, restraint could be used to prevent the runaway.

The presentation component of Terminyzer is integrated with Silklipse.

4 Restraint: Bounded Rationality and Prevention of
Runaway

Another advanced way to control runaways is to use restraint, an approach to
bounded rationality (and pragmatic incompleteness) that is semantically sound
despite non-monotonicity [7]. With restraint, the semantics of inferencing—and
thus corresponding computation—is limited in well-defined way; answers derived
after the limits have been reached are given the truth value of undefined.

While Terminyzer is used for finding mistakes in user’s knowledge base, i.e.,
in situations when runaway computation is not intended, restraint is used when
the knowledge base is correct. This typically occurs when the user query of

10

interest or one of its subqueries has an infinite number of answers, but only the
first few need to be returned to the user.

One type of restraint is to limit a norm on subgoals, e.g., term size or depth,
to be upper-bounded by a constant, which is called the radius. By setting the
radius to a small enough value, radial restraint can be used to prevent runaways
altogether.

There are several other useful types of restraint as well. In skipping restraint,
conditions are specified (via rules) for when some other rules instances should
be skipped, i.e., treated as having undefined truth value. In unsafety restraint:
a literal that is (irremediably) unsafe with respect to NAF is treated as having
undefined truth value. Likewise, an external-query (a.k.a. sensor) literal that
is unsafe with respect to binding mode requirements is treated as having un-
defined truth value. In unreturn restraint, an external-query literal that does
not return—e.g., due to network failure or server failure — is treated as hav-
ing undefined truth value. In some situations, unsafety and unreturn restraints
are preferable to throwing an error. Radial and skipping restraint are voluntary
kinds of bounded rationality: the user specifies desired limits on reasoning via
meta-rules knowledge. The limitation is cleanly semantic and specified as part of
the knowledge base itself. By contrast, unsafety and unreturn are involuntary :
limitations on reasoning are imposed by the circumstances of the inferencing
mechanism and/or external environment.

All the above types of restraint straightforwardly combine with each other.
They furthermore straightforwardly combine with the “anytime” approach to
temporally bounded rationality [3,16]. In anytime restraint, a series of increas-
ingly complete inferencing-result sets are computed and when a time limit is
reached, the best one computed so far is returned. For instance a restraint ra-
dius is progressively incremented until the time limit is reached.

5 Overall Process of Knowledge Debugging

The tools we have described can be combined in a number of ways. The typical
process of knowledge debugging goes as follows. A user runs a (test) query of
interest. If the execution of the query does not take an unexpectedly/undesirably
large amount of time or space, there is no performance/termination issue. The
user looks at the answers to the query, and employs the justification tools to
examine the explanation of those answers in terms of supporting conclusions
and their associated assertions (rules knowledge). Along the way, the user looks
for wrong or missing conclusions, and wrong or missing rules. The user may
issue some other related queries as part of this investigation, and look at their
explanations as well.

However, if execution of the query does take an unexpectedly/undesirably
large amount of time or space, there is a performance/termination issue. At
this point, the user needs to determine whether the runaway is due to non-
termination or merely due to an inefficient computation. The first step in de-

11

termining the culprit is to look at the table dump of the trace. If these show
very large terms with deeply nested repeated function symbols, non-termination
is the likely problem, and Terminyzer can be further employed to find the ac-
tual rule sequences that cause the problem. Otherwise, the user would use the
table dump and the forest log tools to identify foci of computational effort, by
looking for large tables (via table dump) or large recursive components (via for-
est log). The user next drills down progressively from the macroscopic (more
aggregated and general) to the microscopic (more detailed and specific). Once
sufficiently microscopic, the user then also employs the justification tools (as
described above)—and/or employs restraint, especially in order to ensure termi-
nation (e.g., by limiting term size).

As usual in any kind of debugging, the above steps are iterated as needed.

6 Discussion: Scale, Skill

The debugging tools and process we have described have been used effectively
for expressively rich Rulelog knowledge bases (KB’s) of substantial size, ranging
up to tens of thousands of (non-fact) rules. “Expressively rich” here means with
expressiveness beyond that of (normal) LP. Trace-based analysis has been used
for forest logs ranging up to hundreds of millions of facts, as mentioned earlier.

An important direction for future work is how to empower Subject Matter
Experts (SME’s), who lack skills in logic, to most effectively and efficiently debug
knowledge, e.g., KB’s that they author via text-based techniques [5], including in
collaboration or review with KE’s who do have skills in logic. This area requires
considerable further research.

7 Acknowledgements

This work was supported by Vulcan, Inc., as part of the Halo Advanced Research
project. Thanks to the rest of the Silk team, especially Paul Haley (Automata,
Inc.) and Keith Goolsbey (Cycorp), for helpful discussions. Michael Kifer and
Senlin Liang were also supported, in part, under the NSF grant 0964196.

References

1. W. Chen, M. Kifer, and D.S. Warren. HiLog: A foundation for higher-order logic
programming. Journal of Logic Programming, 15(3):187–230, February 1993.

2. Cyc. Cyc. http://www.cyc.com (project begun in approx. 1984), 2013.

3. T. Dean and M. Boddy. An Analysis of Time-dependent Planning. In AAAI
Conference on Artificial Intelligence, pages 49–54, 1988.

4. Flora-2. Flora-2. http://flora.sourceforge.net (project begun in approx. 2000),
2013.

12

5. B. Grosof. Rapid Text-based Authoring of Defeasible Higher-Order Logic Formu-
las, via Textual Logic and Rulelog (Summary of Invited Talk). In Proc. RuleML-
2013, the 7th Intl. Web Rule Symposium, 2013.

6. Benjamin Grosof, Mark Burstein, Mike Dean, Carl Andersen, Brett Benyo, William
Ferguson, Daniela Inclezan, and Richard Shapiro. A SILK Graphical UI for Defea-
sible Reasoning, with a Biology Causal Process Example. In Proc. of RuleML-2010,
the 4th Intl. Web Rule Symp. (Demonstration and Poster), 2010.

7. Benjamin Grosof and Terrance Swift. Radial Restraint: A Semantically Clean
Approach to Bounded Rationality for Logic Programs. In Proc. AAAI-13, the
27th AAAI Conf. on Artificial Intelligence, July 2013.

8. Halo. Project Halo. http://projecthalo.com (project begun in approx. 2002), 2013.
9. J. Sherman and M. Dean. RIF-SILK. http://silk.semwebcentral.org/RIF-

SILK.html (project begun in approx. 2009), 2013.
10. Senlin Liang and Michael Kifer. A Practical Analysis of Non-Termination in Large

Logic Programs. Technical report, Stony Brook University, 2013. http://www.cs.
stonybrook.edu/~sliang/iclp2013-tr.pdf.

11. Senlin Liang and Michael Kifer. Terminyzer: An Automatic Non-Termination An-
alyzer for Large Logic Programs. In PADL, Berlin, Heidelberg, New York, 2013.
Springer-Verlag.

12. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin Germany,
1984.

13. D. McAllester. Truth maintenance. In Reid Smith and Tom Mitchell, editors,
Proceedings of the Eighth National Conference on Artificial Intelligence, volume 2,
pages 1109–1116, Menlo Park, California, 1990. AAAI Press.

14. G. Pemmasani, H.-F. Guo, Y. Dong, C.R. Ramakrishnan, and I.V. Ramakrishnan.
Online Justification for Tabled Logic Programs. In International Symposium on
Functional and Logic Programming (FLOPS), number 2998 in Lecture Notes in
Computer Science, pages 24–38, 2004.

15. RuleML. Rule Markup and Modeling Initiative. http://www.ruleml.org (project
begun in approx. 2000), 2013.

16. S. Russell and E. Wefald. Do the Right Thing: Studies in Limited Rationality. MIT
Press, 1991.

17. SILK. SILK: Semantic Inferencing on Large Knowledge.
http://silk.semwebcentral.org (project begun in 2008), 2013.

18. T. Swift. Profiling Large Tabled Computations using Forest Logging. In CICLOPS,
2012. Available at http://www.cs.sunysb.edu/˜tswift.

19. Terrance Swift and David Scott Warren. XSB: Extending Prolog with Tabled Logic
Programming. TPLP, 12:157–187, January 2012.

20. SWSF. Semantic Web Services Framework.
http://www.w3.org/Submission/SWSF/, 2005.

21. H. Wan, B. Grosof, M. Kifer, P. Fodor, and S. Liang. Logic Programming with
Defaults and Argumentation Theories. In Int’l Conference on Logic Programming,
July 2009.

22. XSB. XSB. http://xsb.sourceforge.net (project begun in approx. 1993), 2013.

http://www.cs.stonybrook.edu/~sliang/iclp2013-tr.pdf
http://www.cs.stonybrook.edu/~sliang/iclp2013-tr.pdf

1

Knowledge-based highly-specialized terrorist event

extraction

Jakub Dutkiewicz, Czesław Jędrzejek, Jolanta Cybulka, Maciej Falkowski

Institute of Control and Information Engineering,

Poznan University of Technology,

Pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland

{firstname.lastname}@put.poznan.pl

Abstract. In this paper we present a prototype of a system aimed at event extraction using linguistic

patterns with semantic classes. The process is aided with an auxiliary tool for mapping verb statistics across

messages. The sentence analyzer uses linguistic associations, based on VerbNet across the message and

between messages' sentences to select semantic role fillers. We restrict ourselves to the coverage of one

event type only – namely a kidnapping and to two events template slots (semantic roles): a perpetrator

and a person_target (a human target). We designed rules involving semantic role filling using previous

works on coreference. We used the Sundance parser and AutoSlog extraction patterns generator. Then we

applied the semantic role filler and event resolution tool SRL Master. Our approach yields high perform-

ance on the MUC-4 data set.

Keywords. knowledge-based information extraction, semantic roles, terrorist event discovery

1 Introduction

Event extraction is one of the most important tasks of knowledge discovery. It may be

regarded as the core of knowledge-based systems that aim at providing the public

(people, organizations, government agenda etc.) with condensed and filtered infor-

mation concerning events. These events are described in texts written in natural lan-

guage, thus the posted problem is related to the issue of information extraction (IE).

Particularly, the task is to extract data concerning the described action (the event) and

its arguments (called event roles). To implement the considered task different ap-

proaches are applied. They can be classified according to the provenance of the ap-

proach (pattern-based linguistic ones vs. classifier-based (statistical) methods) or to

the ‘openness’ of it (fully open extraction vs. trained with the use of corpora one). The

next important classification criterion is the nature of the context of the extraction,

namely locality (one sentence only) or a larger context that takes into account consec-

utive sentences (a discourse). In many cases the hybrid methods are used that com-

bine the different approaches. The open extraction systems (operating across one

sentence context) scale well to the open corpora [1,3], especially that acquitted from

the Web. But the most accurate IE systems are domain-specific, that use linguistic

patterns and are somewhat trained with the aid of statistics. Our work follows the

mailto:%7bfirstname.lastname%7d@put.poznan.pl

2

latter approach in that we use a training domain-specific corpus. Let us characterize it

briefly.

Due to a series of DARPA Message Understanding Conferences (MUCs), signifi-

cant progress in pattern-based (NLP based) extraction technologies has been

achieved. In this work we capitalise on the results of MUC-3 and MUC-4 ([10] that

were held in 1991-1992) conferences, which used news reports corpus (MUC corpus)

on terrorist activities in Latin America. MUC Conferences developed standards for

evaluation, e.g. the adoption of metrics like precision and recall.

The goal of MUC was to extract from texts an information concerning 7 classes of

terrorist events: Attack, Kidnapping, Hijacking, Bombing, Arson, Robbery and

Forced Work Stoppage, plus several variations on each (for accomplished, threatened

and attempted incidents). The process of extraction was augmented by the knowledge

frames (event templates) generation. Every such template consisted of 24 attributes-

slots. A document (a multi-sentenced message concerning an event) could be labeled

with more than one template type. The MUC-4 corpus consists of 1700 documents,

from which 1300 (DEV) were used in MUC-4 for training, 200 documents

(TST1+TST2) were used as a tuning set, and the last 200 documents (TST3+TST4)

were applied as the test set. The resulting knowledge base frames are called “key

templates”. We filter out messages concerning one event type only, namely the kid-

napping. Also, from among 24 slots we consider the two of them: a perpetrator and a

person_target.

The main contributions of the presented paper are:

 a method of comparing events to check whether a given two events are in fact

identical or whether they are different, on the basis of semantic typing (semantic

classes) of event’s arguments; it relies on using several types of rules, namely

atomic, filling thematic role rules and whole events comparing rules; the method

may be also used in coreference resolution

 an implementation of a corpus crawling tool that looks for words/phrases that

lexicalize the kidnapping event

 additional lexical rules related to identification of victims and perpetrators.

The paper is organised as follows. Section 2 contains some notes concerning re-

lated works. In Section 3 our extraction method is presented. Section 4 describes a

prototype implementation of the Word-statistics tool and its use. Section 5 demon-

strates our information extraction results. In section 6 we give the concluding remarks

and mention on our future work.

2 Related works

The main drawback of open information extraction [3] is that it uses the natural lan-

guage features which do not classify (semantically type) arguments of an extracted

relation. Additionally, in such methods the syntactic patterns (for example, regular

expressions) do not match verb arguments that are distant from the verb phrase in a

sentence. These are the features having the great negative impact on the ability to

compare events (whether they are identical or not) described in the different sentenc-

es. In our work we avoid this drawback.

3

Authors of [4] use the language resources (dictionaries) to obtain sets of words that

are relevant to the semantic class (a type of a verb argument). Having such extension-

ally defined types (semantic classes) they use them in the extraction process. In this

work it is also shown how to apply such classes in the process of events comparison.

The method of event’s comparison is also described in [5]. Here, the authors com-

pare them (and extract their arguments) on the basis of head parts of noun phrases.

For example, the events described in the following two sentences:

1) A customer in the store was shot by masked men.

2) The two men used 9mm semi-automatic pistols.

are in fact the same due to the fact that they use the same word “men”. In our ap-

proach the events may be unified (or differentiated) on the basis of the membership

(non-membership) of two used (“linking”) words to the same semantic class. Also, it

is not known, which pairs of sentences should be analyzed according to the event (we

describe this problem later on).

3 The extraction method

3.1 Preliminary definitions

At first, let us give some definitions of the terms used in the paper. They are as fol-

lows.

Event (denoted by En, where n stands for event’s name) is an entity representing

the event (conceptually it is an occurrent that plays the central role in some situation,

which represents a state of affairs) described in the text. The event is connected with a

syntactic phrase (a verb phrase) that helps to identify it in a sentence, which is called

an anchor. Also, there are some participants in the event we identify them via the-

matic roles that are arguments of an anchoring phrase.

Anchor (marked as Ak, where k stands for an anchor name) is a verb or a verb

phrase, which appearance in a derivation (i.e. a syntactically parsed sentence) triggers

the process of recognition of an event (such as, for example, the kidnapping).

Thematic role (a semantic role label, marked as Rm, where m is a role name) is an

entity representing an argument of a verb or a verb phrase (an anchor) denoting the

event. For example, there may be such roles as Agent (in our considerations, a perpe-

trator), Patient (a victim), Instrument, Location, Time and others.

Role filler is a text phrase that instantiates a thematic role in the text (marked with

the symbol RpFv, where p is a role name and v identifies a filler).

Syntactic similarity. Let us assume that the two argument function of syntactic

similarity simsyn (W1, W2), while given two words (or phrases) as arguments returns

a binary value true or false. The function will return the true value if W1 and W2 have

the same syntactic properties (i.e. number and gender), otherwise it returns false.

Semantic class (denoted by Cs, where s is a class name) is defined as an entity

that is expressed by all of its verbalizations. For example, the verbalizations of the

semantic class concerning kidnapping are Ckidnapping={kidnap, seize, abduct, capture,

intercept, take hostage}. It should be noted that we do not use all the meanings of the

listed words, but only these fitting to a specific context.

4

Atomic formula is a triple of the form <sub, pred, obj>, where sub means the

subject of the sentence (and semantically it may play a thematic role Rm), pred means

the predicate (represents an event in terms of a certain semantic class Cs) and obj

means the object (semantically playing a role Rp). An atomic formula could be con-

sidered as a rule representing a fact.

Let us illustrate the introduced notions with the exemplary message from DEV-

MUC3-0018 (the text in this corpus is given in an upper case). We decorated the text

with roles, role fillers, events and anchors. One of the considered sentences is:

OQUELI, LEADER OF THE NATIONAL REVOLUTIONARY MOVEMENT

(MNR) AND HILDA FLORES, A GUATEMALAN SOCIAL DEMOCRATIC

LEADER(RvictimF1) WERE ABDUCTED(EkidnappingAkidnapping1) AND KILLED IN

JANUARY(RtimeF1) BY UNIDENTIFIED INDIVIDUALS(RperpetratorF1) IN

GUATEMALA CITY(RlocationF1) AS THEY WERE HEADING TO THE LA

AURORA AIRPORT.

Assume that there exists another sentence concerning the same event but with the

new fillers for the victim and perpetrator roles:

IT TURNED OUT THAT POLITICIANS(RvictimF2) WERE

KIDNAPPED(EkidnappingAkidnapping2) BY URBAN TERRORISTS OF FARABUNDO

MARTI NATIONAL LIBERATION FRONT(RperpetratorF2).

After decorating the two sentences we are to check, whether two pairs:

EkidnappingAkidnapping1 and EkidnappingAkidnapping2 concern the same event. We will show

how to approach this issue in section 2.3.

We are motivated by VerbNet (VN) [1] thematic/semantic role methodology.

VerbNet verb classes are organized according to the syntactic behavior of verbs.

VerbNet uses 109 verb classes and 29 semantic role labels for arguments of the

<sub, pred, obj> triple pattern (which resembles our atomic formulae). We adhere to

VerbNet semantics rather than to ontologies, because we are not aware of any public-

ly available ontology with adequate expressive power and rich verbalization of classes

(ontological entities). We are in the process of using our CATIE ontology for the

general extraction of facts from MUC-4 corpus [6].

We are interested in such event specifying verbs as: kidnap, abduct, seize (VN

-

index/vn/steal-10.5.php#steal-10.5; sense number 3: take or capture by force or au-

thority) belonging to class steal-10.5. However, instead of a role Agent [+animate |

+organization] we need a role Agent/Patient [+person | +a group of persons |

+organization]. In Unified Verb Index collection (VerbNet generalization) the word

capture belonging to class steal-10.5.1 (http://verbs.colorado.edu/verb-

index/wn/wordnet.cgi?v3-0.capture.1.capture-2:36:00#1) apparently has not been

assigned a meaning kidnap.

3.2 Basic rules for identifying thematic roles

The next type of rules (besides the earlier described atomic formulae that represent

facts) says that as the direct anchors we use all the interesting verbs (Ckidnapping) in the

past tense forms. Using a special function that retrieves a predicate of a given triple,

namely predicate_of(<s,p,o>) = p, we denote such rules as triples of the form: <predi-

cate_of(<s,p,o>), tense_of, “Past”>. We assume that tense_of is a built-in predicate

5

representing verb tenses, i.e. “Past” and “Past Participle”. Another built-in predicate,

named voice_of, represents voice of a verb phrase, namely “active_voice” and “pas-

sive_voice”. The third built-in predicate, named plays, represents a fact concerning

the deduced thematic role of a subject and an object of some triple (as it was assumed

we only consider the agentive role (a perpetrator) and the patientive (beneficiary) role

 a victim).

Now we are ready to give the rules to identify thematic roles of a predicate given in

the past tense form. We are concerned with predicates expressed by verbs being

members of a Ckidnapping semantic class.

 The first rule states that for a given triple if its predicate is in the past tense and in

the active voice then the subject plays the agentive thematic role of a perpetrator

while the object plays the patientive thematic role of a victim (a kind of a per-

son_target). The rule (1) is as follows:

<predicate_of(<sub,pred,obj>), tense_of, “Past”>

<predicate_of(<sub,pred,obj>), voice_of, “active_voice”>

<sub, plays, “agentive_role”> <obj, plays, “beneficiary_role”> (1)

The second (2) rule differs in the voice specification only that influences the order

of the atomic formulae in the conclusion. The rule is as follows:

<predicate_of(<sub,pred,obj>), tense_of, “Past”>

<predicate_of(<sub,pred,obj>), voice_of, “passive_voice”>

<sub, plays, “ beneficiary_role”> <obj, plays, “ agentive_role”>. (2)

3.3 Rules for event identification

In many cases information about certain roles and events is included in several sen-

tences. Thus, matching different phrases to one thematic role constitutes one of a key

tasks. We define a set of rules to identify such cases and eventually we either unify

different events or differentiate them (the are_different predicate). One of these rules

bases on two sentences with a verb phrases denoted as two pairs containing an event

and an anchor, En1Am1, En2Am2. Each of these sentences contains a phrase that repre-

sents a filler of the same role, namely Rp1Fk1, Rp1Fk2. To activate such a rule we need

to find at least two sentences with these role fillers and event anchors. If we happen to

find more than two sentences of such a kind, we need to analyze them in pairs. To

describe such a rule, we need to define two predicates. The “belongs_to” predicate is

used if a given phrase belongs to a certain semantic class (this means that the main

word in the phrase is a member of the considered class). The “is_equal_to” predicate

decides whether either two semantic classes contain the same set of elements or role

fillers are syntactically equivalent.

The process of analysis starts with searching of described pair of sentences. Let us

denote the anchor and the role filler that were found in the first sentence as R1F1 and

E1A1, and the anchor and the role filler found in the second sentence as R1F2 and

E2A1. Once we have found these pairs we need to decide whether the described event

anchors belong to the same semantic class (denoted as C1). This is formalized as:

<E1A1, belongs_to, C1> <E2A1, belongs_to, C1>.

6

This basic condition should be considered as preemptive and its result decides if we

are going to consider a pair of sentences as worth of executing this rule on.

The second part of the analysis starts with determining if role fillers belong to clas-

ses that are different, but there exists some relation between those classes. Further-

more we need to check if role fillers have the same syntactic properties. If those con-

ditions are true, we can assume that phrases describe the same event. Additionally,

there exists some relation among semantic classes, which may also be projected on

role fillers (in particular it may be a subsumption). Let us formalize these considera-

tions in the form of rule (3). In this rule, we mark “some relation” as a variable “?rel”.

<R1F1, belongs_to, C2> <R1F2, belongs_to, C3> <C2, ?rel, C3>

<C2, is_equal_to, C3> simsyn(R1F1,R1F2)

are_the_same (E1,E2) (R1F1, ?rel, R2F2) (3)

However, if role fillers belong to the same class, but are different or role fillers have

different syntactic properties, it is necessary to classify two events as different (4):

(<R1F1, belongs_to, C4><R1F2, belongs_to, C4><R1F1, is_equal_to, R1F2>)

simsyn(R1F1,R1F2))

are_different(E1, E2). (4)

We illustrate that rule with the following examples.

Example 1

There are two consecutive sentences in the message:

1) John Smith (RvictimF1) has been kidnapped (Ekidnapping1A1).

2) President (RvictimF2) was taken hostage (Ekidnapping2A2) by unknown perpetrators.

The preemptive constraints are:

<”kidnap”, belongs_to, Ckidnapping> <”take_hostage”, belongs_to, Ckidnapping>.

The following rule activation captures lexical associations between two neighboring

sentences by pairing as similar each noun in the role of a victim (person_target). This

is similar to lexical bridge features used in [5]. The rule for those sentences goes as

following:

<”John Smith”, belongs_to, CPerson> <”President”, belongs_to, CPolitician>

<CPerson, represents, CPolitician> <”John Smith”, is_equal_to, “President”>

simsyn(“President”, “John Smith”)

are_the_same(Ekidnapping1,Ekidnapping2).

As the result we obtain a fact (an atomic formula) of the form:

<“John Smith”, represents, “President”>.

The confidence of this rule could be measured in distance between the considered

sentences (thus the distance is measured in the number of sentences). In particular this

rule may be used only to analyze consecutive sentences.

7

Example 2

We have three sentences, not necessarily in one document.

1. Ricardo Alfonso Castellar, mayor of Achi,(RvictimF1)who was kid-

napped(Ekidnapping1A1) on 5 January, apparently by Army Of National Liberation

guerillas, was found dead.

2. Castellar(RvictimF2)was kidnapped(Ekidnapping2A1) by a group of armed men.

3. A politician condemned kidnapping(Ekidnapping3A1) of mayor of Achi(RvictimF3).

In this case we need to process sentences in pairs. First, we take sentences 1 and 2.

We execute the rule and as a result we get the unification of Ekidnapping1 and Ekidnapping2.

This means that unification of Ekidnapping3 event, with both of the previous events would

be redundant and we just need to clarify if Ekidnapping3 could be unified with any of

those events. However, if Ekidnapping1and Ekidnapping2 would not be unified, all events

need to be compared separately. In this case we get three fillers of the victim role,

furthermore the relation between those fillers is quite specific. That relation could be

marked as “is_substring_of”. The left-hand side argument of this relation is always

less expressive then its right-hand side and thus we could find the most expressive

filler – “Ricardo Alfonso Castellar, mayor of Achi”.

Our method of unification is conceptually more powerful than the so far used for

coreference resolution (for example in [11, 9]). But so far it is used only for establish-

ing the agreement of semantic classes and also the noun-pronoun agreement features,

that means features 2-3 and 8 out of 12 features proposed in [11].

3.4 Additional lexical rules

The examples shown in the previous subsection illustrate the need for rules that go

beyond search of sentences with verb phrases corresponding to event related semantic

class. To make the task of identifying event easier for the annotators, it is necessary to

use the secondary semantic class containing words that are in a fuzzy relation to the

core event term. We introduce a class:

Cfuzzy_kidnapping = {disappear, release}

Following the Automatic Content Extraction (ACE) Programme guidelines:

An event trigger refers to the term within the event mention that most clearly ex-

presses the occurrence of the event instance and is based on direct anchor – corre-

sponds to Ckidnapping.

An event mention refers to the sentence within which an event instance is reported –

corresponds to Cfuzzy_kidnapping. An event can have multiple mentions associated with it.

Apart from the sentence that initially reports the event, other coreferring sentences

that contain anaphors of events (such as pronouns and definite descriptions of previ-

ously mentioned events) are taggable mentions of that event [9].

In general there always exists a direct connection between roles of events corre-

sponding to C1 and Cfuzzy_1. For example a victim of kidnapping directly corresponds

to a subject of releasement or disappearance. To measure the confidence of fuzzy

classes we look at the statistics of all words/stems in various part-of-speech forms,

which directly or indirectly could indicate an event of kidnapping. They are words

8

corresponding to Ckidnapping and Cfuzzy_kidnapping classes verbs for kidnap (heads of verb

phrases) in the past tense or attributive kidnapped, verbs in the past tense, verbs

(infinitve, -ing form for a verb, gerund), nouns related to an act of kidnapping or a

perpetrator, namely:

kidnap, kidnapping, kidnapped, kidnapper

stem seiz, seized, seizing,

 abduct, abducted, abducting,

 stem captur, capturing, captured,

 intercept, intercepting, intercepted,

 stem releas, released, releasing,

 disappear, disappeared, disappearing,

take/hold hostage.

Finally, we apply coreference rules for both Cfuzzy_kidnapping and Ckidnapping semantic

classes.

Example 3:

1. Ricardo Alfonso Castellar(RvictimF1), mayor of Achi, was released(E1A1) on 15

January.

2. Kidnapping(E2A1) of Castellar(RobjectF1) was a brutal act.

Even though events E1 and E2 belong to different semantic classes we can unify spe-

cific role fillers within those events.

4 Word Statistics Tool

The process of designing pattern-based linguistic rules is a very tedious work, what

constitutes the main disadvantage of such methods. To alleviate a burden we imple-

mented a MUC Word Statistics Analyzer (Figure 1). The tool realizes several useful

functions:

1) it presents graphically statistics of words across a document or a corpus

2) and it displays in two separate panels fragments of text pertaining to this statis-

tics.

The considered in the paper extraction method relies on the quality of verb argu-

ment’s typing (semantic classes). To obtain good results concerning the extensions of

semantic classes Ckidnapping and Cfuzzy_kidnapping we designed and implemented a statistic

tool. It estimates the frequency of words (exactly, their stems) occurrences in the mes-

sage or in the whole corpus. The tool also enables the analysis of sentences (or mes-

sage) across which the stems appear. In the upper right corner of the screen given in

Figure1 the histogram is located that depicts the number of a word (stem) occurrences

in the message and in the sentence. The exemplary message is shown in the lower left

corner. In the bottom panel the list of sentences is located in which the stems with

9

different endings appear, for example: a stem kidnap, end words kidnapped, kidnap-

per or kidnapping.

Summing up, by the quick inspection of the frequency of appearance of words and

their correlation and varying the trigger term lists we can assess effectiveness of lin-

guistic features.

5 Results

There are five overall IE related tasks that evolved from MUC.

 Named entity (NE) aims to extract all instances of persons, organisations, loca-

tions, dates, times, percentages and monetary entities.

 Coreference (CO) given a set of entities, this task aims to generate a set of entity

coreference chains, such that mentions that coreference to the same entity appears

in the same chain.

 Template element (TE) aims to extract all entity attributes. As an example, for the

entity mention \ Castellar ", the aim is to extract its name (\Ricardo Alfonso Cas-

tellar, "), type (\PERSON") and descriptor (\the mayor of Achi").

 Template relation (TR) aims to extract all well-defined facts from each newswire

text. In MUC-4 this was related to the knowledge frame (24 slots) of 8 terrorist

type of events. In MUC-7 the facts were limited to relationships with organisa-

tions: employee of, product of and location of.

 Scenario template (ST) aims to extract pre-specified event information from any-

where in the given text, and relate it to the particular organisation and person enti-

ties etc. involved in the event.

The figures presented in this table are based on the performance levels of systems

participating in the MUC evaluations. More detailed figures can be found in Table 1.
Table 1. MUC evaluation tasks

Year Evaluation MUC Tasks

NE CO TE TR ST
1991 MUC-3 F< 58%

1992 MUC-4 F<56% [9]

1995 MUC-7 F< 94% F< 62% F< 87% F <76% F< 51%

10

Figure 1. A snapshot of the results of the MUC Word Statistics Analyzer.

For many years these results have not been significantly improved. Only recently a

significant progress [9,11] has been made.

There appear 159 events resolved as kidnappings out of 1700 documents as a result

of assessment of the MUC-4 community [7].

We define the following numbers or word occurrences:

X1: at least a single occurrence of words from Ckidnapping or Cfuzzy_kidnapping

X2: only from Ckidnapping at least once

X3: only from Cfuzzy_kidnapping at least once

X4: from Ckidnapping at least once and from Cfuzzy_kidnapping at least once together

X5: only from Ckidnapping ending with –ed at least once

X6: only from Cfuzzy_kidnapping ending with –ed at least once

X7: as in X1 from Ckidnapping at least once and from Cfuzzy_kidnapping at least once, to-

gether ending with –ed

X8: only from {kidnap} set

X9: only kidnapped

Y1- Y9: occurrence as for X but for the set of documents that do not belong to a

kidnapping event.

11

Table 2. Statistics of MUC evaluation tasks

 Number of occurrences

Documents con-

cerning the kid-

napping

X1 X2 X3 X4 X5 X6 X7 X8 X9

144 44 10 47 48 13 31 81 65

Documents not

concerning the

kidnapping

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

394 212 128 54 156 108 30 83 32

The detailed analysis of these results will be presented at the Challenge event. We

used the Sundance and AutoSlog systems for syntactic parsing and extraction patterns

generation [12] together with Name Entity Extraction (with slightly modified dic-

tionaries). Then we applied the semantic role filler and event resolution tool SRL

Master.

Table 3: The most effective patterns as determined from DEV 1-1300 texts

NP = EN VP(S) PP(BY) = Perp

NP = EN VP(S) PP(IN) = Location

NP = EN VP(S) NP(Date) = Date

 NP = EN PP(OF) = Victim

 NP = EN NP(Date) = Date

 NP = EN PP(IN) = Location

 NP = Victim PVP PP(ON) Date

NP = Victim PVP PP(ON) Location

NP = Victim PVP PP(BY) = Perp

NP = Victim PVP
 NP = Victim PVP NP(Date) = Date

NP = Victim PVP PP(IN) Location

NP = Victim PVP NP(Loc) = Location

Pron = Victim PVP PP(BY) = Perp

Pron = Victim PVP PP(IN) = Location

Pron = Victim PVP NP(Date) = Date

Pron = Victim PVP
 Pron = Victim PVP PP(ON) = Date

NP = Perp VP ActInf NP= Victim

NP = Perp VP NP=Victim

NP = Perp VP PP(IN) = Location

NP = Perp VP PP(OF)= Victim

NP= Victim AdjP NP(Date) = Date

Pron PVP AuxVP NP = Victim

NP= Victim AdjP PP(BY) = Perp

12

In Table 3 the meaning of symbols is the following: EN= event name (e.g. kidnap-

ping, crime, etc.) – there are anchors, in all other patterns VP are anchors, NP = noun

phrase, VP = verb phrase, PVP = passive verb phrase, AdjP=adjective phrase, PP=

prepositional phrase starting with specific prepositions, Pron= noun phrase represent-

ed by a pronoun, Perp=perpetrator.

Effectiveness of our system is due to several factors:

 Our patters are mostly triples, whether most previous works were based on

syntax patterns consisting of 2 elements, see e.g Fig. 1 of [13].

 Non-triple patterns are more likely to generate extraction of nonrelevant pat-

terns. For a pattern to be relevant we need to have at least either of two:

location, date sentence part (first sought in a simple sentence, then in the

complex sentence, and finally in adjacent sentences.

 One of the main contributions of this work is the introduction of VP(S) =

supplementary verb phrase (particularly effective involving NP=EN are:

take place, claim responsibility, be responsible for, carry out. To a lesser

degree this helps to identify perpetrators and victims.

The correctness of extraction in this paper is providing all of the following kidnap-

ping event roles (recall): perpetrator individuals, perpetrator organizations, hu-

man_target/victim, location and date. These roles are narrower than 24 slots of the

MUC-4 contest.

Table 4 presents the recall for the kidnapping events (here the same events in dif-

ferent documents are counted separately, similarly as for MUC-4 evaluation).

Table 4: Recall for the kidnapping events for the MUC-4 development and test sets

Recall Measure [per cent]

DEV set TST sets

78 73

The recall numbers are significantly higher than in the MUC-4 contest (where the

best contribution achieved around 60% for both precision and recall), but achieved for

the easier task and for only one type of a terrorism event. They are also higher than in

Table 3 of [5].

The system is presented at http://draco.kari.put.poznan.pl/ruleml2013_Extraction.

6 Conclusions

The recent wave of methods [11,9,8,3,4] is capable of significant improvement of

extraction measures. The MUC Conferences provided benchmarks that decrease arbi-

trariness of a given method evaluation. For example open extraction system ReVerb

gives a good precision but a poor recall [3]. We plan to apply against the full MUC-4

benchmark. The MUC Word Statistics Analyzer would be helpful for this task. There

13

are improvement possibilities in using the probable better syntax parser, Named En-

tity Recognition and using a wider set of coreference comparison.

Our choice of anchor words can be more optimal. In general, our patterns pre-

sented in Table 3 are more compatible with ontology-driven extraction than purely

linguistic methods. Rather than use one general dictionary as used by most MUC

related works, we can have lexicalization specific to ontology element. We are work-

ing in this direction.

Acknowledgement. This work was supported by the Polish National Centre for Re-

search and Development (NCBR) No O ROB 0025 01 and DS 45-085/13 and DS-PB

grants. We would like to thank Prof. Ellen Riloff for making Sundance and AutoSlog

tools available to us, and Bartosz Zaremba for calculating some statistics.

References

1. Bonial, C., Corvey, W., Palmer, M., Petukhova, V., and Bunt, H. A Hierarchical Unification of

LIRICS and VerbNet Semantic Roles. Proceedings of the ICSC Workshop on Semantic Annotation

for Computational Linguistic Resources (SACL-ICSC 2011), Sep, 2011.

2. Etzioni O., Banko M., Soderland S., and Weld D. S. 2008. Open information extraction from the web.

Commun. ACM 51, 12 (December 2008), 68-74.

3. Etzioni O., Fader A., Christensen J., Soderland S., and Mausam: Open Information Extraction: The

Second Generation. IJCAI 2011:3-10.

4. Huang, R. and Riloff, E.: Multi-faceted Event Recognition with Bootstrapped Dictionaries, Proceed-

ings of the 2013 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL HLT 2013).

5. Huang, R. and Riloff, E.: Modeling Textual Cohesion for Event Extraction, Proceedings of the 26th

Conference on Artificial Intelligence (AAAI 2012).

6. Jedrzejek C., Cybulka J., CATIE ontology for the MUC-4 events extraction, in progress.

7. Lehnert, W.G., Cardie, C., Fisher, D., McCarthy, J., Riloff, E. and Soderland, S., Evaluating Infor-

mation Extraction System, submitted to (Journal of Integrated Computer-Aided Engineering), 1(6),

(1995), pp. 453-472.

8. Nakashole N., Weikum G., Suchanek F. M.: PATTY: A Taxonomy of Relational Patterns with Se-

mantic Types. EMNLP-CoNLL 2012: 1135-1145.

9. Naughton M. Sentence-Level Event Detection and Coreference Resolution. School of Computer

Science and Informatics, University College Dublin, PhD Thesis: October 2009.

10. Proceedings of the 4th Conference on Message Understanding, MUC 1992, McLean, Virginia, USA,

June 16-18, 1992.

11. Soon, W. M., Ng H. T., and Lim D. C. Y. (2001). Learning approach to coreference resolution of

noun phrases. Computational Linguistics 27 (4), 521–544.

12. Riloff E., Phillips M.. 2004. An Introduction to the Sundance and AutoSlog Systems Technical Re-

port UUCS-04-015, School of Computing, University of Utah,

http://www.cs.utah.edu/~riloff/pdfs/official-sundance-tr.pdf.

13. Patwardhan, S. and Riloff, E. (2006) "Learning Domain-Specific Information Extraction Patterns

from the Web", ACL 2006 Workshop on Information Extraction Beyond the Document.

http://www.cs.utah.edu/~riloff/pdfs/official-sundance-tr.pdf
http://www.cs.utah.edu/~riloff/pdfs/acl06-iewkshp.pdf
http://www.cs.utah.edu/~riloff/pdfs/acl06-iewkshp.pdf

SBVR as a Semantic Hub for Integration of

Heterogeneous Systems

- A Case Study and Experience Report -

Ling Shi
1, 2

, Dumitru Roman
3
,

and Arne J. Berre

3

1Statsbygg, Pb. 8106 Dep, 0032 Oslo, Norway
2University of Oslo, Pb. 1072 Blindern, 0316 Oslo, Norway

ling.shi@statsbygg.no
3
SINTEF, Pb. 124 Blindern, 0314 Oslo, Norway

{dumitru.roman,arne.j.berre}@sintef.no

Abstract. Extracting integration rules to handle semantic heterogeneity is one

of the main challenges of achieving seamless connectivity between distributed

systems. Semantics of Business Vocabulary and Rules (SBVR)’s machine and

human readability and platform independence make it potentially suitable and

interesting to study, as a central semantic hub of different systems. Semantic

heterogeneity can be identified by comparing and analyzing vocabularies, fact

models and business rules in the hub. Integration rules can then be extracted

based on the semantic heterogeneity analysis. This article investigates and eval-

uates the usage of SBVR in heterogeneous systems integration. It provides a re-

al-life case study and experience report on extracting integration rules based on

an analysis of two Norwegian public sector’s heterogeneous IT-systems mod-

eled in SBVR.

Keywords: Integration rules, SBVR, Vocabulary, Fact models, Rules, Hetero-

geneity, Semantic heterogeneity, Ontology mismatch

1 Introduction

The amount of data has been exploding in the last decades and therefore also the need

for integrated information from distributed systems. There are numerous data sources

available in organizational databases and on public information systems
1
. A typical

integration scenario is that two heterogeneous systems A and B are built for different

business purposes for different users at different times by different software develop-

ers using different information models. The two systems often have heterogeneous

semantics, i.e. vocabularies, data structures and business rules are different. One of

the main challenges of achieving seamless connectivity of related information from

the different source systems is to extract the integration rules that can handle the het-

erogeneity of the source systems. Integration rules cover mainly what parts of re-

1 http://logic.stanford.edu/dataintegration/chapters/preface.html

sources and properties from different source systems could be integrated, under what

conditions, and how the transformations should be formed.

Extraction of integration rules is based on the analysis of the heterogeneity of the

different systems. Therefore the quality of the heterogeneity description decides di-

rectly the quality of integration rules. In order to describe the heterogeneity, semantics

of the source systems need to be described first. Machine readable semantic models

are preferred compared to only human understandable semantic models because ma-

chine readability provides the possibility of utilizing automated reasoning and thereby

the possibility of automation of the integration rules extraction. On the other hand,

human readable semantic models make it easy to involve and interact with domain

experts and decision makers. The domain experts can validate the semantics of the

existing models and their documentation. The domain experts’ involvement in captur-

ing semantics is essential, especially when little existing semantic information could

be found from the existing sources. A machine and human readable language is there-

fore preferred to model both the semantics of the systems and the heterogeneity be-

tween them.

Semantics of data models can be expressed in various forms ranging from schemas

to system documentation, by annotation to ontologies, etc. Some well-known infor-

mation modeling languages are evaluated below for the criteria of machine and hu-

man readability. XML provides structure but relies on e.g. schemas to provide seman-

tics and the tree structure of XML is not always suitable for capturing various types of

semantic relations. Ontology models support semantic integration by the machine

readable meaning of terms [1]. However, ontology models are often not understand-

able by people without ontology training and lack the ability to address business rules

and integration rules which are crucial to the integration challenges addressed in this

paper. The Unified Modeling Language
2
 (UML) is commonly used to model vocabu-

laries and rules with the help of UML profiles, but its suitability for representing

knowledge in a way that is easy to understand for non IT skilled users is questionable.

Semantics of Business Vocabulary and Rules (SBVR) [5] is both machine readable

and structured and human understandable. The date-time vocabulary
3
 (DTV) is one of

the SBVR examples of machine and human readable semantics. SBVR is potentially

suitable as the modeling language for the central semantic hub of different systems.

Figure 1 below illustrates an SBVR-enhanced integration hub in the context of in-

tegration of system A and B which is a typical problem in practice as shown with a

real-life example in Sections 2 and 3. The different source models as database schema

(DB), UML, Web Ontology Language
4
 (OWL) and Resource Description Frame-

work
5
 (RDF), together with domain experts’ knowledge and system documentation,

etc., from both source systems provide input to the central integration hub to be ex-

pressed as vocabularies, fact models and business rules. A transformation between

SBVR and well-known modeling languages such as the OWL has been documented

2 http://www.omg.org/gettingstarted/what_is_uml.htm
3 http://www.omg.org/spec/DTV/
4 http://www.w3.org/TR/owl-features/
5 http://www.w3.org/RDF/

in [2], and a transformation between SBVR and UML has been documented in [3, 7].

Heterogeneity can be identified by comparing and analyzing the SBVR models in the

hub. The integration rules can be extracted based on the analysis result of heterogene-

ity.

Figure 1. SBVR-enhanced integration hub

The rest of the paper is organized as follows. Section 2 introduces a case study with

focus on the integration challenges of two IT systems. Section 3 presents the realiza-

tion of SBVR-enhanced integration hub in the case study. It first introduces the over-

all SBVR-based approach to address the identified challenges, and then reports on the

realization of the hub in the case study presenting the transformation of source models

to SBVR vocabularies, fact models and business rules, and extraction of the integra-

tion rules based on the heterogeneity analysis. Finally, Section 4 summarizes the work

that has been done, draws lessons learned in using SVBR as a semantic integration

hub, and suggests directions for future work.

2 Case Study

Statsbygg (SB) is the Norwegian government’s key advisor in construction and prop-

erty affairs, building commissioner, property manager and property developer
6
. This

public sector administration company has more than 800 employees and manages

approximately 2.7 million square meters of floor space
7
. Many of SB’s business areas

are dependent on up-to-date building information such as the buildings’ name, ad-

dress, status, tenant information, etc. The property management system is called

Propman. Propman registers, among others, buildings and building related informa-

6 http://www.statsbygg.no/System/Topp-menyvalg/English/
7 http://www.statsbygg.no/FilSystem/files/omstatsbygg/aarsrapport/SBaarsmelding2011.pdf

DB

OWL/

RDF

System B

DB

System A

OWL/

RDF

UML

SBVR-enhanced

integration hub

UML

Integration rules

Domain

experts & docs

Domain

experts & docs

tion. Propman is client-server based and is built upon an Oracle relational database
8
.

The available sources for building semantic models are database schemas, original

system documentations and input from the domain experts.

The Norwegian national cadastral system called Matrikkel
9
 stores the official data

of buildings and building related information such as the buildings’ name, usage area,

status, address, land owner information, neighbor list and historical building changes.

The Norwegian national map office is responsible for Matrikkel and it serves the data

both as downloadable maps and map Web services. The available sources for building

semantic models are class diagrams, a vocabulary and the Web services interfaces

described with the Web Service Definition Language (WSDL).

Integration of the two systems is always a highly prioritized task among users and

leaders in SB though there are integration difficulties, mostly at business and applica-

tion layers. Building information such as address, status, municipal code, etc., is

maintained manually in Propman though the information also exists in Matrikkel.

Matrikkel is maintained frequently by municipal offices and other information pro-

viders. It often occurs that those types of data are out of date in Propman. One of the

suggestions in SB to address the heterogeneity between the two aforementioned sys-

tems was to standardize the Propman with Matrikkel’s building id and data structure

for buildings. However, the heterogeneity of the two systems is inevitable since the

two systems were originally built for different purposes and serve different users and

customer groups. For example, SB administrates several properties abroad which are

not registered in the Norwegian national Matrikkel. In such situations, standardized

data structures do not guarantee interoperability at the scale expected by SB. Other

examples of heterogeneity are shown in Section 3.

SB tried to update Propman data with building information from Matrikkel twice.

In 2007 SB updated its building data based on the matching Matrikkel’s building

number in Propman though 25% buildings in Propman did not have the key regis-

tered. The quality of registered Matrikkel’s building numbers was not good either.

Some numbers were used several times on different buildings in Propman; some

numbers did not belong to the right building. There were several kinds of errors after

the updating process according to the feedback from the property managers. The sec-

ond data updating was done in a half automated and half-manual way in 2012 and it

tried to cover all the buildings including those without a Matrikkel’s building number.

Mismatches of data in the two systems were listed up and suggestions of modifica-

tions were delivered to the property management administrator who forwarded them

to each property manager individually. Major reasons for this time and resource con-

suming process included the lack of a suitable vocabulary that could define terms like

building, building’s built area, building’s address, etc., and also the lack of clear

structures and rules that could be used to decide which building should be included in

the register and what to do if mismatches between Matrikkel and Propman occurred.

Each property manager then made an evaluation based on his/her domain knowledge

and the corrections were therefore not 100% consistent.

8 http://www.oracle.com/us/products/database/overview/index.html
9 https://www.matrikkel.no

Neither of the integration approaches provided expected results and they were ei-

ther time or resource consuming or error-prone. SB was looking for a more effective

and systematic approach that could improve the data quality in Propman. The hetero-

geneity should be concretized and classified, and then the integration rules should be

extracted to handle the heterogeneity problems with standardized processes, and to

avoid the inconsistency caused by the missing rules. To achieve this goal, an approach

has been developed as shown later in Section 3.1.

3 Realization of the SBVR Hub in the Case Study

This section presents a real-life example of implementing the SBVR-enhanced inte-

gration hub for the two aforementioned heterogeneous systems. An overall approach

is introduced first, and then the step by step realization of the approach is presented.

3.1 Overall Approach

The case was simplified to concentrate on the integration of buildings and related

basic building information, though there are plenty of other kinds of building informa-

tion that could be integrated such as addresses, owners, or land. The suggested ap-

proach focuses on the SBVR-enhanced integration hub and the extraction of integra-

tion rules based on a heterogeneity analysis. It is designed to include the following

parts and steps:

Part 1: Establishing the SBVR hub: Building the vocabularies, fact models, and

business rules for the source systems.

Part 2: Extracting Integration Rules: Identifying the mismatches of term defini-

tions in the vocabulary, business rules and fact models; Building the integration

rules after the mismatches.

The steps can be automated if proper tools are available, however manually ap-

proaches can also be used if necessary.

3.2 Building the Vocabularies

A template to define the data fields in the vocabulary was agreed upon first, and then

two sets of SBVR vocabularies were established to separate the two system domains,

the Matrikkel system and Propman respectively.

Vocabulary Template

SB has a cross domain working group called master data group whose main task is to

define and maintain master data of the company. Domain experts from different busi-

ness areas are invited to the group to work on their domain related terms and give

input to the definitions. The group extended a template
10

 from the Norwegian Agency

10 http://standard.difi.no/filearchive/2012-05-13-mal-begrepsbeskrivelser-1-0.pdf

for Public Management and eGovernment (Difi)
11

 to define the data fields included in

the vocabulary as shown below.

• Difi fields:

─ Difi mandatory: Identifier, Recommended Term, Definition, Source, Disci-

pline, Effective from, Responsible, Language, Expires, Reference to ver-

sions, Classification;

─ Difi recommended extension: Related concepts, Comment;

─ Difi administration documentation: Contact, Last Modified, Modified By,

Status.

• SB extension fields: Synonym, System, Category, Approval Date.

The Matrikkel Vocabulary

The most challenging part of building a vocabulary was to reach a common sense on

the definition in the organization or company. The Matrikkel system has already done

part of the work and a definition page is provided on their website
12

 with total of 92

terms dated September 1
st
 2012. Below is the original definition of the term “Build-

ing” in Matrikkel from the website.

Table 1. The original definition of the term Building in the Matrikkel system

Includes buildings and building changes.

 The basis for the definition of buildings is Eurostat’s definition: “Can be used separately listed for a permanent

purpose and are suitable or intended to protect people, animals or things.”

 GAB system and DEK were two predecessors of the Matrikkel system. GAB system has from the beginning been

associated with the Norwegian Standard NS 3940 Area and volume calculation of buildings as the basis for calculat-

ing area of buildings. This principle continued in the Matrikkel.

 The area concept to be used in Matrikkel is called usage area. It is described in the standard and in the Matrikkel

instructions. One precondition for a valid usage area is that the building meets the requirements of the standard of

measurability. Based on these rules, carports (open garage), which only includes open space, fall outside of the

definition. The same applies to tank constructions since such constructions are not normally accessible via doors or

the like.

 It indirectly implies that buildings in Matrikkel have usage area. It is however still open to register buildings that are

otherwise not subject to registration. The area should then not be recognized as usage area but as an alternative type

of land use.

 All buildings with a usage area of 15 m² or more shall be recorded in Matrikkel, but smaller buildings can also be

registered.

The above definition includes not only the definition of the term, but also the other

valuable information as input to the vocabulary, fact model and business rules. The

table below shows the original definition’s input to the vocabulary template as de-

scribed at the beginning of this section.

11 http://www.difi.no
12 http://www.statkart.no/filestore/Matrikkelavdelingen/Foeringsinstruks/chapter02.html (in

Norwegian)

Table 2. Applying the vocabulary template to the term Building in Matrikkel

Vocabulary Field Value

Identifier M.Building

Recommended term Building

Definition Includes buildings and building changes.

The basis for the definition of buildings is Eurostat’s definition: “Can be

used separately listed for a permanent purpose and are suitable or intended

to protect people, animals or things.”

Source Eurostat, NS3940

Responsible The Norwegian National Map Office

Related concepts Usage area

The first sentence of the original definition indicates the term’s relation to build-

ings and building changes. The original definition text also states a relation between

Building and its attribute usage area. Both relations should be taken care of in build-

ing the fact models. Several business rules on what could be registered as a building

in Matrikkel are included in the original definition text and they should be taken care

of in building the business rules.

The SB Vocabulary

The master data group in SB arranged workshops with domain experts to collect the

company’s central terms and definitions. Some terms are cross-domain terms and

domain experts had different understanding, focus and usage of the terms. The master

data group worked as a negotiator in order to reach an agreement between the domain

experts. When disagreement could not be resolved at this level, it had to be escalated

to the higher administration level to reach a final decision. The result was an Excel

sheet with more than 500 terms with names, definitions and related information.

For example, the definition of Building in SB is as follows:

Table 3. The original definition of the term Building in the Propman system

A building is a continuous building mass. In many cases, larger building masses can be defined as several build-

ings because the original building has been extended, and each gets its building number and building name. This is

due to the preservation of historical data, due to different building status: e.g. building under construction, or has just

been completed.

Table 4. Applying the vocabulary template to the term Building in the Propman system

Vocabulary Field Value

Identifier SB.Building

Recommended term Building

Definition A building is a continuous building mass.

Source Propman’s system documentation

Responsible SB

Related concepts

The above definition indicates that a normal criterion to identify a building with a

unique building number is the continuous building mass. However, exceptions are

allowed when a building is extended or under special conditions. These could be used

as inputs to build the business rules.

3.3 Building the Fact Models

The Matrikkel system had UML models in its documentation and the database sche-

mas of Propman were accessible. Those sources were transformed to SBVR fact

models as described below.

Matrikkel - Transformation from UML to Fact Models

UML class diagrams could be transformed to fact models using some intuitive trans-

formation rules based on ideas from [7, 8].

A single UML class may include name, attributes and operations [4]. The class

name could be transformed to a term name in the fact model. The class attributes

could be transformed to properties, one of the four special-purpose element of struc-

ture as described in [5]. The wording for property is “has”. There is no direct trans-

formation from UML class operations to fact models though the operations could be

analyzed and implemented as rules if applicable. The interpretation of operations to

rules is not covered in this study.

The generalization between UML classes could be transformed to categorization,

also one of the four special-purpose element of structure in fact models. The wording

for categorization is “is a category of”. The generalization could also be transformed

to classification if the subclass is an instance of the superclass, e.g., subclass Canada

vs. superclass Country. The wording for classification is “is classified as”.

The composition could be transformed to composition in fact models, the wording

for composition is “is composed of” or “is included in”. Other type of associations

could be transformed to fact types.

Due to the scope of the case study, the transformation rules used in the case study

do not cover the transformation of, e.g., data types of attributes, multiplicity of attrib-

utes, multiplicity of associations, and aggregation in UML classes to fact models.

Figure 2 shows an example of a fact model modeled in a tool called FactXpress
13

.

The model is generated from the UML model of building
14

 in the Matrikkel system

based on the transformation rules specified above. The text in parentheses is the orig-

inal text in Norwegian.

13 http://www.rulearts.com/FactXpress
14 https://www.test.matrikkel.no/matrikkel/docs/Domenemodell.html#analysemodellen_bygg

Figure 2. An SBVR fact model generated from a Matrikkel UML class diagram

Propman - Transformation from Database Schemas to Fact Models
The database schemas and system documentations were two of Propman’s accessible

source for semantics. Class diagrams were used as the bridge in transforming database

schemas to fact models since transformation between database schemas and class

diagrams can be automated by several database modeling tools. The database schemas

were first imported to a class diagram using the existing reengineering tool in EA
15

.

The legacy system Propman had not built relationships between the tables; thereby

there were no associations between the classes. The information retrievable from the

class diagram was therefore limited. There were other sources though, for example

the system documentations. The statements that were helpful from the system docu-

mentations were, e.g., “One Complex includes one or more lands” and “Each land

could build one or more buildings”. The figure below shows the fact model modeled

based on the database schema generated class diagram and system documentations.

15 http://www.sparxsystems.com/products/ea/index.html

Figure 3. The fact model of SB Building

Comparing Fact Models and Vocabularies

The fact models enrich the definitions in the vocabularies built as outlined in Section

3.2 by adding attributes of a concept and relations to other concepts. Moreover, fact

models can also be used to validate the definitions from Section 3.2.

A common challenge in integration is using the same term for different meanings.

A fact model will help with the identification of this kind of misleading information

by showing attributes and relations of the concepts in a structured way. For example,

the building definition in Table 2 states that a building “Includes buildings and build-

ing changes”. The fact model in Figure 2 shows three concepts, i.e. “BuildingAnd-

BuildingChange”, “Building” and “BuildingChange”. The definition in the vocabu-

lary should then be modified to reflect the fact models.

3.4 Building the Business Rules

The Matrikkel Business Rules

Some of the definitions in Matrikkel’s vocabulary also include rules. Those rules

could be extracted from the textual definition, for example:

R-M-bygg-4:

Each building with usage area 15 m² or larger should be registered in Matrikkel system. Small-

er buildings can also be registered, but is not compulsory.

The SB Business Rules

The rules in SB were collected by interviewing the users and sending inquiries to

responsible Propman system administrators. Here are some examples.

R-P-bygg-1:

SB registers both buildings larger than and smaller than 15 m²

R-P-bygg-2:

Each matriculated building in SB should be registered with a Matrikkel’s building number.

3.5 Identifying the Mismatches of Vocabulary, Structures and Business

Rules

This section compares the vocabulary, structures and business rules of the two sys-

tems in the SBVR hub, and identifies the mismatches. Heterogeneity on resources

usually could be confirmed already by comparing the term definitions in the two vo-

cabularies. Further analysis could be done on comparing properties and fact types of

each resource in the two fact models. Finally, the business rules defining the scopes or

other attributes of resources could be compared to identify, e.g., the difference of the

scopes.

The Vocabulary

Comparing the definition of a term in the vocabularies provided direct indication

whether the terms were identical or not. The sources of the term definitions were

compared first and found out to be different for the term Building in the two systems.

Then the definition texts were compared, Matrikkel’s definition focused on a build-

ing’s primary functions and SB’s definition focused on the physical building mass.

The term Building was therefore not identically defined in the two systems which

means further analysis was necessary to identify the mismatches on the structure and

business rules levels.

The Structures

Fact models and their visualization provide an intuitive way of analyzing the struc-

tures. The properties and fact types of each resource in the two models were consid-

ered. One of the heterogeneity types is terminological heterogeneity [6]. It occurs

when two properties with different names deal with the same information. For exam-

ple, the builtArea is a data property of Building in Matrikkel, while Area_Built is a

property of Building in SB. This is a possible source of information duplication and

mismatching. The integration rule should therefore address the issue by defining

which system is the original source of the data property. For example, in this case, SB

has the responsibility to report the Area_Built value to the Matrikkel system. There-

fore SB’s Area_Built is the original source of this data property.

The Business Rules

Comparing the business rules of a specified term provided further information on

semantic similarities and differences. The example below shows the different policies

on what should be registered as Building by Matrikkel and SB. Those rules mismatch

is caused by the heterogeneity in coverage of the resource Building. The heterogene-

ity in coverage is a subtype of conceptual heterogeneity as classified in [6]. The dif-

ference should be handled later in the integration rules.

3.6 Building the Integration Rules

This paper covers terminological and conceptual heterogeneity though other types of

heterogeneity should be included in the identification and classification work in Sec-

tion 3.5. The integration rules discussed below addresses the two types of heterogene-

ity.

An integration rule can be formed using a template like this: What part of re-

source/property X in source system A should integrate with what part of re-

source/property Y in source system B with which integration keys under which condi-

tions?

To handle the terminological heterogeneity, an integration rule should define the

original source of a data property in case of duplications. For example the following

integration rule could solve this type of heterogeneity. This kind of integration rule

can be interpreted as an ontology rule using, e.g., rdfs:subPropertyOf or owl:sameAs.

The study of interpreting integration rules to ontology rules falls out of the scope of

this paper.

R-Int-bygg-1:

A Building’s property Area_Built in Propman is the same as a Building’s property Built_Area in

Matrikkel with the integration key “Matrikkel’s Building number”.
One alternative way to handle the “Difference in coverage” type of conceptual het-

erogeneity is to define the overlapping part as integration part. For example, the

Building in Matrikkel and the Building in Propman are overlapping when both have

the same Matrikkel’s building number, then the integration rule below defines that

only building with Matrikkel’s building number can be integrated.

R-Int-bygg-2:

Each building with Matrikkel’s buildingnummer in SB can integrate with a building in Matrikkel

on Matrikkel’s building number.

4 Conclusion and Further Work

The approach presented in this paper focused on extracting robust integration rules

based on the heterogeneity analysis in an SBVR integration hub. Semantics of source

systems could be modeled in or transformed to SBVR, and heterogeneity of different

source systems could be identified by comparing those elements in the hub. Integra-

tion rules could then be extracted based on the identified heterogeneity. The informa-

tion in the hub was understandable directly to both domain experts and IT personals.

In this way, domain experts were able to follow the process all the way and their in-

teraction with integration software developers was faster and more effective since

they used the same mechanisms for communication. This also made software docu-

mentation easier since most of the explanations on why and how the integration rules

are extracted was already documented in the process in a human understandable lan-

guage.

Currently, the transformation from source systems to SBVR hub is manually done

and information could be lost in the transformation process. The identification of

heterogeneity is also manually done, and so is the classification of heterogeneity

types. The extracting of integration rules is based on human reasoning and still needs

significant involvement of domain experts.

The case study presented in this paper is a preliminary attempt to design and im-

plement an integration analysis framework based on machine and human readable

SBVR. The approach in this paper can be further complemented and extended as

follows. A transformation from source models to SBVR models needs to be auto-

mated to simplify the process of building SBVR-enhanced integration hub. A deeper

review of the existing functionality of available tools should also be part of the further

work. Comparing and analyzing heterogeneity needs to be standardized and auto-

mated if possible to reduce the inconsistency caused by human involvement. A state

of art study of classification of ontology mismatches and their representation in

SBVR would be natural to be done. Extraction of integration rules based on heteroge-

neity should be designed as an ontology reasoning process, where applicable, to re-

duce the inconsistency caused by human involvement. Other rule modeling languages

such as Rule Markup Language (RuleML) could be evaluated for automated genera-

tion of integration rules.

Acknowledgment. The work of Dumitru Roman and Arne J. Berre is partly funded

through the Semicolon II, PlanetData, and BigFut projects.

References

1. Uschold, M., Gruninger, M.: Ontologies and Semantics for Seamless Connectivity (2004)

2. Karpovic, J., Nemuraite, L.: Transforming SBVR Semantics into Web Ontology Language

OWL2: Main Concepts. In: Proc. 17th International Conference on Information and Soft-

ware Technologies IT 2011 (2011)

3. Nemuraite, L., Skersys, T., Sukys, A., Sinkevicius, E., Ablonskis, L.: VETIS tool for edit-

ing and transforming SBVR business vocabularies and business rules into UML&OCL

models. In: Information Technologies, IT 2010, Kaunas, Lithauania, April 21-23, 2010,

377-384 (2010)

4. Fowler, M., Scott, K. : UML Distilled Second Edition (2000)

5. Ross, R. G.: Business Rule Concepts, third edition (2009)

6. Euzenat, J., Shvaiko, P.: Ontology Matching (2007)

7. Cabot, J., Pau, R., Raventós, R.: From uml/ocl to sbvr specifications: a challenging trans-

formation. In: Information Systems. Elsevier, Amsterdam (2009)

8. “Semantics of Business Vocabulary and Business Rules (SBVR), version 1.0, v1.0.0 Ob-

ject Manangement Group (OMG), Jan. 2008. [online] [last accessed: April. 2012].

http://www.omg.org/spec/SBVR/1.0/PDF/

Grailog KS Viz:

A Grailog Visualizer for Datalog RuleML

Using an XSLT Translator to SVG

Martin Koch
1,2

, Sven Schmidt
1,2

, Harold Boley
1
, and Rainer Herpers

1,2

1
 University of New Brunswick, Faculty of Computer Science, Fredericton, NB, E3B 5A3,

Canada
2 Bonn-Rhein-Sieg University of Applied Sciences, Institute of Visual Computing & De-

partment of Computer Science, Grantham-Allee 20, 53757 Sankt Augustin, NRW, Germany

{martin.koch,sven.schmidt,harold.boley}[AT]unb.ca,

rainer.herpers[AT]h-brs.de

Abstract. Grailog embodies a systematics to visualize knowledge sources by

graphical elements. Its main benefit is that the resulting visual presentations are

easier to read for humans than the original symbolic source code. In this paper

we introduce a methodology to handle the mapping from Datalog RuleML, se-

rialized in XML, to an SVG representation of Grailog, also serialized in XML,

via eXtensible Stylesheet Language Transformations (XSLT) 2.0/XML; the

SVG is then rendered visually by modern Web browsers. This initial mapping is

realized to target Grailog's “fully node copied” normal form. Elements can thus

be translated one at a time, separating the fundamental Datalog-to-SVG transla-

tion concern from the concern of merging node copies for optimal (hyper)graph

layout and avoiding its high computational complexity in this online tool. The

resulting open source Grailog Knowledge-Source Visualizer (Grailog KS Viz)

supports Datalog RuleML with positional relations of arity n>1. The on-the-fly

transformation was shown to run on all recent major Web browsers and should

be easy to understand, use, and extend.

Keywords: visualization, graphs, directed hypergraphs, Grailog, computational

logic, rules, Datalog, XML, RuleML, XSLT, SVG, JavaScript

1 Introduction

Datalog RuleML [4, 5] is an XML serialization of Datalog and the n-ary core sub-

language of the RuleML family. Because of its interoperation usage in Artificial Intel-

ligence (AI) and the Semantic Web, its normative syntax is in the Extensible Markup

Language (XML), which is more suitable for machine processing than for human

readability. To make the Datalog RuleML language more readable for humans, one

natural approach is to translate its knowledge bases, consisting of facts and rules, in a

human-oriented manner.

One method is to create a visualized representation from knowledge bases. Well-

developed visualizations, as optional two-dimensional syntaxes, can help people to

better understand logical constructs than through symbolic one-dimensional syntaxes

alone. This has been explored in an approach of visualizing major (Semantic Web)

formalisms in Graph inscribed logic (Grailog) [2,3]. It describes the mapping for sev-

eral defined graph constructs to corresponding symbolic logic constructs of the con-

sidered sublanguage, which leads to better human readability. The current work con-

stitutes a first step to try to automate this transformation as far as possible, so that

ultimately each Datalog and other RuleML knowledge base can be easily visualized

as a Grailog representation.

1.1 Objectives

The goal of this work has been to handle the task described before, i.e. the translation

from Datalog RuleML to a visualized Grailog representation. This has resulted in an

initial version of the Grailog Knowledge-Source Visualizer (Grailog KS Viz). The

tool is open-source and deployed on the Web for access by users of RuleML, Grailog,

Datalog and related systems (http://www2.unb.ca/~mkoch/cs6795swt/index.html).

The main objective of this work is to define a mapping from Datalog RuleML, se-

rialized in XML [6], to the Scalable Vector Graphics (SVG) [8], both being W3C

standards. This should be realized using eXtensible Stylesheet Language Transfor-

mations 2.0 (XSLT 2.0) [10], another W3C standard, which permits transformations

from an XML source document to an (XML) target document. A visualization of the

overall process can be seen in Figure 1.

Fig. 1. Visualization of the general transformation process: Datalog RuleML (written in XML)

in combination with an XSLT file (Grailog KS Viz) leads to an SVG file (the corresponding

Grailog representation)

By implementing different elements in the XSLT 2.0 document, each Datalog

RuleML fact and rule in XML should automatically be transformed to its correspond-

ing SVG element in XML. Elements can thus be translated one at a time, separating

the fundamental Datalog-to-SVG translation concern from the concern of merging

node copies for optimal (hyper)graph layout and avoiding its high computational

complexity in this online tool. A Grailog layout optimizer would deserve an entire

R&D effort on its own. Our resulting visualization will instead stay in the “fully node

copied” Grailog normal form, which means that the separation of clauses of the sym-

bolic form in the Datalog RuleML source document is also kept in the resulting

graphical form of the SVG Grailog representation.

Grailog is a comprehensive aid to visualize logics. The task of this work is to cre-

ate an initial version of Grailog KS Viz, i.e. to use only a specific subset and func-

tionality of Grailog corresponding to Datalog RuleML. This includes the important

capability to translate Datalog’s n-ary relationships, for the current work with n>1, to

Grailog’s directed hyperarc arrows, which connect the argument-box nodes.

For usability, it should be possible to render the resulting SVG representation of

the Datalog RuleML source document as a Grailog diagram “on the fly” by using

suitable tools, e.g. one of the recent major Web browsers.

1.2 Languages

Several languages have constituted the backbone of this work. Datalog RuleML and

Grailog have been important as initial source and final target of the envisioned trans-

lation. XML, SVG, XSLT and JavaScript are needed for the implementation. In the

following, each language will be briefly described.

Datalog RuleML. RuleML is a family of rule based languages, which are used for

sharing rule bases written in XML and publishing them on the Web. Datalog RuleML

is one rule sublanguage of RuleML, providing the relational-view-like expressivity of

Datalog in RuleML. Datalog [7] is at the foundation of RuleML and can be seen as an

intersection of SQL and Prolog [4]. Datalog is used to define facts and rules and is

therefore suitable to create function-free Horn logic knowledge bases and queries.

XML files that contain stripe-skipped Datalog RuleML are the initial source files of

this work. A tool called RuleML Official Compactifier (ROC) [14] can be used for

the transformation from the fully expanded normal form to the stripe-skipped form.

Grailog. Grailog embodies a systematics to visualize knowledge representations by

graphical elements. Each of the introduced graphical elements is mapped to its corre-

sponding symbolic logic construct. The main benefit of Grailog is that its resulting

visual representations of knowledge sources are much easier to read for humans than

the original symbolic source code. Moreover, the transformation rules for the graph-

ical-to-symbolic mapping are easy to learn and remember.

Grailog is based on several principles. One principle is that the used graphs should

be natural extensions of Directed Labeled Graphs. Another principle mandates that

the used graphs should allow stepwise refinements for logic constructs, like Descrip-

tion Logic constructors or general PSOA RuleML terms. Moreover, Grailog also im-

plements the principle of orthogonality, which means that it consists of several inde-

pendent concepts which can be freely combined with each other. All these principles

support the main goal of Grailog, namely easy understanding and application of the

systematics.

A major part of Grailog’s visualization elements are the directed hypergraphs,

which are used for dealing with the n-ary relationships Datalog RuleML is capable of

expressing.

Scalable Vector Graphics (SVG). SVG is an XML specification for two-

dimensional graphics. It supports static and dynamic (i.e., interactive or animated)

graphics, with different types of graphical objects and functions. Documents, written

is SVG, are generally supported by all recent major Web browsers, but in fact all

browsers have advantages and disadvantages. This is why this work has two final

Grailog KS Viz versions. The following sections will describe this issue more precise-

ly. To reproduce dynamic graphics, SVG needs the help of JavaScript, which was

another important element of this work.

JavaScript. JavaScript is a scripting language and was defined in the ECMAScript

language standard, developed by Ecma. Scripts do not need to be preprocessed before

running and can make Web pages more dynamic. Due to these advantages, Web pag-

es behave more like traditional software applications. Specific capabilities are interac-

tive contents, the animation of page elements or the loading of new page contents

without reloading of the whole page. [9]

Extensible Stylesheet Language Transformations (XSLT). The XSLT language

permits transformations of XML documents into XML target documents or several

other forms, like e.g. HTML, XHTML or SVG. The XSLT processor takes XML

sources and a stylesheet, which describes the rules for the transformation. These tem-

plate rules associate patterns, which match nodes in the source document, with a se-

quence constructor. In many cases evaluating the sequence constructor will cause new

nodes to be constructed that can be used to produce part of a result tree. The structure

of the result trees can be completely different from the structure of the source trees. In

constructing a result tree, nodes from the source trees can be filtered and reordered,

and any structure can be added.

2 Methodology

The result of this work should be an initial version of Grailog KS Viz, which automat-

ically translates Datalog RuleML to the applicable Grailog representation, both writ-

ten in XML. The translation should be done via XSLT. The final results should be

described by SVG and be presentable through any suitable tool, like one of the recent

major Web browsers.

The procedure of this work was divided into three parts. The first part was to de-

termine all necessary elements of Grailog and Datalog RuleML. That means especial-

ly for Grailog the possible relationship elements, and for Datalog RuleML the sup-

ported XML declarations. The second part was to create all important Grailog repre-

sentations in SVG, to have a pattern-like set of graphical elements for the last part of

this work. The last part was the implementation of an XSLT file, which transforms a

Datalog RuleML XML file into the Grailog representation. The graphical elements of

the second step were necessary to lead the transformation to the right results. The

following subsections will describe this procedure in more detail.

2.1 Determination of the Required Elements of Grailog and Datalog RuleML

The result of this work could only be an initial version of Grailog KS Viz because of

the limited time of this work. Therefore, the first step was to determine the required

elements of Grailog and Datalog RuleML.

The chosen subset of Grailog and Datalog RuleML can be seen in Figure 2. This

subset contains all elements for an adequate Datalog RuleML knowledge base. As

mentioned previously, the resulting visualization should be in a “fully node copied”

normal form (in Grailog, all node occurrences with the same unique name remain one

node).

To support the Grailog representations seen in Figure 2, Grailog KS Viz had to

support the following XML elements of Datalog RuleML: “RuleML” (with and with-

out namespace and schema declaration), “Assert”, “Implies”, “And”, “Atom”, “Rel”,

“Var”, “Ind” and “Data”.

Fig. 2. Chosen Datalog RuleML subset visualized in Grailog: Both logical (left) and graphical

(right) representations shown for (1) individual constants, (2) variables, (3) binary relations, (4)

(n>1)-ary relations, (5) single-premise rules and (6) multi-premise rules (modified from [2])

2.2 Grailog

The second step of this work was to create the Grailog representations in SVG. SVG

allows three different types of graphical objects, the vector graphic shapes (e.g. paths

or polygon lines), images and text. For the different graphical objects SVG provides

further methods, like grouping objects, assigning different styles per object, and per-

forming further transformations. Moreover, SVG provides a rich feature set which

includes nested transformations, clipping paths, alpha masks, filter effects and tem-

plate objects. SVG is completely described through XML and has to be introduced by

a “svg” element as the root. The dynamics of graphical elements is possible through

JavaScript. JavaScript was especially essential to get the lengths of the different texts,

to scale the elements and to position them. The importance of JavaScript was not

obvious in the first considerations of this work and was therefore not mentioned in the

objectives.

The creation of the Grailog representation started with the simplest element: a sin-

gle individual constant. An individual constant is described in Grailog through a spe-

cific text surrounded by a rectangle. So, the first step was to create an SVG “text”

element. This “text” element had to contain the desired text of the individual constant

as well as a specific “id” and the coordinates “x” and “y”, as attributes. Every “text”

element needs its own ID-number for distinction. The coordinates are relevant to

place the text on a specific position in the viewbox which represents the image section

on the screen. The very first text element always starts at the coordinates “x = 50” and

“y = 50”. All further elements will be arranged to correspond to the first “text” ele-

ment. Rectangles can be visualized in SVG through the “rect” element. For individual

constants the “rect” element has to include the attributes “id”, “x” and “y” (as start

coordinates like before), “height” and “width” (as determination for the size) and

“style” (to assign stroke color and width). Apart from the “id” and the “style”, all

attributes will be assigned through JavaScript code, to be independent of the varying

text lengths. First, the JavaScript code computes the width of the “rect” element by

calculating the length of the text of the “text” element. Then it determines suitable

values for “height” and the coordinates “x” and “y” in consideration of the coordi-

nates of the “text” element. Figure 3 shows the SVG source code for an exemplary

individual constant and the resulting Grailog representation.

The second simplest element of the Grailog subset was the representation of a vari-

able. A variable is a specific text surrounded by a hexagonal box, hatched by diago-

nally arranged blue lines. The hatched lines are a result of a specific “pattern” ele-

ment. A “pattern” element of SVG can contain different other SVG elements. This

self-implemented “pattern” element contains several “path” elements, which are in

this case nothing more than diagonally arranged blue lines with specific start and end

points. The pattern is allocated to a “polygon” element, which finally represents the

hexagonal box of the variable. The “polygon” element of this variable representation

contains attributes for “id”, “points” (determinations for the edges) and “style” (to

assign the hatched pattern as well as stroke color and width). As seen for the individ-

ual constant, most of the work for positioning is done via JavaScript. In this case Ja-

vaScript especially computes the edges of the polygon to arrange the box around the

text.

The last important elements of the different Grailog representations were the arrow

for relations and the double-arrow and rectangles with rounded corners for rules. An

arrow for relations consists only of a black “path” element and a “marker” element,

which contains the arrow-head. The double-arrow is implemented as a single “path”

element, which follows a particular track. To create a rectangle with rounded corners,

one only has to assign the attributes “rx” and “ry” to a “rect” element.

The last step of the SVG part was to create different SVG documents out of the

above described simple elements of the Grailog representation. The final documents

included a representation for a single individual constant, a single variable, any com-

bination of binary and n-ary relationships, as well as single- and multi-premise rules.

After creating all these standard Grailog representations, the SVG elements could be

used as patterns to transform any Datalog RuleML XML file through XSLT. The next

subsection describes this transformation and the procedure of the implementation.

Fig. 3. SVG source code (left) and the resulting Grailog representation (right) of an individual

constant

2.3 Creating the Translation from Datalog RuleML to Grailog

In this part of this work, the implementation of the transformation will be explained,

which is done by using XSLT 2.0. The transformation mainly depends on the part

described before, i.e. emulating of the created patterns. In the following, the basic

structure of Grailog KS Viz is illustrated. After that, an example of a small part of the

actual transformation is given and explained in detail.

Basic Structure of Grailog KS Viz. To work with XSLT in general, the “stylesheet”

or the completely synonymous “transform” element have to be used. For Grailog KS

Viz, version 2.0 of XSLT is used, which brought along many useful functions, as it

builds on XPath 2.0, instead of XPath 1.0 like its predecessor. With the help of the

attributes of the “output” element, the output document is set to be of the type “XML”

with the encoding “ISO-8859-1”, to allow a rich enough character set for the possible

facts and rules that come with the source document. Moreover, the doctype of the

resulting document is set to the official SVG doctype, to guarantee syntactic correct-

ness of the produced SVG document.

The “apply-templates” element in conjunction with the “template” element is used

to structure the transformation. The “template” element contains rules that are applied

when a specific node is matched. With the help of “apply-templates” and its “select”

attribute, the templates can be matched and the defined rules are executed. For

Grailog KS Viz, these elements are used to divide the given knowledge base into

meaningful (sub)sections, like facts or the head of a single-premise rule. Another

element which is used in this context is the “for-each” element. This element mostly

loops through all terms of an atom. Because of the overall goal of a final SVG docu-

ment as output, the first step of the transformation creates the SVG root element along

with its attributes. Additionally, the definitions of the arrow head and the variable

pattern are created.

The next step of the transformation process by Grailog KS Viz is to differentiate

between rules and relations. Moreover, it is important to differentiate single-premise

rules from multi-premise rules, because they result in different Grailog representa-

tions. The differentiation is done by searching the Datalog RuleML document for the

elements “Implies”, “And” and “Atom”. The idea is to use parent and child relation-

ships and positions to determine the type of the considered atom. If an atom is a child

of an “Implies” element, it means that it is part of a rule. If it is a direct child of “Im-

plies”, it is either the head of a multi-premise rule or the head or premise of a single-

premise rule. This can be clarified by checking how many atoms are direct children of

a specific “Implies” element. If there are two atoms, it is a single-premise rule, with

the first atom as premise and the second atom as head. If there is only one atom as

direct child, it has to be the head of a multi-premise rule. If an atom is child of an

“And” element, it is part of the premise of a multi-premise rule. The XSLT / XPath

functions that are mostly used for the search are among other things “current()”,

“count((item, item, ...))”, “position()” and “last()”. These can be used to gain infor-

mation about positions of specific nodes, about the number of child elements and

much more. The last differentiation is done between binary and n-ary relations.

Therefore, simply the number of children of an atom can be used. The differentiation

is used to determine if a simple arrow or a hyperarc is needed in the resulting SVG

representation.

After knowing the kind of the currently processed atom, the suited SVG elements

and corresponding JavaScript code will be created. The elements can be “text”, “rect”,

“polygon” or “path”, depending on the current node. The “value-of” element offers

the possibility to get the value of the “Rel”, “Var” and “Ind” nodes of an atom. More-

over, it is frequently used to create unique variable names for all the different ele-

ments of the resulting SVG document. This is a huge part of the transformation pro-

cess, because the SVG patterns that were achieved in the first part of this work are

now dynamically created as part of the transformation. To get the unique variable

names, a function of XSLT for concatenation is used to create names based on the

type of the relation or rule that is currently processed and on its position in the XML

tree. Besides the creation of the SVG elements, also the corresponding JavaScript

code is inserted. The “if” element of XSLT is used to alternate the code for different

cases, e.g. if a term is the first term of a relationship or the last. The JavaScript code is

also used for keeping track of the maximum height and width of the viewbox of the

SVG document.

Example for the Translation of an Individual Constant. Figure 4 shows a small

part of Grailog KS Viz source code, which for this example results in the Grailog

representation of an individual constant of an n-ary relation, as previously seen in

Figure 3 for SVG.

The first line of this extracted source code checks if the considered atom is a direct

child of the “Assert” element. In this case it is part of a fact. Then the variable “coun-

tRelations” is defined. It holds the number of facts and rules that exist before the ac-

tual considered fact plus one, which equals the exact position of the fact in the

knowledge base. Then each child element of the atom is processed. If it is an “Ind” or

“Data” element, which both lead to the same Grailog representation, an SVG “rect”

element and an SVG “text” element are created. For this case, the rectangles name

consists of the substrings “rect”, “Relation”, the value of “countRelations” and the

position of the term in the atom. This ensures that it gets a unique name, so that no

problems occur in the resulting SVG document, regardless of the number and kinds of

individual constants. Beneath the SVG elements, the corresponding JavaScript code is

inserted, with its adjusted variable names and some further adjustments.

Fig. 4. XSLT source code (left) and its correspondent Grailog representation (right) for an

individual constant

3 Results

The final result of the implemented translation process of Grailog KS Viz is an auto-

matically generated SVG document, which can be used to render the Grailog repre-

sentation of a given Datalog RuleML knowledge base. To demonstrate the reliability

and give a deeper understanding of the transformation and translation process, the

following part shows and discusses two kinds of rules via examples.

3.1 Translation of Single-Premise Rules from Datalog RuleML to Grailog

The first kind of rule can be considered via an introductory example, which only con-

sists of a single-premise rule and binary relations. In this case, the rule has no explicit

meaning and only uses placeholder names. The rule in Datalog RuleML XML syntax

and its Grailog representation, created by Grailog KS Viz, are shown in Figure 5.

Fig. 5. XML source code (left) and its correspondent Grailog representation (right) for a single-

premise rule with binary relations

For the above shown example, Grailog KS Viz first recognizes that there is a rule,

because there is an “Implies” element in the XML source document that can be

matched. Then it checks if it is a single-premise or a multi-premise rule by looking at

the number of atoms that are direct children of the “Implies” node. Because there are

exactly two, it has to be a single-premise rule. Therefore, first the upper rounded rec-

tangle is created, followed by its content. The premise of the rule consists of a binary

relation “Rel1” and two terms, the variable “Var1” and the individual constant

“Inst1”. The first term is created, followed by the text element with the value “Rel1”.

This can be done because the text with the relator name is always at the same relative

x-position, directly besides the representation of the first term. Then the second term

is transformed. After that, finally the arrow can be created, starting from the first

term, either polygon or rectangle and ending at the second. After the content of the

rounded rectangle is complete, the width of the rectangle is adjusted and then the

double-arrow is created. The creation of the head of the rule is done the same way,

only that the vertical positions are adjusted.

3.2 Translation of Multi-Premise Rules from Datalog RuleML to Grailog

The second kind of rule can be considered via an advanced example, which consists

of a multi-premise rule containing two binary relations and a 3-ary relation. In gen-

eral, our subset of Grailog allows (n>1)-ary relations, where the binary relation “be”

is used to avoid unary relations (n=1). The rule has the following meaning: If George

knows a player and an arena is a hockey rink, then George plays with the player in the

arena. Figure 6 shows the XML source code and the resulting Grailog representation.

Fig. 6. XML source code (left) and its correspondent Grailog representation (right) for a multi-

premise rule with binary and n-ary relations

In this example, the tool detects a multi-premise rule, because the “And” element is

the first child element of the “Implies” element. Therefore, first the upper rounded

rectangle is created, followed by its content. This affects the width and the height of

the rounded rectangle, because a multi-premise rule can have an unbounded number

of atoms in the premise. Because the premise of the rule only consists of binary rela-

tions, they are created as in the previous example. After the content of the upper

rounded rectangle is complete, its width and height are adjusted and the double-arrow

is created. The creation of the head of the rule cannot be done as in the previous ex-

ample because it contains no binary relation, but the (n>2)-ary relation “play”. There-

fore, there can be an unbounded number of terms, and this leads to the usage of a

hyperarc. The hyperarc is created after all terms are processed, and starts at the first

term, cuts through intermediate ones and ends at the last. Finally, the lower rounded

rectangle is created and then the SVG document is finalized. For this example the

resulting SVG document consists of 289 lines of code.

There is no loss of generality with this example since a multi-premise rule with more

than two premises can be reduced to multiple rules with two premises. However,

Grailog KS Viz handles multiple premises directly.

The authors have started to complement the .ruleml examples (RuleML/XML) in the

Datalog section of the public RuleML 1.0 exa library [13] with .grailog visualizations

(RuleML/Grailog), including for the classical Datalog RuleML 'own' example

(http://ruleml.org/1.0/exa/Datalog/own.ruleml paired with its visualization as

http://ruleml.org/1.0/exa/Datalog/own.grailog).

3.3 Issues and Alternatives

Grailog KS Viz was realized by splitting the implementation part of this work into

two mostly independent tasks, the creation of the Grailog representations in SVG and

the actual transformation from Datalog RuleML to SVG. The independence of these

two tasks was essential to be able to implement both tasks in parallel. This is also the

reason for the usage of both, XSLT and JavaScript. Another reason that led to this

approach was the fact that this was the first time to work extensively with SVG and

XSLT for the first two authors, who implemented Grailog KS Viz. In retrospect, it

might be possible to replace several parts of the JavaScript code with XSLT code.

This would definitely have made the planning phase more complex and probably

would have increased the time needed for completing this work. The benefit of such a

solution would be much less code for the resulting SVG document.

Because one of the goals of this work was to support different recent major Web

browsers, in the end two separate versions of the tool had to be implemented. Both

use different methods to compute the length of the text elements, which is needed for

determining the width and the position of the graphical elements. The “normal ver-

sion” uses the JavaScript method “getComputedTextLength()”, which computes the

length of the rendered text. This method unfortunately does not work for Firefox or

Chrome at the on-the-fly transformation, i.e. by executing the transformation within

the browser. After saving the resulting SVG document and opening it again, the

method works for all tested browsers. The problem seems to be that at this moment

when Firefox or Chrome use the “getComputedTextLength()”, no text is rendered,

yet. To overcome this, a so called “monospaced version” of the tool was implement-

ed. It uses the font “Monospace”, the “XMLSerializer()” and the “serializeToString()”

method, which does work for Firefox, but not for Chrome or Safari, even after saving

as SVG file and opening it again. The detailed support information can be seen in the

appendix (Figure 7 and 8).

Currently, Grailog KS Viz consists of nearly 4000 lines of code, which is also

based on the need for the support for two different source document versions, Datalog

RuleML documents with and without the RuleML namespace and schema. Because

this was realized in the last moments of this work, huge parts of the code exist in two

forms, with the namespace in the XPath expressions and without it. By implementing

a possible XSLT only-version, without the need for JavaScript and with a better im-

plemented distinction between the two source document cases, it might be possible to

ultimately only have one, presumably monospaced and much shorter version of

Grailog KS Viz.

Related work in the area of interest has been done for example by another

RuleML/Grailog team [15]. This team also used the principles of Grailog for visuali-

zation purposes, but instead of building it from scratch, they used the Graphviz

framework to visualize SWRL’s unary/binary Datalog RuleML in Grailog. The bene-

fit of building it from scratch, however, is that the final results are identical to the

given specifications of Grailog.

4 Conclusion

The result of this work is the successful implementation of an initial version of

Grailog KS Viz, a Grailog knowledge-source visualizer based on RuleML-to-SVG

translation.

The first section gave a short introduction to the topic and stated how the approach

of this work relates to previous work. Moreover, a short preview of the actual work

was given and each language used throughout this work was explained briefly. The

methodology for the successful accomplishment of the objectives was developed in

three parts. The first part dealt with the determination of the required elements of

Grailog and Datalog RuleML. The result was a mapping from a Datalog RuleML

subset to a Grailog subset. The second part was about the creation of the Grailog rep-

resentations in SVG. It explained the used elements and functions of SVG and JavaS-

cript and illustrated an example for an individual constant. The last part of this section

described the creation of the translation from Datalog RuleML to the Grailog repre-

sentation. Therefore, it explained the basic structure of Grailog KS Viz and also illus-

trated an example of the transformation of an individual constant. The results are

shown in the third section of the report. First, the transformation of a single-premise

rule containing binary relations was explained, and then a more complex multi-

premise example. Instead of focusing on the actual code as in the previous examples,

these two were explained on a higher level. After that, some issues of the current im-

plementation were highlighted and a general picture of this work and its environment

was given.

The implemented Grailog KS Viz meets the given requirements and offers a robust

and usable functionality with response times suitable for online rendering. The tool is

open source and all its versions, documents, source files and many more examples

and explanations can be found on the official website of this work. Several links to

different parts of the website of this work can be found in the appendix.

4.1 Future Work

As mentioned before, although this work is an overall success, there are different

aspects that definitely can be improved in further work. Besides the already men-

tioned possible improvements in the previous section, the following changes are envi-

sioned:

A simple but effective improvement would be to transform the source document in

a way that the resulting SVG document appears in a pretty print layout. Currently, the

structure of the resulting code is not pretty printed, which complicates further adjust-

ments, users of the tool could want to do manually. Furthermore, the merging of the

individual SVG elements of rules and facts to a “node copy-free” graph would be a

big improvement of this initial version of the visualizer. This would make the tool

more powerful, because the user could directly see connectivity, although the high

computational complexity of merging node copies for optimal (hyper)graph layout

might entail response-time issues in online Grailog rendering of large Datalog

knowledge sources. Besides these Grailog-target improvements, also the support of

more RuleML-source features such as unary relations, (positional-)slotted relations

and typed variables is planned. Then, the development should proceed from Datalog

RuleML to Hornlog RuleML and gradually cover the remaining Grailog-visualized

branches of the RuleML family. Grailog generators for other rule and ontology lan-

guages could be similarly implemented as well.

Complementing the approach of this work, inverse translators parsing Grailog

SVG/XML diagrams into RuleML/XML trees could be realized. This could result in

an authoring tool that allows users to visually design rule bases in the graphically

rendered SVG representation, which will then be parsed into the Datalog

RuleML/XML representation. In combination with our current Grailog generator, this

Grailog parser could ultimately lead to a complete Grailog IDE.

5 Acknowledgments

Financial support of the DAAD in the ISAP program line, project No 54890855, is

gratefully acknowledged. Also, NSERC is thanked for its support through Discovery

Grants. Finally, we would also like to thank the RuleML reviewers, Kenneth Kent,

Diana Kraus and all others who have supported us during this work.

References

1. Boley, H.: CS 6795 Semantic Web Techniques - Fall 2012 Projects. http://

www.cs.unb.ca/~boley/cs6795swt/fall2012projects.html, visited on

October 19th, 2012

2. Boley, H.: Grailog 1.0: Graph-Logic Visualization of Ontologies and Rules. Preprint:

http://www.cs.unb.ca/~boley/papers/GrailogVisOntoRules.pdf,

visited on May 9th, 2013. To appear: Proc. RuleML 2013, Springer LNCS 8035, July 2013

3. Boley, H.: Grailog. http://wiki.ruleml.org/index.php/Grailog, visited on

May 24th, 2013

4. Boley, H., Athan, T.: RuleML Primer, August 2012. http://ruleml.org/

papers/Primer/RuleMLPrimer2012-08-09/RuleMLPrimer-p0-2012-08

-09.html, visited on October 19th, 2012

5. Boley, H., Athan, T., Paschke, A., Tabet, S., Grosof, B., Bassiliades, N., Governatori, G.,

Olken, F., Hirtle, D.: Schema Specification of Deliberation RuleML Version 1.0.

http://ruleml.org/1.0/, visited on October 19th, 2012

6. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F.: Extensible Markup

Language (XML) 1.0 (Fifth Edition) - W3C Recommendation, November 2008.

http://www.w3.org/TR/2008/REC-xml-20081126/, visited on October 19th,

2012

7. Ceri, S., Gottlob, G., Tanca, L.: What You Always Wanted to Know About Datalog (And

Never Dared to Ask). IEEE Transactions on Knowledge and Data Engineering, vol. 1 (1),

pp. 146-166 (1989)

8. Dahlstroem, E., Dengler, P., Grasso, A., Lilley, C., McCormack, C., Schepers, D., Watt, J.,

Ferraiolo, J., Fujisawa, J., Jackson, D.: Scalable Vector Graphics (SVG) 1.1 (Second Edi-

tion) - W3C Recommendation, August 2011. http://www.w3.org/TR/2011/REC-

SVG11-20110816/, visited on October 19th, 2012

9. Hazael-Massieux, D.: JavaScript Web APIs. http://www.w3.org/standards/

webdesign/script.html, visited on November 15th, 2012

10. Kay, M.: XSL Transformations (XSLT) Version 2.0 - W3C Recommendation, January

2007. http://www.w3.org/TR/2007/REC-xslt20-20070123/, visited on Oc-

tober 19th, 2012

11. Refsnes Data: W3Schools - SVG Tutorial. http://www.w3schools.com/svg/

default.asp, visited on October 19th, 2012

12. Refsnes Data: W3Schools - XSLT Tutorial. http://www.w3schools.com/xsl/,

visited on October 19th, 2012

13. RuleML: The Rule Markup Initiative - Library of Datalog Examples.

http://www.ruleml.org/1.0/exa/Datalog, visited on June 12th, 2013

14. Singh, S., Aayush, B. R., Shah, P.: Testing, Inverting, and Round-Tripping the RON Nor-

malizer for RuleML 1.0 in XSLT 2.0. http://ruleml-roc.yolasite.com/, vis-

ited on Januar 9th, 2013

15. Yan, B., Zhang, J., Akbari, I.: Visualizing SWRL’s Unary/Binary Datalog RuleML in

Grailog. https://github.com/boliuy/SWRL-RULES-VISUALIZER, visited on

December 13th, 2012

Appendix

Useful Links to this Work’s Website

Index Page and Virtual Handout. Index page with illustrations of the objectives,

methodology and the final results of this work.

 http://www2.unb.ca/~mkoch/cs6795swt/index.html

Results. Exemplary overview of different SVG result outputs and downloadable ver-

sions of Grailog KS Viz (normal and monospaced font version).

 http://www2.unb.ca/~mkoch/cs6795swt/media/html/project/result

s.html

Documentation. Overview of this work’s documentation. Proposal, final presentation

and report are downloadable there.

 http://www2.unb.ca/~mkoch/cs6795swt/media/html/project/docume

ntation.html

Supported Web Browsers

Fig. 7. Supported (green) and unsupported (red) Web browsers of the normal version of

Grailog KS Viz

Fig. 8. Supported (green) and unsupported (red) Web browsers of the monospaced font version

of Grailog KS Viz

Importation Closure that is Robust to Circular
Dependencies

Tara Athan1

Athan Services, W Lafayette, IN, USA
taraathan@gmail.com

WWW home page: http://athant.com

Abstract. Any approach to the integration of distributed knowledge bases (KBs)
through importation must make design decisions regarding circular importation
dependencies: are they disallowed, ignored, or allowed? If they are allowed, how
is the resulting infinite loop of importation handled in practice? We present pre-
liminary results of Importations (http://athant.com/projects/Importation/), an ex-
ploration of the ramifications of embracing circular importation dependencies,
with particular application to design decisions in the revision of ISO Common
Logic (CL).

1 Introduction

The distributed, modular representation of knowledge (rules, ontologies, facts) in widely-
available form such as on the Web is becoming increasingly common. Correspondingly,
there is a growing need to merge, or import, such modules (in CL called “texts”) to
create more comprehensive KBs. As authorship and maintenance becomes more dis-
tributed and less-closely coordinated, the likelihood of circular importation dependen-
cies among texts increases.

While intentional circular dependencies are not a recommended practice in KB en-
gineering, a robust reasoning engine should be able to recover gracefully from such
occurrences. Languages may even be designed to provide unambiguous semantics for
these situations. In particular, the CL community has recently adressed this issue[2] in
regard to the proposed revision of the ISO CL[1].

This study is intended to provide further input regarding the ramifications of design
decisions for the syntax and semantics of importation. Practical concerns include:

– Minimizing the burden involved in syntactic validation of texts with importations.
– Avoiding ambiguity in the semantics of texts with importations.
– Avoiding semantics that is non-intuitive.
– Ensuring that the set of expressions that must be handled for practical purposes,

such as reasoning, remains finite.
– Minimizing the computational effort of resolving importations.

A typical practice in handling circular importation dependencies is to simply ignore
an importation the second time it occurs, and in many settings this is a safe strategy
that minimizes the effort of both syntactic validation and semantic evaluation and it

keeps things finite. However, in some applications the importation of the same text in
different contexts creates different semantic effects. The result might depend on which
importation was performed first, leading to ambiguity.

ISO CL is an example of a practical case where the importation of the same text
in different contexts can create different semantic effects. One of the aims of CL is to
allow the integration of segregated texts, e.g. where the vocabularies for individuals,
functions and relations are disjoint, and nonsegregated texts with a so-called “higher-
order syntax”, where the same name may be used to denote an individual and refer to a
function and/or relation.

CL handles the integration of such disparate representations formally through a
modification of the interpretation that is applied to an imported text. The modification,
called restriction, has the effect of shrinking (i.e. restricting) the domain of discourse
of the interpretation so that quantification occurs only over the intended set of entities.
Such a restriction can have different semantic effects, depending on the composition of
the restricted domain of discourse. Therefore, ignoring a second importation of a text
may not produce the desired semantics.

It has been shown[3] that domain restriction of a text, in the particular language
studied there, is logically equivalent to a well-defined rewriting of the text, including
modifying the sentences inside quantifications as well as adding domain membership
facts to avoid free logic behaviours. Such a rewriting can be considered a special case
of a more general “text operator”. Other examples of text operators include a translation
operator to convert a text from one KR language into another.

1.1 Propositions and Some Weird Things

The language that is created here to study circular importation dependencies contains
the following components

– propositional statements, which encapsulate a text in an arbitrary knowledge repre-
sentation (KR) language;

– text operators, as a model for CL domain restriction as well as translations;
– titling and importation statements modelled after the abstract semantics proposed

for the CL revision[3];
– text construction statements, which form collections of texts.

Importation is handled at a metalogical level and it never mingles with the under-
lying logical language. For example, we do not allow conditional importation that de-
pends on the interpretation of some logical sentence. Because of this, we may defer all
logical considerations until after the resolution of importations, and this is why there is
no need to include, e.g., logical connectives in the language.

2 Background

A semantics for importations of distributed KBs was recently proposed for CL in [2].
Two statements are used to implement importation, a titling statement, which assigns

a name from the vocabulary as the title of a text, and an importation statement, which
invokes a text title.

The proposed CL semantics includes a relationship, called the title mapping, as a
part of an interpretation. A titling statement with a name and text is true iff the image
of that name under the titling mapping is indeed that text, verbatim.

The proposed CL semantics for importation statements is based on the concept of
a corpus - a (possibly empty, finite or infinite) set of finite texts. The importation state-
ment itself always interprets to true, but its semantic effect is to add a new text to the
set of texts that must interpret to true if the corpus is to be considered satisfied by an
interpretation. Intuititively, a set of new texts is generated from the old by replacing im-
portation statements1 that do not occur within a titling statement by their images under
the title mapping, a process called resolution. These new texts are added to the corpus.
Then if any of the new texts contain importation statements, the resolution process is
repeated. At each resolution step a finite number of (finite) texts is added to the cor-
pus, but the texts already in the corpus are not deleted or changed in any way. Thus
importation resolution is a monotonic process.

In this approach, importation statements may occur within titled texts, and it is per-
mitted to have circular importation dependencies, the simplest being a text that imports
itself. However, if the importation dependencies are circular, then the importation clo-
sure process as defined above does not terminate in any finite number of steps.

The precise definition in [2] of the importation closure is the minimal fixed point
of this corpus-extension procedure that contains the original corpus. It was shown there
that such a minimal fixed point of such an importation closure exists for any inter-
pretation. Although the proof was carried out for the language considered there, L, a
simplified language inspired by the CL abstract syntax and semantics, and the particu-
lar CL dialect called CLIF[1], the same proof applies to the even simpler language we
consider below.

Note that the importation closure depends, in general, on the intepretation because
the text susbstituted for an importation statement is determined by the title mapping of
the interpretation, not the titling statements in the corpus. The connection between title
mapping and titling statements is established semantically

In comparison to importation, titling and reification mechanisms of other KR lan-
guages:

– unlike the OWL importation mechanism, resolution of importation in our approach
does not syntactically affect the text in which it appears. Also it does not introduce
a “text” or “ontology” entity into the universe of reference.

– unlike the current CL semantics, our titling approach does not affect the denotation
of the name that is used as a title. By analogy consider that ’Wherever You Go,
There You Are.’ is the title of a book, as well as the name of a proposition. Simi-
larly, names in our vocabulary have dual, independent use as titles and as names of
propositions.

1 Alternative formulations of this transformation are (1) replace all importations in a text in the
corpus simultaneously (2) replace each importation individually, leaving the others as they are,
producing, in general, a set of new texts for each text resolved.

We first define the syntax, then the semantics of a family L0 of languages. Some
examples of circular importation dependencies are presented, and we then examine
conditions under which a finite corpus will always be logically equivalent to some finite
corpus having a certain closure property that will allow us to use that finite corpus for
reasoning purposes.

3 Syntax of L0

3.1 Lexical items

An L0 language consists of the following lexical items:

– Logical lexical items: the text construction operator ‘txt’; a set of text operators
’Fi’, i ∈ I; the titling operator ‘title ’; the importation operator ‘import ’;

– Auxiliary lexical items: the parentheses: ‘(’, ‘)’; the Unicode SPACE character
(U+0200).

– Names: a set V of strings of unicode text characters (i.e., no whitespace) other than
those above.

3.2 Grammar

An expression of L0 is any (possibly empty) string of lexical items of L0. The basic
syntactic categories of expressions, which are partially overlapping, are names, propo-
sitions, statements, and texts. Names were defined in the previous section 3.1.

We now define all other syntactic categories, including the subcategories of import
statement, text titling, and text constructions, of L0 simultaneously2:

We will use N for names, S for statements, Γ,∆ for texts, and E for arbitrary
expressions (with and without indices).

– A propositional statement is a name, N enclosed in parentheses (N).
– A statement is either a propositional statement, an import statement, or a text titling

statement.
– A text is either
• a statement,
• a text construction (txt Γ1 . . . Γn), where Γ1, . . . , Γn (0 ≤ n) are texts , or
• a text operator applied to a text (Fi Γ) where Γ is a text.

– A text titling is (title N Γ) where Γ is a text and N is a name.
– An import statement is (import N) where N is a name.

A title mapping ttl is a total function from V of L0 to the set of texts of L0.
A corpus of a L0 language is a set of texts in that language. A corpus may be

empty, finite or infinite. Although it is not necessary, and in some cases not possible,
to serialize a corpus, for the examples in this paper we use the notation {Γ1Γ2...Γn}
for a finite corpus, where Γi are texts, and the texts are separated by white space and
enclosed in curly braces, which is similar to standard mathematical set notation. The
curly braces are not part of L0.

2 a LISP-like Cambridge Polish prefix notation is used for operator application

4 Semantics of L0

The semantics of languges in L0 are described, but not specified, in this section. In
particular, no specific connection is established between a text and the result of applying
a text operator to that text, or the interpretation of that resulting text.

An interpretation I consists of

– a subset TPI of V ;
– a subset TXI of text expressions;
– a title mapping ttlI .

Let I be an interpretation. Let E be an expression of L. The interpretation of E
under I , I(E), is defined in Table 1.

Table 1. L0 Semantics

If E is Then I(E) =
R1 a proposition: (N) true if N ∈ TPI ; otherwise false
R2 a text construction:

(txt E1 . . . En)
true if (txt E1 . . . En) ∈ TXI ; otherwise
false

R3 an application of a text operator:
(Fi Γ)

true if (Fi Γ) ∈ TXI ; otherwise false

R4 a text titling (title N Γ) true if ttlI(N) = Γ ; otherwise false
R5 an import statement (import N) is always true

The importation closure C′I of a corpus C under a particular interpretation I is de-
fined as discussed in the previous section 2. In general, the importation closures of a
text of L0 with circular importation dependencies will not be finite.

A corpus C is satisfied by an interpretation I if for every text Γ in the importation
closure C′I of the text under the interpretation I , I(Γ) is true. When I satisfies C, we
write I(C) is true; otherwise, I(C) is false. A model M of a corpus C is a satisfying
interpretation (M(C) = true).

One corpus C1 entails another corpus C2 if the latter is satisfied whenever the former
is satisfied (I(C2) is true whenever I(C1) is true). Two corpora are logically equivalent
if they entail each other (I(C1) = I(C2) for all I).

Note that if two interpretations I and J have the same title mapping I = J , then
the importation closures of a particular corpus C are the same, C′I = C′J . However, the
specification above is somewhat too weak to draw conclusions, and we will need to
further restrict the semantics of titling.

It is expected that any actual KR language that adopts this importation mechanism
will have a distinct, and typically compositional, specification of semantics, and such
semantics will embue the language with certain algebraic properties. In the following
subsections, esp. 4.1, 4.5, we develop algebraic properties that we assume to hold for
all L0 languages.

4.1 Titling Semantics

We suppose that the title mapping affects only the semantics of texts containing titling
statements. In particular, we suppose that individual titling statements may be extracted
from text operators and text construction statements as follows:

A corpus
{(. . . (txt . . . (title N Γ) . . .) . . .)}

is fully-equivalent to the corpus
{(. . . (txt))
(. . . (title N Γ) . . .)}

Similarly, a corpus
{(. . . (foo. . . (title N Γ) . . .) . . .)}

is equivalent to the corpus
{(. . . (foo.))
(. . . (foo(title N Γ)) . . .)}

Therefore, it is sufficient to consider texts of only two kinds: (type I) those that contain
no titling statements, and (type II) those that contain only individual titling statements,
nested within some finite number of text operators and (unary) text constructions. We
call the set of all type I(II) texts in a particular language TI (TII).3

When an importation of a type II text into a type I text is resolved, the titling state-
ment may be extracted as above, giving a new type II text while leaving the original
type I text unchanged except for the removal of the importation statement. Note that the
interpretation I(S) of a type I statement S is independent of the title mapping ttlI of
the interpretation.

A titling-model of a corpus C is an interpretation J that satisfies (at least) the type
II statements of the importation closure C ′J . A corpus is title-satisfiable if it has at least
one titling-model.

4.2 Self-Contained Corpora

If a corpus contains an import statement, say for name N , and does not have a corre-
sponding titling statement to restrain the identity mapping of N , it may still be possible
to draw conclusions based on the explicit statements and importations that are well-
defined. However, the algorithms for addressing these cases become more complex, so
for this study we wish to distinguish between these cases. To this end, we introduce a
property of “self-containment”, indicating a corpus contains enough titling statements
to uniquely define all the importations it ”needs”.

Ideally, self-containment would be syntactically defined. However, the best we can
manage at this point is a semantic definition of self-containment because of our non-
compositional semantics.

Let a corpus C be semantically self-contained iff

– C is title-satisfiable;

3 The algebraic conditions on type II texts are restated more precisely in different notation in
subsection 4.5.

– there exists a unique importation closure Ĉ′ (called the canonical importation clo-
sure) for all titling-models.

The uniqueness of the r closure arises from the presence of “enough” titling state-
ments - too few titling statements leads to multiple importation closures for titling-
models, while its existence arises from the absence of “too many” titling statements,
esp. contradictory ones that lead to lack of title-satisfiability.

4.3 Cover

When corpora have infinite importation closures, practical reasoning is only possible
when entailments can be determined from some finite set of texts. To this end, we define
the concept of a cover.

Let corpus C̃ be a cover of a corpus C iff

– C̃ is logically equivalent to C and
– for every interpretation I , C̃ is satisfied by I iff I(Γ) is true for every text Γ ∈ C̃.

In other words, a cover captures the semantics of the corpus in a different, and
potentially smaller, package than the importation closure. Reasoning may be carried out
practically using covers, provided they exist and are finite for the corpora of interest.

The second item in the definition of a cover makes use of a compositional truth value
of a corpus, without considering the importation closure. We now define a notation for
this.

Given any interpretation I of L0, there is a mapping IS , which we will call the
superficial interpretation mapping, from corpora of L0 into truth values such that IS(C)
is true iff I(Γ) is true for every text Γ in C.

The importation closure of a corpus contains the original corpus. Therefore, a su-
perficial interpretation IS(C) of true is necessary, but not sufficient, for an interpretation
I to satisfy a corpus C. In this notation, the satisfaction condition for all corpora may
be stated as follows.

Given any interpretation I of L0 and any corpus C of L0, then I(C) = IS(C′) where
C ′I is the importation closure of C under I .

If C̃ is a cover of corp, the second condition of the definition implies I(C̃) = IS(C̃),
while the first condition implies I(C̃) = I(C), and so we have an equivalent statement
of cover:

A corpus C̃ is a cover of a corpus C iff for every interpretation I ,
I(C) = I(C̃) = IS(C̃)
In order to develop algorithms for determining a cover of a corpus, we need to know

what are the characteristics of covers. In particular, we note that the second condition
in the definition of a cover is a property independent of the corpus the cover ”covers”.
Because any cover is a cover of itself, being a cover (of something) is equivalent to
meeting the condition

I(C̃) = IS(C̃)
We now show that being a cover is equivalent to the condition: for every non-

satisfying interpretation I , there is a text γI ∈ C such that I(γI) is false.

First we consider that case that I(C) is true. Then by definition, any text Γ in C′I ,
I(Γ) is true. But C′I contains C, therefore IS(C) is true, and hence I(C) = IS(C). This
holds for any corpus, not just covers.

Now suppose that I(C) is false, i.e., I doesn’t satisfy C. If the condition above is
satisfied, then there is some text Γ in C such that I(Γ) is false, and thus I(C) is false
and hence I(C) = IS(C). Conversely, suppose C is a cover. Then IS(C) is false, which
can only be the case if there exists some text Γ in C such that I(Γ) is false.

Our basic goals for this paper are

– to determine conditions on a L0 language such that for any finite corpus, even one
with an infinite importation closure, there exists a finite cover;

– to describe an algorithm for finding a cover of a corpus for languages that satisfy
these conditions.

We will accomplish this with the help of some semantics-preserving transformations,
as defined in the next section.

4.4 Semantics Preserving Transforations

We first define a variant form of logical equivalence of texts, which we call superficial-
logical-equivalence (SL-equivalence or SLE).

With respect to a given L0 language, let

– two texts Γ , ∆ be SL-equivalent (Γ ≡SL ∆) iff I(Γ) = I(∆) for every interpreta-
tion I;

– two corpora C1, C2 be SL-equivalent (C1 ≡SL C2) iff IS(C1) = IS(C2) for every
interpretation I;

It is noteworthy that logical equivalence and SL-equivalence are not comparable
characteristics; there exists pairs of texts that are logically equivalent but not SL-equivalent
and v.v. (see Example 5.1. A stronger equivalence relation between texts can be defined
by combining the two: a pair of texts (or corpora) Γ , ∆ are fully equivalent if they are
both logically and SL-equivalent, and we write Γ ≡F ∆.

A corpus C containing two fully-equivalent texts Γ , ∆ is fully-equivalent to the
corpus C̄ obtained from C by deleting ∆.

A text transformation that alwys generates an ouput text that is fully equivalent to
the input text is called a semantics-preserving transformation.

4.5 Algebra-like Structures of the Syntax

Corpora are sets, and so are subject to the binary operations of union and intersection
with their usual properties. The set of all corpora in a L0 language is, naturally, closed
under these two operations. There are four equivalence relations to consider: syntactic
equality, and superficial-, logical- and full-equivalence, and there is a set of equivalence
classes of corpora for each of the latter three relations. There is a set of operators on
corpora corresponding to importation closure under a particular interpretation of a L0

language. These operators are also well-defined on logical and full equivalence classes

of corpora. The subset of corpora that are self-contained also has a unique operator
corresponding to importation closure under any titling-model. Because the semantics
of corpora are defined compositionally in terms of the interpretation of texts (of the
importation closure), certain properties hold for all L0 languages; e.g., a corpus entails
its subsets, the union of unsatisfiable corpora is unsatisfiable, and so on.

At a more fine-grained level, we may examine algebraic-like structures involving
texts. We may consider individual texts, or ordered tuples of texts and the same four
equivalence relations apply as were considered for corpora. Concatenation is a binary
operator acting on tuples, and text construction is a polyadic operator (which we will
denote by Q) on texts (Q : T ∗ → T) and a unary operator on text tuples. The seman-
tics of text construction is not defined compositionally, so for general L0 we cannot
assume algebraic properties of text construction, such as commutativity, associativity
or distributivity of construction over concatenation. We will consider subsets of the L0

languages that have certain algebraic properties.
The most restrictive assumption that could be made about the semantics of text

construction is
{Q(Γ1, . . . , Γn)} ≡F {Γ1 . . . Γn}

where Γi ∈ T ∗, 1 ≤ i ≤ n, which would make text construction equivalent to corpus
construction, giving text construction a semantics similar to polyadic conjunction.

Let L+
0 be the subset of L0 languages that satisfy this conjunctive-text-construction

property. In L+
0 , the set of full-equivalence classes of texts is an Abelian algebra loop

(closed, associative, commutative, with identity element) under Q as a binary opera-
tion.4

The minimal assumption that is imposed on all L0 languages, as described above
in subsection 4.1, for all L0 confers on text construction a semantics like polyadic con-
junction only on type II texts, and also has the semantics similar to binary conjunction
when a type II text embedded in a tuple of arbitrary texts. In particular, for all L0 lan-
guages,
{Q(Γ1, . . . , Γn)} ≡F {Γ1 . . . Γn}

where Γi ∈ T ∗II , 1 ≤ i ≤ n and
{Q(. . . Γ1, ∆, . . . Γ2))} ≡F {∆,Q(. . . Γ1, . . . Γ2)}

where ∆ ∈ TII and . . . Γi ∈ T ∗, i = 1, 2.
Similarly to text construction, the semantics of text operators, F ∈ F , F : T → T ,

is not defined compositionally. To achieve the separability of type I and type II texts, it is
imposed above in subsection 4.1, for allL0 languages, that text operators are distributive
over polyadic text construction on type II texts, as well as a type II text embedded in a
text tuple. That is, for all L0 languages,

F (Q(. . . Γ1, ∆, . . . Γ2)) ≡F Q(F (∆), F (Q(. . . Γ1, . . . Γ2)))

where F ∈ F , ∆ ∈ TII and . . . Γi ∈ T ∗, i = 1, 2.
We let LΩ0 be the subset of L0 languages where text operator distributivity holds

over all texts. That is,
F (Q(Γ1, . . . , Γn)) ≡F Q(F (Γ1), . . . F (Γn))

where F ∈ F , and Γi ∈ T , 1 ≤ i ≤ n.

4 Polyadic text construction is a shortcut for repitition of the binary construction in this case.

Further let L&Ω
0 = L+

0 ∩LΩ0 ; in L&Ω
0 languages, the set of full-equivalence classes

of texts could be considered an Abelian algebra loop with distributive operators (Abelian
Ω-loop), a generalization of the well-studied algebraic structure ”group with operators”
or Ω-group.

5 Examples

The following examples correspond to existing[2] as well as new Test Cases for the
resolution of circular importation dependencies.

5.1 Noncomparability of Logical- and SL-Equivalence

In L+
0 , the texts (txt (import foo)) and (txt) are not logically equivalent, but they are

SL-equivalent. On the other hand, the texts
(txt (title foo (A)) (import foo))
(txt (title foo (A)) (A))

are logically equivalent in L+
0 but not SL-equivalent. This demonstrates that the con-

cepts of logical and SL-equivalence are not comparable, in general.

5.2 No Cover if Not Self-Contained

Texts that are not semantically self-contained will, in general, have no cover (finite or
otherwise). For example, the corpus
{(txt import foo)}

has no cover. The importation closure is still defined for every interpretation, but its
content is determined by the image of “foo” in the title mapping of the interpretation,
and this can vary arbitrarily.

5.3 Simple Circular Importation

Consider a self-contained corpus consisting of two texts
{(title foo (F0 (import foo))))
(import foo)}

The importation closure contains
(F0(import foo))
(F0(F0(import foo)))
(F0(F0(F0(import foo))))
. . .

as well as the original texts. Similar examples can be constructed with three or more
texts where multiple operators are composed as follows:.
{(title foo (F0 (import bar))))
{(title bar (F0 (import foo))))
(import foo)}

This example demonstrates that circular importation generates an infinite importation
closure from a finite corpus.

Examining the results of this example from the perspective of algebra-like struc-
tures, we focus on the interaction of elements of F ′F , full-equivalence classes on the
closure of the set of text operators F under the composition operation. Text operators
F0, F1 are fully-equivalent iff

(F0 Γ) ≡F (F1 Γ) for every Γ ∈ T .
We can achieve a finite cover for the corpora in this example if the closure under com-
position of a finite set of F ′F is finite and is itself a subset of F , a kind of compactness
property. Let L̄0 denote the subset of L0 languages that satisfy this compositional-
compactness property.

5.4 Concatenation of Multiple Operators appied to a Circular Import

A more complex circular importation dependency is demonstrated here:
{(title foo (txt(F0 (import foo)) (F1 (import foo)) (F2 (import foo))))
(import foo)}

This example demonstrates the need for distributivity of text operators over text con-
struction (LΩ0) if we are to make progress on determining a finite cover for such a cor-
pus. Assuming distributivity of the text operators over text construction, the importation
resolution generates arbitrary finite compositions of the text operators F0, F1 and F2. If
the language has the compositional-compactness property, each member of this infinite
set of operator compositions is fully-equivalent to some member of a finite subset of
F ′, and thus a finite cover of the original corpus may be obtained.

5.5 Concatenation of Proposition and Operator applied to a Circular Import

Consider the corpus consisting of two texts
{(title foo (txt (A) (F0 (import foo))))
(import foo)}

Importation resolution yields
(txt (A) (F0 (import foo)))
(txt (A) (F0 (txt (A) (F0 (import foo)))))
. . .

We again make use of the distributive property of text operators over text construction:
(txt (A) (txt (F0 (A)) (F0 (F0 (import foo)))

Further resolution of importation produces
(txt (A) (txt (F0 (A)) (txt (F0 (F0 (A))) (F0 (F0 (F0 (import foo)))))))
. . .

We may take advantage of the compositional-compactness property to rewrite this as
(txt (A) (txt (F0 (A)) (txt (F1 (A)) (F2 (import foo)))))

However, in the absence of at least some aspects of conjunctive semantics for text con-
struction there is little more that can be done towards deriving a finite cover.

Let us suppose that text constructions can be flattened,
Q(. . . Γ1, Q(. . . Γ2), . . . Γ3) ≡F Q(. . . Γ1, . . . Γ2, . . . Γ3)

for all Γi ∈ F , 1 ≤ i ≤ n. Then the text above may be transformed to the fully-
equivalent

(txt (A) (F0 (A)) (F1 (A)) (F2 (import foo))).
Further suppose that the semantics of text construction is independent of the order of
texts or duplication of texts in the tuple. Then application of compositional-compactness
implies that there are a finite number of full-equivalence classes for texts of this form,
given that the Fi are generated by composition of F0 with itself.

6 Summary of Conditions for Applicability of Cover
Determination Algorithm

Let L̄+Ω
0 = L̄0 ∩ L+

0 ∩ LΩ0 be the subset of L0 with the following properties.5

– (L̄0) The language is compositionally-compact: the closure under composition of
a finite subset of F ′F is finite and is itself a subset of FF , where F ′F is the closure,
under composition, of the set FF of fully-equivalent classes of text operators (F)
in the language;

– (LΩ0) Text operators distribute over text construction:
F (Q(Γ1, . . . , Γn)) ≡F Q(F (Γ1), . . . F (Γn))
where F ∈ F , and Γi ∈ T , 1 ≤ i ≤ n;

– (L+
0)
• Text constructions can be flattened (associativity, identity):
Q(. . . Γ1, Q(. . . Γ2), . . . Γ3) ≡F Q(. . . Γ1, . . . Γ2, . . . Γ3)
for all Γi ∈ F , 1 ≤ i ≤ n;

• Text construction is independent of the order (commutativity):
Q(Γ,∆) ≡F Q(∆,Γ) for all Γ,∆ ∈ F .

• Text construction is independent of duplication (idempotency):
Q(Γ, Γ) ≡F Q(Γ) for all Γ ∈ F .

In any L̄+Ω
0 language, we define an elementary statement to be a single proposition,

titling or importation statement. Further, let an elementary text to be an elementary
statement or the application of finite set of text operators and/or unary text construction
to at most one elementary statement.

Each elementary text is a member of a full-equivalence class of elementary texts,
and by the assumed closure of composition, each elementary text may be represented
using at most one text operator.

By application of the assumed algebraic properties to a given text in a L̄+Ω
0 lan-

guage, the text may be converted to a fully-equivalent text having the form of a text
construction over some finite set of elementary texts. This representation is similar to
a normal form in logic, so we call it a normal form of the text (it is not necessarily
unique). A normal form C̄ of a corpus C is a set of texts such that each text of the
original corpus C has a normal form in C̄.

Given a self-contained corpus C, there is a unique importation closure Ĉ′ for all
title models. Let C̄′ be a normal form of Ĉ′. Because of the compositional-compactness
property, only a finite number of text operators are needed to represent all FE-classes of
texts in C̄′.

5 L̄+Ω
0 languages are Abelian Ω-loops where every finitely-generated sub-Ω-loop is compact

relative to the discrete topology of the full-equivalence relation (i.e. has a finite number of
FE-equivalence classes).

7 Data Model

We describe here a data model providing a compact representation of a normal-form text
or FE-class from a particular L̄+Ω

0 language. The representation is designed to facilitate
explanation of the algorithm for determining the cover of a self-contained corpus from
such languages.

7.1 Corpus Table

A corpus is represented in one or two tables or arrays (if split, one for the type I texts
and another for the type II texts). Each FE-class of the corpus is represented in a set of
rows, one row for each elementary text in a normal form. A row is associated with an
FE-class by its ”classID” field, which contains an identifier.

In each row of the corpus table, the remainder of the fields contain a compact rep-
resentation of an elementary text. The ”txt” field contains a binary value indicating the
presence of a unary text construction operator. The ”op” field contains an identifier for
a text operator, if present, with null or a special value to indicate its absence. The fi-
nal fields describe the elementary statement, providing either the name of a proposition
(“prop”), the title invoked by an importation statement (“import”), or the primary key
of a titling statement(“titleID”), to be discussed in the next section.

7.2 Titling Table

The texts associated with all titling statements that occur within the corpus under con-
sideration are represented in the titling table, whether or not they are active (are asserted
in the type II corpus table). Each row in the table corresponds to one elementary text in
a normal form of the titled text.

It is possible for the same title to be assigned to two different texts within a corpus.
There are certain circumstances when such a corpus may even be satisfiable, such as the
second titling statement occurring within another titling whose text is never imported,
or a text operator is applied that translates to a non-conflicting title. Therefore we cannot
rely on the text title (the ”title” field of the table) as a primary key for titling statements;
the ”id” field contains an identifier that creates the primary key for titling statements
(optionally jointly with the title.)6

The remaing fields of the row contain a representation of the elementary text in the
same form introduced in the previous section for the corpus table(s).

7.3 Representation of Example 5.5

The corpus from Example 5.5 is represented in the corpus Table 2 and titling Table 3.

6 Alternatively the table schema could be normalized by factoring out the first column of the
titling table into another table where the title name associated with each titling statement iden-
tifier is recorded. This table is particularly important in the more general case, not implemented
here, where a text operator may modify the title of a titling statement.

Table 2. Example 5.5 Corpus Table (combined types I and II) - Initial State

classID txt op prop import titleID
1 0 foo1
2 0 foo

Table 3. Example 5.5 Titling Tables

title id txt op prop import titleID
foo foo1 1 A
foo foo1 1 F0 foo

8 Determination of Cover

We first state the algorithm procedurally and then illustrate for a particular example.

8.1 Overview of Cover Determination Algorithm

The procedure for updating the corpus table is described for the case of resolution of
importations individually and assuming titling statements are unaffected by text opera-
tors:

– Construct the corpus and title tables, providing separate titleID’s for each syntacti-
cally distinct titling statement.

– Locate an importation statement in some class in the corpus type I table.
– Determine if the text to be imported is well-defined. If there are multiple titling

statements for this title asserted in the corpus type II table, the corpus is unsatis-
fiable. If there is no asserted titling statement for this title, defer the resolution of
this importation until later - a titling statement for this title may be imported into
the corpus elsewhere.

– Perform an importation resolution and update the corpus table.
• copy the class containing the selected importation into a new set of rows, pro-

viding a new, unused classID.
• locate the row, in the new class, corresponding to the selected importation to

be resolved.
• Update the text construction field in this row by binary OR between the existing

vaue and the value in the FE-class to be imported.
• Update the text operator field with the FE-class identifier obtained (e.g. from

table lookup) for the composition of the existing operator applied to the opera-
tor in the class to be imported.

• Compare the new FE-class to existing classes, and discard if it is equal to any
existing class. The order of rows is not significant.

– Repeat the resolution and update process, applying only once to each individual
importation statement in the corpus. Note that the order of application is immaterial
except in the case of ill-defined imported texts. If all texts to be imported are well-
defined, a fixed point will be reached.

– If a fixed point cannot be achieved due to ill-defined import(s), throw an error that
a cover does not exist due to missing or conflicting titling statement(s), as appro-
priate.

We present the cover determination algorithm by illustration as it would apply to
Example 5.5. The second text in the original corpus has an importation statement (row
2 of the corpus table) which invokes the name “foo”. There is no text operation applied
to the importation, so no name translation need be performed.

There is only one active titling statement (titleID “foo1”) in the corpus table and it
applies to the name ”foo”. Therefore the text to be imported is well-defined. Now if we
carry out the importation resolution explicitly and normalize we obtain the text

(txt (A) (F0 (import foo)))
We then tentatively add the representation of this text to the corpus table. In terms of
the tabular representation, this is a sort of nonlinear join.

Table 4. Example 5.5 Corpus Table - After Step 1(new rows only)

classID txt op prop import titleID
s3 1 A
3 1 F0 foo

We compare the new text with existing texts in the corpus. In this case, the new text
is different and thus is retained. Further, the new text has an importation so resolution is
repeated. We assume, for illustration purposes, that F0 ◦ F0 = F0. In general there will
be a finite set of FE-classes of operators containing F0n, n ≥ 1.

Table 5. Example 5.5 Corpus Table - After Step 2 (new rows only)

classID txt op prop import titleID
4 1 F0 A
4 1 F0 foo

The new class is again different than existing classes and is retained. It also has an
importation so resolution is repeated. However, this time the new class is the same as
the class it was derived from. The procedure has reached a fixed point and terminates.

9 Discussion

The following feedback to the ISO CL language design was developed on the basis of
the analysis above:

– This approach allows a design decision regarding whether all importations in a
corpus should be resolved simultaneously, or individually. The algorithm reveals:

• Individual importation resolution is more convenient to implement.
• For simultaneous resolution, there are cases where the algorithm as defined

above fails to determine a cover when one does exist. For example, with the
two text corpus
{(title bar (title foo (A)))
(txt (import foo) (import bar))}
simultaneous resolution of the two importations in the second text fails because
of a missing titling statement for “foo”. Individual resolution introduces the
missing titling statement when the importation for “bar” is resolved.

– There is much redundancy in copying an entire text whenever an importation reso-
lution is performed, which could be eliminated if text construction has conjunction-
like semantics, so that every corpus can be expanded to a fully-equivalent corpus
containing only elementary texts. This would not only reduce the size of the cover;
it would make the termination criterion easier to check, since only single rows
would need to be compared. However, conjunction-like semantics implies mono-
tonicity; this simplification would not be applicable to nonmonotonic logics, such
as defeasible logics.

10 Conclusion

We have investigated a family of propositionally-based languages containing generic
text operators and a titling/importation mechanism, identifying a set of characteristics
that allow a practical implementation of importation closure, in preparation for reason-
ing, that is robust in the presence of circular importation dependencies. The study has
demonstrated its utility by providing feedback to the revision of a standard KR lan-
guage, ISO CL. The extension of the analysis to the case of text operators that modify
titling statements warrants further consideration.

Acknowledgements Thanks to Fabian Neuhaus for valuable suggestions on this paper.

References

[1] ISOIEC. Information technology Common Logic (CL): a framework for a family
of logic-based languages.

[2] Fabian Neuhaus and Tara Athan. CL Semantics Strawman @ONLINE. Apr. 2013.
URL: http://philebus.tamu.edu/pipermail/cl/attachments/
20130405/153ad554/attachment-0001.pdf.

[3] Fabian Neuhaus and Pat Hayes. “Common Logic and the Horatio problem”. In:
Appl. Ontol. 7.2 (Apr. 2012), pp. 211–231. ISSN: 1570-5838. URL: http://dl.
acm.org/citation.cfm?id=2351667.2351672.

Transforming Association Rules to Business
Rules: EasyMiner meets Drools

Stanislav Voj́ı̌r, Tomáš Kliegr, Andrej Hazucha, Radek Škrabal, Milan Šimůnek

Department of Information and Knowledge Engineering, University of Economics,
Nám. Winstona Churchilla 4, Prague 3, 130 67, Czech Republic

{stanislav.vojir|tomas.kliegr|andrej.hazucha|xskrr06|simunek}@vse.cz

Abstract. EasyMiner (easyminer.eu) is a web-based association rule
mining software based on the LISp-Miner system. This paper presents
a proof-of-concept workflow for learning business rules with EasyMiner
from transactional data. The approved rules are exported to the Drools
business rules engine in the DRL format. The main focus is the trans-
formation of GUHA association rules to DRL.

1 Introduction

The EasyMiner association rule mining system discovers rules from a table of
objects. The system outputs all rules which hold in the given dataset in a certain
predefined statistical sense. An example of a rule is pAmount=〈100.000; 200.000)
∧ District=Prague →0.7,100 Status=Aq. Such a rule is learnt from a table (data
matrix), where each row corresponds to one client of a bank, and it contains at
least the following data: amount borrowed, district of the customer and loan
status. Rule confidence 0.7 denotes that in this table, it is true that for 70% of
clients from Prague who borrowed 100 to 200 thousand Czech crowns, the loan
was A-grade. The support of the rule is 100, which means that there were at
least 100 such clients.

The discovered rules are either exploited in a qualitative way by an expert,
or used to perform classification (scoring) of incoming objects (e.g. [7]). With
EasyMiner we attempt for a midway between these approaches: expert selects
only some of the discovered rules, which are then interpreted as business rules.
While the idea of interaction of a domain expert with discovered rules is not new
[2], to the best of our knowledge, EasyMiner is the only web-based system which
supports the complete cycle: data upload, preprocessing, mining, user interaction
with the discovered rules, and export of selected rules to a business rules engine.

This paper is organized as follows. Section 2 describes EasyMiner and its
workflow. The syntax of association rules output by EasyMiner is detailed in
Section 3. Section 4 describes the transformation of rules to the DRL format.
The description of the demo and the access details are listed in Section 5. The
paper is concluded with some remarks on the applicability of the described trans-
formation setup to other rule learners and with outlook for further work.

Fig. 1. EasyMiner screenshot

2 EasyMiner

EasyMiner is a sister project of the association rule learning system LISp-Miner
(lispminer.vse.cz, [10]), which is a desktop/server-based system developed
since the mid-1990s. The original paradigm of rule mining in LISp-Miner was that
the discovered rules are pieces of knowledge intended for “human consumption”.
EasyMiner, introduced at ECML’12 [12] as I:ZI Miner,1 is both an interactive
web application, which allows interactive pattern mining, and a web-service layer
on top of LISp-Miner.

EasyMiner allows the user to perform the complete association rule mining
task and review the discovered rules from an Internet browser.

1 The first predecesor of EasyMiner called Association Rule Query Designer was intro-
duced in [4]. This system was used for querying mining results stored in a knowledge
base, not for performing live mining.

2.1 Data import

The imported data are in tabular form (a CSV file or a MySQL table). For
columns with many distinct values it is strongly recommended to perform pre-
processing by grouping similar values into a smaller number of bins. This can
be done either automatically by a built-in heuristic algorithm on data import
(numeric fields only), or manually after the mining task is setup. An example
of a binning result is replacing all the say 60 distinct values of attribute “age”
with just five values such as 〈15; 23〉, (23; 37〉, (37; 49〉, (49; 53〉, (53; 75〉.

2.2 Defining the Mining task

Once the data are imported, the user is presented with the main EasyMiner
screen. The mining task is defined in the Pattern Pane (Fig. 1A) by selecting
interest measures and placing attributes from the Attribute Palette (Fig. 1B) on
the left and right side of the rule.

The set of interest measures includes the industry-standard confidence, sup-
port and lift measures and about 10 additional measures. All measures can be
freely combined. The setting of an interest measure also involves a selection of
a threshold value.

By dragging attributes on the left and right side of the rules respectively, the
user decides which attributes might appear in the rule. For each attribute, it is
also possible to define the set of its values considered during mining using the
following options:

– fixed value: attribute must use a specific bin as its value if it appears in a
rule

– simple wildcard: the system tries all single bins for the attribute value
– dynamic binning wildcard: during mining time, the system creates broader

bins by merging bins created in the preprocessing stage into one bin. An
example of a dynamically created bin is 〈15; 23〉 ∨ (23; 37).

It should be noted that while dynamic binning wildcard is convenient, it can
significantly increase the computation time. To alleviate this problem, the user
can select from several dynamic binning wildcards and thus restrict the size of
the hypothesis space (e.g. only consecutive values are attempted to be merged).
When the originally created preprocessing does not produce satisfactory results
and dynamic binning does not help or is computationally infeasible, the recom-
mended action is to create new attributes by dragging the names of columns
from the input data from the Data Field Palette (Fig. 1C) to the Attribute
Palette (Fig. 1B). After dropping the column to the Attribute Palette, the user
defines custom preprocessing (binning). In this way, the mining task can contain
multiple attributes derived (different binning) from the source data field.

Manual binning has also one significant advantage in the business rules con-
text: bins can have user friendly names. Instead of bin (53; 75〉 (result of auto-
matic binning), the user can create more meaningful bins, e.g. by creating a bin
〈60; 75〉 and naming it“senior”.

2.3 Mining

Once the user completes the setting of a mining task and clicks on the mine
rules link, EasyMiner converts all the user settings to a variant of the PMML
format [6] and submits the task via a web service to LISp-Miner. Depending on
the configuration, defined via the Settings link (Fig. 1F), the task is executed in
a single or multi-threaded LISp-Miner instance, or on the grid [11].

The discovered rules are returned to the EasyMiner front-end incrementally,
as LISp-Miner progresses through the search space. Real-time results are shown
in the Result Pane (Fig. 1D).

2.4 User Interaction with Results

The user oversees the discovered rules and tries to select the ones, which he or
she thinks would bring value when deployed. The system offers two aids to the
user: the strength of the rule and filtering based on a knowledge base.

The strength of the rule is indicated by the value of interest measures which
the user selected in the Pattern Pane. The values for all discovered rules dis-
played there meet or exceed the preset thresholds. Generally, the higher the
interest measure value above the threshold, the better the rule. Despite this
simple “metarule of thumb”, the user should understand the semantics of the
interest measures. As a future extension of the system, we plan to provide a
representation of the rule in a human-friendly textual form, which should lower
the requirements on user training (see Sec 6).

Discovered rules can be checked against a knowledge base of stored rules by
issuing a confirmation or exception query [5]. Confirmation query returns rules
from knowledge base, which contain in the antecedent only attributes contained
in the discovered rule’s antecedent, and for each of these attributes, there is at
least one overlapping value. The same must apply for the consequent. Exception
query returns rules with the same antecedent and a consequent which share at
least one attribute, and at least in one of the shared attributes there is no overlap
in attribute values.

EasyMiner makes the check of the discovered rules against the knowledge
base transparent for the user by embracing a relevance feedback paradigm: if
the discovered rule is only a confirmation of a rule in the knowledge base, it
is visually suppressed by gray font. In contrast, if the rule is an exception, it
is highlighted in red. A green tick, moving the rule to the Rule clipboard, also
stores the rule into the knowledge base. The relevance feedback module is a Java
application running on top of the XML Berkeley database, which communicates
with EasyMiner via a web service.

2.5 Rule Clipboard

The rules confirmed by the user are moved to the Rule clipboard (Fig. 1E). The
rules in the clipboard are grouped according to the task, in which they were
discovered. By clicking on the “Show task details” button, the user is presented

an HTML page with a complete definition of the mining task and the description
of the data. Technically, this report is generated with an XSLT transformation
from the GUHA AR PMML [6] XML export of the LISp-Miner system, which
is available under the Task result link in the Result Pane (Fig. 1D).

The Export Business Rules link exports the rules in the clipboard for a spe-
cific task to the Drools server. For demo purposes, this link shows the DRL
serialization of the rules.

3 BR-GUHA Association Rule

In theory, the LISp-Miner system used by EasyMiner mines generic GUHA as-
sociation rules [9]. The high expressivity of GUHA rules is not suitable for this
initial work on the transformation of association rules to business rules. While
EasyMiner contains some simplifications in comparison with the full LISp-Miner
implementation, the “EasyMiner” rules are still too expressive. In this section,
we describe BR-GUHA 0.1, a constrained version of GUHA rules, which is suit-
able for transformation to Business Rules.

In the formal definition of GUHA rules, antecedent and consequent of the
rule are defined in terms of boolean attributes, which are, in turn, defined as
conjunction or disjunction of boolean attributes or literals. EasyMiner simplifies
this generic recursive structure to a fixed three layer model, which eases the
manipulation with the discovered rules:

– Layer 1: Antecedent is a conjunction of derived boolean attributes, Conse-
quent is a non-empty conjunction of derived boolean attributes,

– Layer 2: A derived boolean attribute is a conjunction or disjunction of liter-
als,

– Layer 3: A literal is an attribute-value pair or its negation.

Further, it should be noted that:

– Attribute refers to the result of preprocessing, not to a field in the original
data table,

– Value is a bin created during preprocessing, or a dynamically created bin (a
disjunction of multiple bins).

By default, EasyMiner (and GUHA) allows the consequent of the rule to
have the same rich structure as the antecedent. The consequent of the rule can
thus contain for example a disjunction of multiple attributes, or a disjunction of
values of one attribute.

In contrast, with Business Rules, a rule needs to have a definite outcome.
To quote from the Drools documentation: It is bad practice to use imperative or
conditional code in the RHS of a rule; as a rule should be atomic in nature -
”when this, then do this”, not ”when this, maybe do this”2. In BR-GUHA the

2 http://docs.jboss.org/drools/release/6.0.0.Beta3/drools-expert-docs/

html_single/index.html#d0e7386

consequent of the rule is constrained to contain a positive literal (negation not al-
lowed). Furthermore, the attribute value must correspond to a single value in the
underlying data table (no binning or dynamic binning allowed). No restrictions
are made to the antecedent of the rule.

The second important component of an association rule are the interest mea-
sures, the 4ft-quantifier in GUHA terminology [3, 9]. A 4ft-quantifier is composed
from one or more 4ft-partial quantifiers, each associated with one or more quan-
tifier values. While EasyMiner embraces the more commonly used term “interest
measure”, in other respects it does not impose additional constraints.

In BR-GUHA, we constrain the EasyMiner setup to two interest measures.
Only the most commonly used interest measures are supported: confidence, sup-
port and lift, all with just one associated value. The first measure must be sup-
port, and the second measure is either lift or confidence.

Technically, the constraints described in this section are imposed by not
allowing certain features in the mining setup. Most BR-GUHA constraints are
readily supported by EasyMiner.3

4 Representing EasyMiner Association Rule in DRL

This section describes an initial specification of the conversion procedure of the
simplified GUHA rules (“BR GUHA 0.1”) to the Drools Rule Language (DRL).
In this preliminary work, this specification is done informally, through examples
of transformation result for the relevant syntactic features.

4.1 Running Examples

Throughout this section, two example GUHA rules will be used. The first takes
up the simple rule from the Introduction, while in the second all the syntactic
features are used.

Rule 1
pAmount=〈100.000; 200.000) ∧ District=Prague →0.7,100 Status=Aq,
where 0.7 is the confidence value and 100 the support.

Rule 2
p(Amount=〈100.000; 200.000) ∨ Duration=1year) ∧ ¬(District=Bruntal)

∧ (Age=[Senior ∨ Student] ∨ Payments=〈5.000; 10.000))
∧ Education=university →0.95,20 Status=Bq,

where 0.95 is the confidence value, and 20 the support.

4.2 Attributes

To comply with the Drools object-oriented principles, each attribute in a rule is
transformed to an instance of the Drools Attribute class. In the following, we
will refer to this instance as DrlObj.

3 With the exception of disabling binning in the preprocessing stage

The names of the attributes in the discovered rules may not necessarily match
the names of fields in the underlying data table. Since it is expected that the
requests to the business rules engine will use the names of the fields from the
underlying data table, rather than the custom names introduced during data
preprocessing, the name of the instance is set to the name of data field on which
the attribute is based. The same applies to attribute values.

Rule 1 features attribute-value pair District=Prague. Assuming that the
name of the underlying data field is “district”, and the underlying data value
“Praha” was renamed during preprocessing to “Prague”, the resulting DRL frag-
ment is as follows:

DrlObj (name == "district", value == "Praha")

4.3 Interest measures

The action of a user confirming the rule and exporting it to the business rule
system, strips away the “fuzziness” from the rule, replacing the interest measure
with a causal relationship. The original value of interest measures can, however,
be used to define the conflict resolution strategy.

Consider object 1 depicted in Table 1.

ID amount district age duration payments education

1 120.000 Praha 63 1year 11.000 university
2 110.000 NA 61 1year 9.000 university

Table 1. Example objects

Both Rule 1 and Rule 2 match this object, however, the consequents of these
rules are conflicting, since the status cannot be both A and B.

Drools offers multiple conflict resolution strategies. Interest measure values
can be utilized in the salience strategy, by setting the salience property of a rule
according to the value of lift or confidence interest measures, whatever is used
in the rule. Since salience in Drools is an integer, while confidence is a float in
the range of (0; 1〉 and lift is a float in the (0; inf〉 range, the original value of
the interest measure needs to be multiplied by a scaling factor, e.g. 100, before
it can be used as salience.

In association rule mining, it can be generally observed that with the increas-
ing specialization of the antecedent, the confidence of a rule rises at the expense
of decreasing rule support (as exemplified by Rule 1 and Rule 2). Specific rules
are therefore preferred as their consequents are more likely to hold than for a
consequent of a conflicting rule with a smaller number of conditions. To this end,
the Drools complexity conflict resolution strategy, which favours rules with more
conditions, should yield similar results as the salience strategy.

It should be noted that the statistical validity of a rule decreases with increas-
ing specificity as each condition filters out some objects that would contribute
to the support of the rule. However, we suggest not to take support into account
during conflict resolution, since the fact that all rules considered have sufficiently
high support is ensured by:

– support of the rule exceeding the minimum threshold set by the user during
the mining setup,

– the user has explicitly approved the rule by placing it into the rule clipboard.

The use of the complexity strategy rather than the salience strategy also
has the advantage that it naturally solves the situation when there are multiple
conflicting rules with different interest measures. In this case, a comparison of
salience would not make sense: the salience of 70, derived from confidence 0.7,
and salience 110, derived from lift value 1.1, are incomparable.

Our preliminary conclusion is that the first approach to handle interest mea-
sures in the DRL export is to ignore them, and to use the complexity resolution
strategy instead.

In our example, this strategy would favour Rule 2 over Rule 1.

4.4 Binning

The values of attributes are a result of binning. The names of bins can be au-
tomatically generated, user-defined, or the same as the values of the underlying
fields in the data table.

Since it is expected that the requests to the business rules engine will use
values from the underlying data table, rather than the bin names, it is necessary
to translate the bin names back to the values of the underlying datafield. In this
step, one bin will be replaced by one or multiple values.

The resulting DRL depends on the data type of the attribute (numerical,
nominal).

Numerical attributes The bins of the Amount attribute from Example 1
are created on a numeric range.

pAmount=〈100.000; 200.000)q

The result of transformation to DRL:

DrlObj(name == "amount", numVal >= 100000, numVal < 200000)

Nominal attributes The bins of the Education attribute were created by
enumerating nominal values in the preprocessing stage for data mining. For
example, bin “university” was created by merging values “undergraduate” and
“graduate” of the underlying “education” data field.

pEducation=universityq

The result of transformation to DRL:

DrlObj(name == "education", value == "undergraduate"

|| value == "graduate")

4.5 Dynamic Binning

A dynamic bin (multiple bins merged into one during mining) is present on
attribute Age in Rule 2.

pAge=[student ∨ senior]q

The result of transformation to DRL:

DrlObj(name == "age", (numVal >= 18 && numVal < 25) ||

(numVal >= 60 && numVal <= 75))

4.6 Conjunction

Conjunction can be featured on the top level within the antecedent or consequent
as in Rule 1 and Rule 2, or in a subexpression as in Rule 2.

Top level

pAmount=〈100.000; 200.000) ∧ District=Pragueq

This rule fragment is represented in DRL as

DrlObj(name == "amount", numVal >= 100000, numVal < 200000)

and DrlObj(name == "district", value == "Praha")

Subexpression

pAge=senior ∧ Payments=〈5.000; 10.000)q

This rule fragment is represented in DRL as

DrlObj(name == "age", numVal >= 60, numVal <= 75)

and

DrlObj(name == "payments", numVal >= 5000, numVal < 10000)

4.7 Disjunction

Disjunction in a simplified GUHA rule can be present only as a subexpression
within antecedent or consequent. Disjunction is present in Rule 2:

p(Amount=〈100.000; 200.000) ∨ Duration=1year)q.

The result of transformation to DRL:

DrlObj(name == "amount", numVal >= 100000, numVal < 200000)

or DrlObj(name == "duration", value == "1year")

4.8 Negation

Negation in an EasyMiner rule can be present only on a specific attribute-value
pair. Negation is present in Rule 2:

p¬(district=Bruntal)q

The result of transformation to DRL:

DrlObj(name == "district", value != "Bruntal")

This assumes that the value of District is known. An alternative DRL rule, more
truthful to the above EasyMiner rule, which would be fired even if the value of
District is not available (as in object 2 in Table 1):

not DrlObj(name == "district", value == "Bruntal")

4.9 Consequent

The specification of the code in rule consequent is currently not yet finalized
and the authors would welcome any input from the RuleML community. The
provisionary option currently implemented in the system is as follows:

then

processResult(kcontext, "Status", "A");

end

The processResult is a static method which collects the results of fired rules.
Its first argument is a rule context (provided by Drools) followed by the attribute
name and its value from consequent of the association rule. As the next step, it is
necessary to resolve the situation when multiple rules with different consequents
have been activated. One of the options to accomplish this is to use the Drools
accumulate function.

4.10 Complete DRL

This section lists the complete DRL code for the two example rules.

import cz.vse.droolsserver.drools.DrlObj;

import function cz.vse.droolsserver.drools.DrlResult.processResult;

rule "ExampleRule1"

when (

DrlObj(name == "amount", numVal >= 10000, numVal < 200000)

and

DrlObj (name == "district", value == "Prague")

)

then

// a provisionary construct

processResult(kcontext, "Status", "A");

end

rule "ExampleRule2"

when (

(

DrlObj(name == "amount", numVal >= 100000, numVal < 200000)

or

DrlObj(name == "duration", value == "1year")

)

and (not DrlObj(name == "district", value == "Bruntal"))

and

(

DrlObj(name == "age", (numVal >= 18 && numVal < 25)

|| (numVal >= 60, numVal <= 75))

or

DrlObj(name == "payments", numVal >= 5000, numVal < 10000)

)

)

then

// a provisionary construct

processResult(kcontext, "Status", "B");

end

5 Demo Scenario

The demo, accessible at http://easyminer.eu/demo/ruleml2013, shows the
EasyMiner workflow supporting the business rules integration. All the data-
mining steps described in Section 2 are shown as a screencast and as a live demo
system. The demo finishes with the user clicking on the Export as Business Rules
link, which shows the result of converting the rules in the rule clipboard to DRL.

6 Conclusion and Future Work

This paper presents a proof-of-concept system for learning business rules with
EasyMiner from transactional data. The main focus of this paper is the trans-
formation of GUHA association rules to the DRL format, used by the open
source Drools business rules engine. In this preliminary work we have imposed
some restrictions on the form of the GUHA rules being transformed. Neverthe-
less, the specification proposed here should support all features of conventional
association-rule learning algorithms, i.e. those with output similar to the apriori
[1] algorithm, plus some advanced features such as disjunctions or negations.

As a future work, we would like to investigate the possibilities for using and
extending the human readable serializations of business rules, SBVR “Structured
English” [8] in particular, as an alternative way of presenting the discovered rules
to the user.

Acknowledgements The work described here was supported by grant IGA
20/2013 of the University of Economics, Prague and by the LinkedTV EU FP7
project.

References

1. Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules
between sets of items in large databases. In SIGMOD, pages 207–216. ACM Press,
1993.

2. Bart Goethals and Jan Van Den Bussche. On supporting interactive association
rule mining. In Proceedings of the 2 nd International Conference on Data Ware-
housing and Knowledge Discovery, pages 307–316. Springer, 2000.

3. Petr Hájek and Tomáš Havránek. Mechanizing Hypothesis Formation. Springer-
Verlag, 1978.

4. Tomáš Kliegr, David Chudán, Andrej Hazucha, and Jan Rauch. SEWEBAR-CMS:
A system for postprocessing data mining models. In Monica Palmirani, M. Omair
Shafiq, Enrico Francesconi, and Fabio Vitali, editors, RuleML-2010 Challenge, vol-
ume 639 of CEUR Workshop Proceedings. CEUR-WS.org, 2010.

5. Tomáš Kliegr, Andrej Hazucha, and Tomáš Marek. Instant feedback on discovered
association rules with PMML-based query-by-example. In Web Reasoning and
Rule Systems. Springer, 2011.

6. Tomáš Kliegr and Jan Rauch. An XML format for association rule models based
on guha method. In RuleML-2010, 4th International Web Rule Symposium, Berlin,
Heidelberg, 2010. Springer-Verlag.

7. Bing Liu, Yiming Ma, Ching Kian Wong, and Philip S. Yu. Scoring the data using
association rules. Applied Intelligence, 18(2):119–135, March 2003.

8. OMG (Object Management Group). Semantics of Business Vocabulary and Busi-
ness Rules (SBVR), v1.0, 2008.

9. Jan Rauch. Observational Calculi and Association Rules. Studies in Computational
Intelligence. Springer-Verlag, Berlin, 2013.

10. Jan Rauch and Milan Šimůnek. An alternative approach to mining association
rules. Foundation of Data Mining and Knowl. Discovery, 6:211–231, 2005.

11. Milan Šimůnek and Teppo Tammisto. Distributed data-mining in the LISp-Miner
system using Techila grid. In Networked Digital Technologies’10, pages 15–21,
Berlin, 2010. Springer.

12. Radek Škrabal, Milan Šimůnek, Stanislav Voj́ı̌r, Andrej Hazucha, Tomáš Marek,
David Chudán, and Tomáš Kliegr. Association rule mining following the web
search paradigm. In Peter A. Flach, Tijl De Bie, and Nello Cristianini, editors,
ECML/PKDD (2), volume 7524 of Lecture Notes in Computer Science, pages 808–
811. Springer, 2012.

Constructing Controlled English for Both Human Usage

and Machine Processing

Ping Xue
1
, Steve Poteet

1
, Anne Kao

1
, David Mott

2
, Dave Braines

2

1Research & Technology, The Boeing Company, USA

{ping.xue, stephen.r.poteet,anne.kao}@boeing.com
2Hursley Emerging Technology Services, IBM, UK

{mottd, dave_braines}@uk.ibm.com

Abstract. We present our on-going research on constructing and extending a

version of Controlled English (CE) in support of knowledge sharing and deci-

sion-making for effective and efficient operations in the military coalition envi-

ronment. This work would be useful for any multinational English speaking en-

vironment. This CE is intended for both human use and machine processing,

providing:

(i) A user-friendly language in a form of English enabling the user to use it in a

fairly intuitive way.

(ii) A precise language that enables clear, unambiguous representation of in-

formation that is amenable to rule-based interpretation and inferencing.

The paper focuses on the discussion of methods for CE construction while op-

timizing a balance between the naturalness for humans and machine readability

of the CE language in light of theoretical considerations and empirical experi-

mentations. We discuss certain aspects of CE syntax, semantics and the lexical

model as examples. We also show sample CE-based knowledge-sharing capa-

bilities.

Keywords: Ambiguity, coalition operations, Controlled English, decision-

making, syntax and semantics, information extraction, linguistic variations,

knowledge sharing, multi-nation collaborations, unstructured data

1 Introduction

As science and technology continue to advance, the volume of available data and

information has been rapidly growing in both structured and un-structured forms,

generated from a variety of sources including business processes, government and

organizational policies, scientific activities, public web commentary as well as sen-

sors and intelligence reports. These large data sets created by modern technologies,

diverse in form and content, contain valuable and often critical information that, if

acquired and properly represented, can provide significant insights to improve

knowledge-sharing and to support decision-making. However, the data are creations

of human design with bias, and correct interpretation of data requires domain

knowledge. As a result, information acquisition from the available data and

knowledge-sharing among or across organizations are difficult. A major difficulty, as

we observed in the military coalition context, comes from the fact that organizations

(even related organizations) may have somewhat different underlying conceptual

models of the world in addition to linguistic variations in terms of terminology, sen-

tence structure, language usage and style. For structured data, metadata may also vary

in semantics between domains; identical metadata elements may be used to refer to

similar but distinct concepts. It is clear that we not only need automated data analysis

tools but also a user-friendly common language that enables unambiguous infor-

mation representation and facilitates a closer human-machine interaction as well.

In this paper, we present our on-going research on a controlled English being de-

veloped within a collaborative research alliance called the International Technology

Alliance (ITA)
1
 to support information-acquisition and knowledge-sharing for deci-

sion-making during coalition operations. Section 2 introduces ITA Controlled English

(ITA CE, hereafter CE) and discusses our on-going effort to extend CE. Section 3

discusses tools and applications based on CE, including our initial implementation of

CE for fact-extraction by various users, from knowledge engineers and linguists to

non-technical domain-specialist users. Finally, section 4 summarizes CE and future

work on CE extension in syntax and semantics for general expressivity in order to be

able to capture and represent a diversity of concepts and to support a wider range of

applications in the context of military coalitions.

2 ITA Controlled English

2.1 Controlled Natural Language

A controlled natural language (CNL) is a subset of a natural language using a restrict-

ed set of grammar rules and a restricted vocabulary. Well-known examples of con-

trolled languages include ACE [1], CPL [2], PENG [3], Rabbit [4], Caterpillar Fun-

damental English [5], and STE (Simplified Technical English) [6] , with a common

goal: to eliminate (or reduce) the ambiguity and complexity of a natural language,

and thus to improve (or at least maintain) readability of the text for humans while

allowing it to be processable by machines. ITA CE is an ITA variant of a controlled

natural language originally developed by John Sowa

[7].

It should be noted that there is often a tension between the human user-friendliness

and machine predictability [8]. Predictable interpretation and reliable computation of

1 In 2006, the US Army Research Laboratory (ARL) and the UK Ministry of Defence (MoD)

established a collaborative research alliance with academia and industry partners called the

International Technology Alliance (ITA) to address fundamental issues in Network and In-

formation Sciences to enhance the abilities of the US and UK to conduct coalition opera-

tions.

a CNL requires deterministic property of the language. But a deterministic CNL is not

necessarily easy for users who have not had any training in the CNL, because the

restricted grammar and lexicon of the CNL may compete with his/her normal English

intuition (i.e., the grammar and lexicon that the user has been exposed to since his/her

birth). In general, the closer the CNL to the normal natural language, the more natural

and the easier to use by humans, but the less predictable and the more computational-

ly complex it will be for machines. How to achieve a good balance between these two

is an important criterion as we design and develop the CE.

We need to make a distinction between ease of reading and ease of writing. In gen-

eral, CNLs will be easier to read than to write, since the specific restrictions in syntax

and vocabulary are more difficult for the writer to remember and follow. To this end,

we have developed the CE Query Builder tool to help with the writing of CE, as dis-

cussed below in Section 3.1.

2.2 Goals of ITA CE

In addition to the general goal of balancing human usability and machine interpreta-

bility, CE should provide:

 A single, standardized language for various users, from different groups (e.g. the

UK and the US) but also with different roles in the overall system (for example,

end-users or soldiers in the battlefield, military analysts and planners, and system

developers)

 The ability to express the basic facts (or propositions) required for a particular

domain or application

 The ability to express the epistemic status of propositions (i.e. whether they are

true or false, or just an assumption, possibly with a specified degree of certainty),

or who believes the proposition; not all propositions will be assumed to be true

with the same confidence

 Logical inference rules to allow the inferencing of additional facts from an initial

set; in order to encode anything more than the most trivial kinds of knowledge,

the ability to infer new facts from existing ones is necessary

 The ability to express the rationale behind a particular proposition; given the

ability to infer new facts from old ones, decision makers need to understand the

provenance and rationale of the facts on which they base their decisions

 Extensibility: the ability for users with various roles to extend the language in

different ways; no system will ever be complete and the easier it is for various

types of users to add new knowledge, the more adequate the system will be

2.3 Examples of ITA CE

The current version of CE is roughly consistent with First Order Predicate Logic and

with existing ontology modeling languages such as OWL (Web Ontology Language).
2

It provides an unambiguous representation of information for machine processing,

while aspiring to provide a human-friendly representation format that is directly tar-

geted at non-technical domain-specialist users (such as military planners, intelligence

analysts or business managers) to encourage a richer integration between human and

machine reasoning capabilities [9]. In addition to more traditional areas such as

knowledge or domain model representation and corresponding information, CE also

encompasses the representation of logical inference rules [10], rationale (reasoning

steps) [11], assumptions, and statements of truth (and certainty).

The CE currently permits a set of “plain” English sentences for stating propositions

referring to entity existence, properties and relations:

 there is a person name Fred.

 the person Fred has French as language.

 the person Fred is married to the person Jane.

The CE also permits meta-statements that specify information about propositions

such as their truth status or assumption:

 it is true that there is a person named Fred

 it is assumed that the person Fred is married to the person Jane.

 it is true to degree CV that Fred is a father.

Queries of a set of facts represented in CE can be made in forms like the following:

 for which X is it true that the person X is married to the person Jane

2 It’s the semantics rather than the syntax of CE that is compatible with FOL and existing mod-

eling languages. The current relation between CE semantics and FOL is as follows: 1) the

basic CE sentences are all given a FOL semantics in the definition of CE reference; 2) there

are some parts of CE that have not yet been given a formal semantics in CE (such as the as-

sumption-based logic); 3) not all of FOL can be represented in CE, for example certain

combinations of existential quantifiers embedded in the scope of a universal quantifier. The

relationship between CE and OWL (semantics) is as follows: 1) there are some parts of CE

that cannot be represented in OWL, e.g. rules, assumptions, although potentially these could

be represented in extensions to OWL such as RIF. 2) There are some parts of OWL that

cannot (easily) be represented in CE, e.g. lists of explicit values for properties 3) There are

one or two fundamental differences in philosophy, for example we prefer to make (nearly)

all of the rules of inference to be explicit, whereas in OWL there are many implicit rules of

inference. For more on the relationship between CE, FOL, and web modeling languages, see

[10].

 for which X, Y and Z is it true that

the person X is the brother of the person Y and

the person Y is the father of the person Z

The creation or extension of a domain model (or a general model across domains)

using CE is accomplished by the definition of (domain) concepts, relationships and

properties. These are all achieved through the “conceptualise”
3
 statement:

 conceptualise a ~ person ~ P.

A conceptualise statement creates the concept in question within the CE domain

model. The concept is assumed to have a unique meaning, allowing unambiguous

interpretation of a text string such as “person” in the above examples. The conceptual-

ise statement introduces new concepts (including entity and event types, as well as

their attributes and relations they can enter into) by putting them between tildes and

using capitalized letters/strings for variables that would be replaced in a fact assertion

or proposition statement.

Slightly more advanced examples are:

 conceptualise a ~ person ~ P that is an agent.

 conceptualise the person P

that has the value H as ~ height ~ and

has the value W as ~ weight ~

 conceptualise the person P

~ is married to ~ the person P2

The first CE sentence creates “person” as a sub-concept of “agent” and the second

indicates that it can have the properties “height” and “weight”. The last sentence as-

serts that it can have a “married” relationship with someone.

The meaning of a concept can be more fully defined by rules representing the logi-

cal relations between concepts and their properties. Logical rules can be represented

as follows:

 if PREMISES then CONCLUSION

 if (the person X has the person Y as brother) and

 (the person Z has the person X as parent)

 then

 (the person Z has the person Y as uncle)

3 The spelling of "conceptualise" is due to the origin of CE at IBM, UK.

If there are CE facts in the repository satisfying the first two premises (where the

matching variables must have matching values), then the conclusion can be asserted,

again with variables filled in from the premises, in accordance with traditional modus

ponens inferencing.

Rationale for a particular proposition is based on the following form of statement:

 CONCLUSION because PREMISES

 the task T1 has the agent A1 as executor

 because

 the plan P1 has the agent A1 as executor and

 the plan P1 contains the task T1.

A rationale would consist of a chain or network of such statements, tracing the

provenance of a particular assertion and allowing the user to see the source and status

(assumption or fact, or degree of certainty) of the different premises the fact is ulti-

mately based on. The rationale also provides a basis for more complex processing, for

example propagating degrees of certainty according to some particular theory uncer-

tain inferencing, or simply highlighting assumptions or propositions with degrees of

certain below a particular threshold, although we have not investigated this yet.

Note that the meaning of a concept is given by the inferences that can be made

from CE statements that use that concept. These, in turn, are related to the place of the

concept in a domain concept is-a hierarchy, the various attributes it can take and the

types of relationships it can enter into, and ultimately the logical inference rules that it

participates in.

Clearly, the examples given above are simplistic and basic, but with these simple

mechanisms, CE has been used in practical applications with reasonable coverage,

which we will discuss in Section 3.

2.4 Extending CE

As mentioned above, an important goal of CE is extensibility of the language. The

conceptualise construct already allows for lexical extensibility, introducing new con-

cepts for things and their associated properties and relationships
4
. However, it does

not provide an ability to extend the syntax of CE. It is desirable to allow extension of

the syntax because there are some areas where, although the concept can be expressed

in CE, the expression is not very natural. For example, CE currently does not have

adjectives per se. Adjectival expressions are captured via noun-like concepts. So in

order to say that “my car is red”, we have to say:

 The car mycar is a red thing.

where “red thing” is an unanalyzed concept, despite the space in its name.

4 Note that “thing” here is at the highest level in the ontology, including things like events and

situations.

To allow more felicitous expression of facts like these, we have been working on a

set of possible extensions to CE syntax and semantics. While it would be possible to

introduce some of these extensions directly into the language, we have been trying to

develop a more general means of extending the syntax and associating semantics with

it to allow developers and advanced users to make additional extensions as needed in

the future. One approach we have experimented with is to use simple transformation

rules to capture the linguistic structures that share the same semantics with the exist-

ing CE sentences [12]. For example, the construction “there is a red car named

mycar” could be transformed into “the car mycar is a red thing” by the following rule:

 there is a <name1> <noun2> named <name3>

 ==>

 the <noun2> <name3> is a <name1> thing

where items contained in angle brackets are patterns that match certain components in

the sentence (for example a <noun> is a word that is contained as a concept in the

current conceptual model), and the double arrow expresses a mapping from extended

to basic CE:

 extended CE ==> basic CE.

This allows straightforward extensions without the need to define new semantic in-

terpretation rules. The only “hard” extension we would have to build into CE is the

mapping syntax. The obvious drawback of this approach is that the possible exten-

sions are rather limited. Later, we will briefly mention another more flexible approach

to defining extensions to the language that we have begun to explore.

3 CE-based Capabilities and Applications

An extensible CE is most useful in situations that have the following characteristics:

1. A high degree of human-computer interaction, usually involving specialist users

with complex needs in non-trivial environments.

2. A likelihood of rapidly evolving or uncertain tasks, queries or other knowledge-

based activities.

3. The need for collaboration, either between different people or teams, and/or across

different disciplines.

CE is of less value if there is no human-involvement, little complexity, or very firm

and stable requirements, and in such circumstances traditional application develop-

ment processes are a much more straightforward and low risk solution. In cases

where there is a high degree of customization, development, uncertain requirements

or short lead times, especially in areas where human-led planning, thinking or deci-

sion-making are required, then CE (or similar human-friendly information processing

environments) could be a very useful capability. Along these lines, we have devel-

oped (and are continuing to develop) CE-based capabilities such as “CE Store” to

support military coalition applications.

3.1 CE Store: a Development Environment for CE-Based Applications

CE Store is a research-grade runtime implementation of the CE language and ecosys-

tem. It provides a basic CE processing environment that allows for the relatively

quick and efficient testing of new concepts in CE and the development of prototype

applications. CE Store includes the following high-level capabilities:

1. Basic CE sentence parsing

2. Definition and extension of any concept model (i.e. the possible types of things,

including events and situations, and their possible attributes and relationships)

3. Assertion of any CE sentence conforming to a concept model

4. Loading and querying of any existing concept model and associated sets of facts

5. Definition and execution of any CE query including an example “visual query

composition” element

6. Definition and execution of any logical inference rule, in the form of a “query with

conclusion clauses” that can be used to assert new CE information

7. Definition and execution of “CE agents” which conform to a simple “CE Store”

interface

CE Query Builder (CEQB) is a visual query drawing tool embedded in the CE

Store environment, which makes use of drag-and-drop and contextual (popup) menus

to allow the user to draw, execute and save a CE query or rule. It provides one means

to help the user write more accurate rules and queries. The intention of the CEQB is

that it is a useful “exploratory” environment in which CE queries can be constructed

in a convenient manner. Once the query (or rule) is constructed it can then be saved,

executed, etc. The CEQB is a “model aware” component of the environment and is

directly integrated into the CE Store APIs. Therefore it will allow one to create que-

ries relating specifically to the information that is currently loaded into the CE Store,

indicating the existing concepts but also allowing the user to create new concepts via

the conceptualize statement and new rules employing these and other concepts. Note

also that, while the query is constructed graphically, the results are displayed in CE.

The purpose of the CE Store is to demonstrate an (almost) “pure” CE-based im-

plementation of an information-processing environment within which human and

machine agents can contribute and interact with complex information based on com-

mon conceptual models of a domain. In addition, the concept of CE Agent is core to

the CE Store approach, allowing domain-specific modules to be constructed and inte-

grated into a CE application. CE Agents may be constructed completely in CE or, if

necessary or more convenient, constructed in Java with a CE interface or API to the

rest of the CE Store. Java-based CE Agents are used mainly in two cases: 1) When the

functionality required is not expressible in if-then rules - e.g. low level text prepro-

cessing or complex algorithmic or statistical processing like that needed for spatial

information processing, or 2) When the writing of rules to express the required behav-

ior is too complex or too tedious. It is more likely that, people with roles related to the

infrastructure of the system and with IT backgrounds would develop the Java-based

agents, if necessary and other users would simply interact with them in CE.

There is a publically available version of the CE Store, known formally as the

“IBM Natural Language Processing Environment”, available for download from the

IBM developerWorks site, here:

http://ibm.co/RDIa53

3.2 Example Applications

CE has been used in the development of a number of prototype systems, including

fusion of hard data (from sensors) and soft data (human reports) for situation aware-

ness on the battlefield [13], real-time integration of maps, photos, and messages about

events [14], and collaborative planning [15]. The different applications have been

based on different versions of CE and have focused on different areas of development

of the language. The focus of this paper is not on applications, but the following gives

a brief overview of some of the applications that have been developed with CE. See

the particular papers for more details.

The data fusion application uses CE to manage the direction, collection, pro-

cessing, and dissemination of data to support decision making. These require the ex-

pression of information needs, the description of asset capabilities, and the conversion

of information products generated by each asset into a machine-processable form,

consistent with the metadata specified for that asset. This supports the processing and

ultimate delivery of data to meet the original information needs [13].

The second application provides for the assignment of objects like buildings and

vehicles to locations on a map, the association of photos taken by agents in the field

of those objects with icons on the map, and the identification and location of objects

extracted from short human generated messages on the map [14].

The “Collaborative Planning Model” is a multi-layer set of conceptual models to

enable collaborative planning as a specialized form of general problem solving with

support from higher level models for spatial and temporal reasoning [15].

3.3 CE-based Fact Extraction

If a system is developed from scratch, then CE can be defined as the language to use

in interacting with the system or with other humans through the system. However, in

many applications, there is already a great deal of information available in unstruc-

tured form (i.e. free text) that has not been written in controlled English. In order to

http://ibm.co/RDIa53

make this information available, we are currently developing a more extensive and in-

depth Fact Extraction system based on CE. Our motivation for using CE to develop

this system is the many sub-domains that need to be developed and the rapid rate of

change of the conceptual model and language, requiring users at various levels and

with various roles to participate in its extension, from system infrastructure builders,

to linguists and knowledge engineers, to end-users.

Our method employs natural language processing techniques to parse the language

text, recognize the sentence structures, detect properties of the analyzed sentence

units, and identify and extract the targeted information items, such as entities, events,

relations and facts. CE is used in two different roles in our system: 1) to express the

content of the extracted information, using domain specific terminology as specified

in the underlying conceptual model, and 2) to describe the linguistic structure of the

natural language text being analyzed and to express the processing rules used to get

from the natural language text to that expression of the content in CE.

In order to map between the syntax of the sentence and the semantics of the do-

main, we are currently employing an open source parser, (specifically the Stanford

Parser [16]) to provide a basic syntactic parse tree, allowing users to focus on the

mapping of this parse tree into the meaning of the sentence, i.e. the specific entities,

events, and situations represented in the analyst’s conceptual model for the domain.

The parse tree produced by the Stanford parser is converted into CE, so that it is ame-

nable to processing by other CE rules.

A lexical model has been constructed in CE to support language processing and the

construction of application demonstrations, such as the second application described

above. This model is constantly being developed further to provide more complex

linguistic concepts, while continuing to support the more basic applications. Recent

extensions include:

8. representation of morphologically related sets of words

9. representation of lexical semantics

In the extended lexical-model, we introduce the notion of grammatical form, which

includes grammatical information about the word such as the “part of speech” and

inflectional features. In the lexical model, grammatical forms are represented in CE,

For example, the following is a partial CE representation of a verb:

 conceptualise

 the grammatical form GF ~ is an inflection of ~ the grammatical form GF1

 conceptualise

 the grammatical form GF has the value V as ~ person ~ and

 has the value V1 as ~ tense ~

The concept of grammatical form permits the association of different forms of the

same word (for example the singular and plural forms of a noun, or the various forms

of a verb) with the lemma or base form of the word and therefore with each other, as

well as linking them with their shared lexical meaning while distinguishing their in-

flectional meanings.

As information requirements vary from one domain to another, we are taking an

ontology-based information extraction approach. The domain conceptual model that

provides explicit specifications of concepts within the domain plays a crucial role in

our information extraction process. Entities and events are primary types of infor-

mation to be extracted, with entities typically corresponding to noun phrases and

events or situation typically corresponding to verbs (together with their arguments and

modifiers. Our system correlates the conceptual representations and lexi-

cal/grammatical representations by means of the “expresses” relation between words

and phrases on the one hand and concepts in the domain model on the other, e.g.:

 the singular noun NN expresses the entity concept EC
5

In order to specify the semantics of an entire phrase or sentence, we are developing

the idea of a linguistic frame, which specifies syntactic structures with grammatical

relations and other necessary (or optional) components. For each linguistic frame,

there is a unique semantic interpretation rule. Thus, a linguistic frame is a complete

description of a grammatical structure including the syntax and semantics. For exam-

ple, a basic transitive verb phrase defines a relationship based on a transitive verb

(with certain morphological, syntactic and semantic features) followed by an (object)

noun phrase of certain type, and has the semantics of the relation concept defined.

These are defined in such a way as to preserve the semantics of the phrases they cover

and pass the resulting semantics up, thus allowing them to incorporate the principle of

compositional semantics [17] while at the same time allowing specific construction-

level semantics to be added, if needed.

For example, the following linguistic frame describes a predicate nominative con-

struction with “is”, e.g. “Ms. Davis is a professor”:

 there is a linguistic frame named vp1 that

 defines the verb phrase VP and

 has the sequence

 (the present third singular verb '|is_VBZ|' , the determiner '|a_DT|' , and

 the singular noun NN)

 as syntax and

 has the statement that

5 Note: a more recent model has “word sense” linked to as an additional entity linked between

the grammatical form and the domain conceptual model.

 (the singular noun NN expresses the entity concept EC)
6

 as preconditions and

 has the statement that

 (the thing X realises the entity concept EC)

 as semantics and

 has the thing X as phantom variable.

The “phantom variable” is used to specify an unrealized variable in the definition

of the transitive verb that will be matched with the subject at the sentence level,

somewhat in the manner of the lambda calculus [17].

This is similar to a feature-based phrase structure approach [18] [19], but there are

two differences: (i) the linguistic frames for CE are typically more specifically de-

fined (e.g. the above example including a specific verb); (ii) the linguistic frames in

our approach are written in CE. Note that the current CE adopts the “one meaning per

CE word
7
” principle and has transparent syntax-semantics mapping, allowing no am-

biguity. This will ensure deterministic interpretation for each linguistic frame.

We are currently exploring the use of lexical resources like WordNet [20] and

VerbNet [21] to aid both developers and end-users in lexical development, helping

them to determine which sense of a word they wish to add and whether it already

exists in the model (perhaps under a different name). VerbNet is organized into verb

classes based on Levin classes [22], and incorporates both syntactic and semantic

information. It encodes detailed information about possible syntactic realization of the

argument structure for English constructions such as transitive intransitive-

alternations. With its assignment of different roles and types to different arguments

(both noun phrases and other phrases), VerbNet can aid the system in the correct pars-

ing of sentences with those verbs. We have developed code to convert these resources

into CE and are developing the machinery within CE to use them to perform these

functions.

4 Conclusion and Future Work

In Summary, given large volumes of structured and unstructured data, information

acquisition and knowledge sharing will need common information structures and

representations that are unambiguous to support information sharing and interopera-

bility among teams and team members across domain boundaries. This is the primary

motivation for our work on CE and CE-based capabilities.

6 Note: as above, a more recent model has “word sense” linked to as an additional entity linked

between the grammatical form and the domain conceptual model.
7 A “word” in CE is actually referred to as a “concept term”, since it is assumed that each such

“word” maps uniquely and unambiguously to a single concept.

While the current CE is still basic, it has been used in a number of example appli-

cations as discussed above to model and interact with complex real-world environ-

ments, with a reasonable number of concepts, relationships, and rules. We are current-

ly focused on three efforts: 1) extending the CE language to make it more natural, 2)

improving the fact extraction capabilities of the system, and 3) continue leveraging

external linguistic sources like WordNet and VerbNet, both for the basic fact extrac-

tion system and to assist end-users with only folk-linguistic knowledge to in extend-

ing conceptual models for their domain along with the associated lexical knowledge.

Our major effort currently focused on extending the CE language to make it more

natural. For CE extension, we have no intention to include all the grammatical struc-

tures of English. Instead, we will continue to focus on basic English phrase and sen-

tence structures, especially those that are structurally unambiguous. We have explored

the use of transformational rules to extend CE basic syntax. However, there is proba-

bly a more powerful and flexible way of doing that. As discussed above, we are using

linguistic frames to define natural language structures. We are planning to investigate

the use of the same mechanism to extend CE itself. CE is an example of a natural

language and the linguistic frame provides a way of specifying new syntactic struc-

tures and their associated semantics. This means we would be using CE to extend CE,

which should not be a problem as long as it is ultimately grounded in some very fun-

damental CE.

Managing ambiguity is fundamentally important for the work of extending CE. As

we extend CE, potential ambiguity may arise from either lexical resources or poten-

tially ambiguous syntactic patterns. In English, the majority of words are inherently

ambiguous. As mentioned throughout the paper, ITA CE is intended to be highly

predictable with no ambiguity allowed. We define the relation between a word and a

concept by using a ‘conceptualise’ statement but the definition exercise will need to

be based on domain relevance including the data used in the relevant domain and the

conceptual domain model so as to ensure the right definition of the lexical meaning

for the lexical item in question. Possible ambiguities can also result from syntactic

structures that allow multiple interpretations, including the well-known example of

prepositional phrase attachment. Extended CE will define the most natural interpreta-

tion as the only possible structure, again based on the empirical data.

ACKNOWLEDGMENT. This research was sponsored by the U.S. Army Research Laborato-

ry and the U.K. Ministry of Defence and was accomplished under Agreement Number

W911NF-06-3-0001. The views and conclusions contained in this document are those of the

author(s) and should not be interpreted as representing the official policies, either expressed or

implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of

Defence or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce

and distribute reprints for Government purposes notwithstanding any copyright notation here-

on.

References

1. Fuchs, N. E., Schwertel, U., and Schwitter, R.: Attempto Controlled English. Proceedings

of LOPSTR'98 (1998)

2. Clark, P., Harrison, P., Jenkins, T., Thompson, J., and Wojcik, R.: Acquiring and Using

World Knowledge Using a Restricted Subset of English. In Proceedings of FLAIRS'05

(2005)

3. Schwitter, R.: Processable English. See http://web.science.mq.edu.au/~rolfs/peng/ Re-

trieved August, 18 (2010).

4. Engelbrecht, P., Hart G., and Dolbear, C.: Talking Rabbit: a User Evaluation of Sentence

Production. Ordnance Survey. Workshop on Controlled Natural Language (CNL 2009). 8-

10 June 2009. Marettimo Island, Italy. Appears in Controlled Natural Language, Volume

5972, of Springer’s LNCS/LNAI series (2009)

5. Verbeke, C. A.: Caterpillar Fundamental English, Training and Development Journal, 27,

2, 36-40, Feb 73 (1973)

6. MacDonald, M.L.: Simplified Technical English for All: A Customer-friendly Specifica-

tion. AeroSpace and Defence Industries Association of Europe (ASD),

http://www.x-pubs.com/resources/2008conf/downloads/4X-

Pubs2008_Maria_McDonald_Simplified_Technical_English_For_All.pdf (2008)

7. Sowa, J.: Common Logic Controlled English, March 2007,

http://www.jfsowa.com/clce/clce07.htm (2007)

8. Clark, P., Harrison, P., Murray W. R., Thompson J.: Naturalness vs. Predictability: A Key

Debate in Controlled Languages. Workshop on Controlled Natural Language (CNL 2009).

8-10 June 2009. Marettimo Island, Italy. Appears in Controlled Natural Language, Volume

5972, of Springer’s LNCS/LNAI series (2009)

9. Mott, D.: Summary of Controlled English, ITACS,

https://www.usukita.org/papers/5658/details.html (2010)

10. Mott, D.: The representation of logic within semantic web languages, ITACS, url:

https://www.usukita.org/papers/5242/details.html (2009)

11. Mott, D., Giammanco, C., Braines, D., Dorneich, M., and Patel, D.: Hybrid Rationale and

Controlled Natural Language for Shared Understanding. In Proceedings of the Fourth An-

nual Conference of the International Technology Alliance, London, UK, September (2010)

12. Mott, D and Hendler, J.: Layered Controlled Natural Languages, In Proceedings of the

Third Annual Conference of the International Technology Alliance, Maryland, USA

(2009)

13. Preece, A., Pizzocaro, D., Braines, D., Mott, D., de Melz, G., and Pham, T.: Integrating

Hard and Soft Information Sources for D2D Using Controlled Natural Language, April

2013, SPIE Defense, Security, and Sensing (2013)

14. Braines, D., Mott, D., Laws, S.: Controlled English to Facilitate Human/machine Pro-

cessing. April 2013, SPIE Defense, Security, and Sensing (2013)

15. Dorneich, M. C., Mott, D., Bahrami, A., Allen, J., Patel, J., Giammanco, C.: Lessons

Learned from an Evaluation of a Shared Representation to Support Collaborative Planning.

In, 7th Knowledge Systems for Coalition Operations, KSCO (2012)

16. Klein D. and Manning, C. D.: Accurate Unlexicalized Parsing. Proceedings of the 41st

Meeting of the Association for Computational Linguistics, pp. 423-430 (2003)

17. Cann, R.: Formal Semantics: An Introduction, Cambridge University Press, Feb 6 (1993)

18. Gazdar, G., Klein, E., Pullum G., and Sag, I.: Generalized Phrase Structure Grammar.

Harvard University Press, Cambridge, MA (1985)

http://www.jfsowa.com/clce/clce07.htm

19. Pollard C. and Sag, I.: Head-Driven Phrase Structure Grammar. University of Chicago

Press, Chicago, IL (1994)

20. Fellbaum, C. (ed.). WordNet: An Electronic Lexical Database. Cambridge, MA: MIT

Press, Cambridge, MA (1998)

21. Edward, L., Yi, S., and Palmer, M.: Combining Lexical Resources: Mapping Between

PropBank and VerbNet. Proceedings of the 7th International Workshop on Computational

Semantics. Tilburg, the Netherlands (2007)

22. Levin, B.: English Verb Classes and Alternations: A Preliminary Investigation, University

of Chicago Press, Chicago, IL (1993)

RECON – A Controlled English for Business
Rules

Ed Barkmeyer1 and Fabian Neuhaus1,2

1 National Institute of Standards and Technology, Gaithersburg, MD
2 Prometheus Computing, Cullowhee, NC

Abstract. Capturing business rules in a formal logic representation sup-
ports the enterprise in two important ways: it enables the evaluation of
logs and audit records for conformance to, or violation of, the rules; and
it enables the conforming automation of some enterprise activities. The
problem is that formal logic representations of the rules are very diffi-
cult for an industry expert to read and even more difficult to write, and
translating the natural language of the enterprise to formal logic is an
unsolved problem. RECON – Restricted English for Constructing On-
tologies – is a subset of English that can be easily read by an industry
expert, while having a formal grammar and an unambiguous translation
to formal logic. This paper describes the principal features of the RE-
CON language, with examples, and shows the corresponding formal logic
constructs that are produced by the RECON tool.

1 Introduction

The Restricted English for Constructing Ontologies (RECON) language is a close
relative of English that has a well-defined interpretation in a formal logic lan-
guage. The need for RECON arose in a project concerned with the consistency,
completeness, and timeliness of information received from supply-chain business
partners via electronic messages. To automate the validation of the information,
the facts, rules and definitions of terms must be stated in a form suitable for
machine reasoning – a formal logic language. On the other hand, capturing def-
initions, facts, and rules for an industrial domain requires the contributions of
experts in the domain. Formal logic languages are very difficult for an industry
expert to understand. So, to facilitate capturing the knowledge of the industry
experts, the project developed an intermediate language – a “restricted English”
called RECON.

RECON looks like English, but is carefully restricted in grammar, so that
every statement and most definitions have an unambiguous equivalent in the
formal logic language. The experts in the industry domain may require the as-
sistance of a knowledge engineer to state their intent in the RECON language,
but it is most important that they can read the restricted English formulation
and verify that it captures their intent. The translation of the stated definitions,
facts, and rules is used directly in validating incoming information. For example,
the following is a business rule expressed in RECON:

Example 1
Any shipment that consists of more than 1000 gallons of gasoline must

be shipped via some registered tanker.

The formal logic version of this rule, as output from the RECON translator, is
used directly by the validator in determining that messages describing shipments
are (or are not) consistent with the rule.

Properly, RECON is only the grammar for the language. The vocabulary
of the language – the nouns, verbs and adjectives – is defined by the industry
experts. The RECON tooling is designed to capture a vocabulary based on
English words and to parse sentences in the language that use the terms in that
vocabulary. The sentences may be definitions of terms, facts about the domain,
or rules. The parsed sentences are then translated into a formal logic text in the
IKRIS Knowledge Language (IKL) [5], which is an extension of ISO Common
Logic Interchange Format [6] that supports nominalized propositions.

The existing RECON tool is the engine that processes the vocabulary and
translates the sentences. It was designed as a plug-in for an authoring tool that
does not yet exist. It is currently run via a simple command-line interface pro-
gram that invokes the RECON tool to process a set of files containing vocabu-
laries, facts and rulesets.

This paper describes RECON’s capabilities, with a particular focus on repre-
senting business rules. We will do that by discussing various RECON examples
and their translation into IKL. The grammar of the RECON language is formally
specified in [1].

2 Related work

It is important to distinguish restricted English from natural language process-
ing. The objective of natural language processing is to produce a formal inter-
pretation of text as published. Natural language can be ambiguous, and formal
interpretations are not necessarily reliable. The objective of a “controlled” En-
glish is to ensure that text written in the language can be converted in every
case to a particular formal language by a particular algorithm. So we will here
consider only restricted English languages.

The simplest restricted English languages are “template” languages, in which
the knowledge engineer defines a set of sentence forms with parameter markers,
and defines the interpretation as a pattern for text in the formal language, with
slots for parameter substitutions. Sometimes called “domain-specific languages”
(DSLs), these are supported by tooling such as XTEXT [15]. Several production
rules technologies have languages of this kind.

The more interesting controlled natural languages have grammars and parsers
that convert the intent of the statements to formal logic. The target logic lan-
guage determines what a restricted English tool can export, and thus limits
what the restricted English language can usefully express. First-order logic and
its extensions are the most expressive, while Horn clauses, description logics
and production rules are subsets of first-order logic that allow more efficient
implementation.

Rabbit [2, 4], for example, is a controlled English language for the Web
Ontology Language (OWL) [14], which is based on description logic. It per-
mits only simple sentences and complex noun phrases that have clear render-
ings into OWL. Similarly, Common Logic Controlled English [13] is intended
to express first-order logic propositions using explicit quantifiers and variables,
and although it apparently allows more natural expressions, that part of the
published grammar is incomplete. The Controlled English to Logic Translator
(CELT) [10] exports formal statements in Knowledge Interchange format [9], a
first-order logic language. Although its grammar is not published, CELT tooling
accepts a more natural English, and interprets common terms using synonymies
and the Suggested Upper Merged Ontology (SUMO) [7].

The Attempto project developed the Attempto Controlled English (ACE) [3]
that can be rendered into formal languages for various computational purposes.
ACE eliminates aspects of natural English that interfere with unambiguous in-
terpretation, but like natural language parsers, it integrates multiple sentences
in a text corpus, and supports back references, using “discourse representation”
technology.

The Semantics of Business Vocabulary and Rules (SBVR) is a standard for
capturing vocabularies, and introduces a Structured English for facts, defini-
tions and rules that use those vocabularies [8]. The language, however, is not
standardized; it is described informally in an annex. The parse relies on terms
being marked up in the text. For example, “Mary goes to the store” is written
“Mary goes to the store.” SBVR tools must export an enhanced first-order logic
language that includes proposition nominalization and modalities for possibility
and obligation/permission.

Unlike natural language tooling, which depends on dictionaries for terms and
their possible meanings, ACE, SBVR and RECON require terms to be declared
and provide for formal definitions. For multi-word terms, however, ACE requires
hyphenated terms and SBVR requires term markup, while RECON requires nei-
ther. RECON and SBVR provide for verb usage templates, resulting in n-ary
logical relations with formal definitions, while ACE and CELT objectify most
verbs as classes of states or events, whose logic model is an event object with
a set of binary ”role relations”. This is a major difference in the resulting for-
mal logic structures. Neither ACE nor SBVR supports compound noun phrases,
which RECON does. SBVR Structured English is the most comprehensive of
the above, and anything written in SBVR Structured English can be written
in RECON, without special markups. Finally, like ACE and unlike SBVR, the
RECON grammar is formally defined in [1]. This document also contains a more
detailed comparison of RECON with related work.

3 Dictionary and Vocabulary

The most basic linguistic notion in RECON is the word form. Roughly speaking,
English word forms are the strings in an English text that are delineated from the
rest of the text by whitespace or punctuation; e.g., ‘ACME’, ’the’, ’registered’ are

word forms in Example 1. A RECON dictionary entry (a ’word’) is a collection
of word forms associated with a grammatical category (noun, verb, other) that
are treated as representations of the same word. (Verb participles have special
significance, not discussed in this paper.) For example, Dictionary 1 contains one
word.

Dictionary 1 Dictionary Verb: run runs ran running run

The same word form can belong to multiple dictionary entries. Note that RE-
CON assigns no semantics to dictionary entries; they are purely syntactic.

A vocabulary consists of terminological entries. A terminological entry con-
sists of one or more declarations. A terminological entry always begins with the
declaration of a term for the vocabulary item, called the primary term. A term
is a sequence of words, each of which will be recognized in any word form. The
primary term declaration may be followed by alternative forms and definitions,
and perhaps other declarations, that are part of the terminology entry and are
associated with the primary term. A formal definition in the RECON language
will cause RECON to produce a formal definition (of the corresponding IKL
term) in IKL. (But we will not exemplify that.)

Vocabulary 1

Name: ACME Inc

Name: Bride of Neptune

Type Noun: supplier

Type Noun: party

Type Noun: shipment

Type Noun: vessel

Mass Noun: gasoline

Adjective: (thing) is registered

Property: (party) is the customer () of (shipment)

Verb: (party) ships (shipment)

Alternative: (shipment) is shipped by (party)

Verb: (shipment) is shipped via (vessel)

Property: (quantity) is the volume () of (thing)

Unit: gallon: volume

Vocabulary 1 contains declarations of six different kinds of terms: names, type
nouns, a mass noun, an adjective, two properties, and verbs. Adjectives and
properties are treated as verbs that also have other syntactic usages. Note that
adjectives, properties, and verbs take arguments called ’roles’. In the primary
entry, the position and the type of a role is indicated by a noun term enclosed
in parentheses. For example, the first argument of “ships” must be a party, the
second must be a shipment. In the declaration of an alternative form (e.g., ‘is
shipped by’) the same roles can appear in different positions. The two forms are
different syntactic forms for the same verb concept with the same roles.

4 Starting simple

In first-order logic, an atomic sentence consists of a predicate and a number of
arguments. The analog in RECON is a sentence that consists of a verb phrase
that is a verb form from the vocabulary, where the arguments are replaced by
names.

Example 2
ACME Inc is registered.

ACME Inc ships SH12345.

Output 2
(th ing . i s r e g i s t e r e d ACME Inc)
(party . sh ip s . shipment ACME Inc SH12345)

These examples illustrate how simple RECON sentences are translated into sim-
ple IKL formulas. Note that RECON will recognize an alternative form and con-
vert it to the primary form. For example, sentence Example 3 will be translated
into the same formula as the second sentence in Example 2.

Example 3 SH12345 is shipped by ACME Inc.

In the following sections we will consider several ways in which these simple
sentences can become more complex. First, the roles in the verb phrase can be
filled by complex noun phrases. Second, simple sentences can be combined to
form more complex sentences.

5 Type nouns

The most commonly used noun phrases consist of a quantifier (e.g., ‘a’, ‘the’,
‘any’, ‘every’, ‘some’) and a type noun, as in Example 4. As Output 4 illus-
trates, the result of the translation into first-order logic involves one (or more)
quantifiers.

Example 4 ACME Inc ships a shipment.

Output 4

(e x i s t s (? shipment1)
(and

(shipment ? shipment1)
(party . sh ip s . shipment ACME Inc ? shipment1)))

In English quantified noun-phrases can lead to ambiguity. For example, in En-
glish both sentences in Example 5 have two theoretical readings: (1) for each
supplier there is a shipment that is shipped (but different suppliers might ship
different shipments), and (2) there is one shipment that is shipped by every
supplier.

Example 5
Every supplier ships some shipment.

Some shipment is shipped by every supplier.

A human reader uses contextual knowledge about the business practices of
suppliers to disambiguate the sentences and to decide that (1) is likely the in-
tended meaning. Since RECON has no such contextual knowledge, however, and
because RECON has to provide an unambiguous parse, it must have a rule for
deciding how each combination of quantifiers is interpreted. In this case, the rule
is: The quantification for the subject of the main verb encloses any quantification
for other verb roles. The rules for some constructs are more complex. As Output
5 shows, the two sentences in Example 5 are translated into different first-order
logic formulas. The disadvantage of this is that the user must be careful, because
the order of the quantified type nouns in RECON sentences influences the trans-
lation. The advantage is that the experienced author can express either intent,
and know how each will be translated.

Output 5

(f o r a l l (? s u p p l i e r 1)
(i f

(s u p p l i e r ? s u p p l i e r 1)
(e x i s t s (? shipment2)

(and
(shipment ? shipment2)
(party . sh ip s . shipment ? s u p p l i e r 1 ? shipment2)

))))

(e x i s t s (? shipment1)
(and

(shipment ? shipment1)
(f o r a l l (? s u p p l i e r 2)

(i f
(s u p p l i e r ? s u p p l i e r 2)
(party . sh ip s . shipment ? s u p p l i e r 2 ? shipment1)

))))

6 Adjectives

As we have seen in Example 2, adjectives can be used within verb phrases. But,
of course, their primary use in English is as noun modifiers. As illustrated by
Example 6 the adjective (in this case ‘registered’) translates into a conjunct in
Output 6.

Example 6 Bride of Neptune is a registered tanker.

Output 6

(e x i s t s (? tanker1)
(and

(and
(tanker ? tanker1)
(th ing . i s r e g i s t e r e d ? tanker1))

(= Bride of Neptune ? tanker1)))

7 Qualifiers

Another way to modify noun phrases is with quantifiers, that is subordinate
sentences starting with ‘that’, ‘which’, ‘who’, or ‘whom’.

Example 7 Any shipment that is shipped via Bride of Neptune is registered.

Output 7

(f o r a l l (? shipment1)
(i f

(and
(shipment ? shipment1)
(shipment . i s s h i p p e d v i a . v e s s e l

? shipment1 Br ide o f Neptune))
(th ing . i s r e g i s t e r e d ? shipment1)))

RECON allows for arbitrarily complex and nested qualifiers. However, for the
same reasons that style guides discourage the use of overly complex qualifiers in
English, we recommend some restraint on their use in RECON.

8 Properties

In Vocabulary 1 we declared two properties. Properties can be used in verb
phrases, but they also give rise to possessive noun phrase structures, as illustrated
in Example 8. Note that in Output 8 the second sentence is translated into a
universally quantified formula. This is too weak, it would be more appropriate
to use an ι-operator as defined in Russell’s theory of description [12].

Example 8
ACME Inc is the customer of SH12345 .

The customer of SH12345 ships SH12345.

Output 8

(party . i s t h e c u s t o m e r o f . shipment ACME Inc SH12345)
(f o r a l l (? th ing1)

(i f
(and

(th ing ? th ing1)
(th ing . i s t h e c u s t o m e r o f . shipment

? th ing1 SH12345))
(party . sh ip s . shipment ? th ing1 SH12345)))

9 Mass-nouns

The semantics of mass expressions is a well-known challenge in philosophy and
linguistics [11]. RECON does provide some limited support for expressions in-
volving mass nouns. Occurrences of mass nouns without any units of measure-
ment (e.g., ‘some gasoline’) are translated into quantifications over discrete por-
tions of stuff (e.g., portions of gasoline). Hence, mass nouns are translated by
RECON into predicates that apply to countable entities (the portions). To illus-
trate the point, Example 9 is interpreted by RECON into Output 9: there is [a
portion of] gasoline that the shipment SH12345 consists of.

Example 9 SH12345 consists of some gasoline.

Output 9

(e x i s t s (? g a s o l i n e 1)
(and

(g a s o l i n e ? g a s o l i n e 1)
(shipment . c o n s i s t s o f . th ing SH12345 ? g a s o l i n e 1)))

10 Measurements, collections, and quantities

RECON is able to handle expressions that involve quantities of things expressed
in measurement units. It contains a rather complex model of units of measure,
which supports derived SI units and their definitions; e.g., 1N = 1kgm

s2 . The
details are beyond the scope of this paper; however, we illustrate the approach
with two examples. Example 10 is similar to Example 9, the difference is that the
amount of gasoline is specified. The difference between Output 9 and Output 10
is an additional conjunct, which uses the quantity value ‘(Qvalue 1000 “gallon”)’
and the property volume of. It is used because the unit gallon was declared to
measure volume. Quantity values are functional expressions consisting of the
special function term ‘Qvalue’, a number, and a name that denotes a unit of
measurement.

Example 10 SH12345 consists of 1000 gallons of gasoline.

Output 10

(e x i s t s (? g a s o l i n e 1)
(and

(and
(g a s o l i n e ? g a s o l i n e 1)
(quant i ty . i s t h e v o l u m e o f . th ing

(Qvalue 1000 "g a l l o n") ? g a s o l i n e 1))
(shipment . c o n s i s t s o f . th ing SH12345 ? g a s o l i n e 1)))

Example 11 SH12346 consists of 1000 widgets.

RECON uses a similar method to translate sentences that involve numerically
quantified type nouns (as in Example 11) into quantifications over collections
and their cardinality.

11 Connectives

RECON supports the use of compound sentences (Example 12) and compound
noun phrases (Example 13).

Example 12 ACME Inc is registered or ACME Inc is not registered.

Output 12

(or
(th ing . i s r e g i s t e r e d ACME Inc)
(not

(th ing . i s r e g i s t e r e d ACME Inc)))

Example 13 ACME Inc ships both SH12345 and SH12346.

Output 13
(and

(party . sh ip s . shipment ACME Inc SH12345)
(party . sh ip s . shipment ACME Inc SH12346))

Note that Output 13 consists of two conjuncts; thus, there is no connection
between the two shipments. There is an alternative interpretation of the English
sentence, according to which ACME ships a collection that consists of the two
shipments. This can be expressed in the RECON grammar by adding the key
word ‘together’ (see Example 14).

Example 14 ACME Inc ships both SH12345 and SH12346 together.

12 Rules

All of the examples we have considered so far are similar to Example 15 below
in the following sense: they are statements about how the world is. In contrast,
Example 16 is about how the world should be; it expresses a requirement. The
existence of an unregistered shipment would make Example 15 false; but it would
have no affect on the truth of Example 16. It would, however, make the state of
the world unacceptable.

Example 15 Every shipment is registered.

Example 16 Every shipment must be registered.

Since business rules can be statements about actual characteristics of the world
as well as normative characteristics, RECON has been designed to capture the
difference. As a comparison of Output 15 and Output 16 illustrates, the difference
is represented in IKL with the help of a modal predicate (‘obligation’) that
operates on nominalized sentences. (The ‘that’-operator in Output 16 is a feature
of IKL that allows nominalization of arbitrary sentences.)

Output 15

(f o r a l l (? shipment1)
(i f

(shipment ? shipment1)
(th ing . i s r e g i s t e r e d ? shipment1)))

Output 16

(o b l i g a t i o n (that
(f o r a l l (? shipment1)

(i f
(shipment ? shipment1)
(th ing . i s r e g i s t e r e d ? shipment1)))))

13 A real business example

We have illustrated some of the features of RECON by discussing small RECON
sentences and the formal logic translations that are produced by the RECON
tool. Of course, any real business rule will usually combine several features; e.g.,
in the introduction Example 1 involves type nouns, an adjective, a mass noun,
and a unit of measurement.

Example 1
Any shipment that consists of more than 1000 gallons of gasoline must

be shipped via some registered tanker.

As RECON’s translation of Example 1 below shows, the resulting IKL formulas
are often quite verbose. Some of that could be simplified by an expert knowledge
engineer. Ultimately, however, the complexity of the formula below is a reflection
of the complexity of the state of affairs expressed in Example 1. Hence, capturing
its content in a logic language will be a challenge for any person who is not very
familiar with such languages. And, of course, the result is unreadable for anybody
without these skills. Therefore, the example demonstrates the need for a tool,
like RECON, that enables business rules to be captured formally in a way that
is more accessible to the business experts.

Output for Example 1
(o b l i g a t i o n (that

(f o r a l l (? shipment1)
(i f

(and
(shipment ? shipment1)
(e x i s t s (? g a s o l i n e 2)

(and
(and

(g a s o l i n e ? g a s o l i n e 2)
(f o r a l l (? quant i ty3)

(i f
(and

(quant i ty ? quant i ty3)
(quant i ty . i s t h e v o l u m e o f . th ing

? quant i ty3 ? g a s o l i n e 2))
(quant i ty . i s l e s s t h a n . quant i ty

(Qvalue 1000 "g a l l o n") ? quant i ty3))))
(shipment . c o n s i s t s o f . th ing ? shipment1 ? g a s o l i n e 2)

)))
(e x i s t s (? tanker4)

(and
(and

(tanker ? tanker4)
(th ing . i s r e g i s t e r e d ? tanker4))

(shipment . i s s h i p p e d v i a . th ing ? shipment1 ? tanker4)
))))))

14 The RECON tool

At this time, the grammar of RECON has been finalized [1], and version 1.0 of
the RECON engine is available on Sourceforge.3 The engine supports most of
the features of the grammar. Internally, it consists of a dictionary manager for
words and word forms, a vocabulary manager for term declarations, a parser, and
a logic generator. The parser converts definitions, facts and rules into a syntactic
parse graph. Because RECON supports multiword terms, and the same word
can begin or appear in multiple terms, the parser first produces a lattice of all
possible interpretations of the input string as a sequence of terms and keywords.
The parser then tries to parse the first such sequence, and if it fails then the next
one, and so on, until it finds a successful parse or discards the last alternative.
Heuristics are used to choose the first and next sequence in each case. The actual
parsing algorithm is a recursive descent algorithm, based on the formal RECON
grammar. Logic generation begins with a rewrite step that revises the parse
graph for compound phrases and quantities, converts adjectives and properties
to qualified nouns (using their verb forms), and resolves back references. The
interpret step then produces a formal logic structure from the revised parse
graph, converting type nouns to quantified variables and properly placing and
interpreting quantifiers and modalities. The resulting logic structure is exported
in IKL form. The architecture, data structures, and algorithms are described in
detail in a forthcoming publication.

15 Conclusions and Future Work

We are currently experimenting with the use of RECON for capturing engineer-
ing requirements and static rules written into information exchange standards.
One area of future work on the tool is the support of collections (mentioned in
the discussion of Examples 11 and 14). While we have successfully demonstrated
feasibility of using the RECON language to author business rules, we have not
built the infrastructure to make it a user-friendly product. For that, one would
need to develop a front-end for dictionary and vocabulary management, and an
authoring tool that supports the user in writing RECON.

References

[1] Edward Barkmeyer and Andreas Mattas. A Restricted English for Con-
structing Ontologies (RECON). NISTIR 7868. National Institute of Stan-
dards and Technology, 2012.

[2] Ronald Denaux et al. “Rabbit to OWL: ontology authoring with a CNL-
based tool”. In: Controlled Natural Language. Springer, 2010, pp. 246–264.

[3] Norbert Fuchs, Uta Schwertel, and Rolf Schwitter. Attempto Controlled
English (ACE) Language ManualVersion 3.0. University of Zurich, 1999.

3 http://sourceforge.net/projects/nistreconst/

[4] Glen Hart, Catherine Dolbear, and John Goodwin. “Lege Feliciter: Using
structured English to represent a topographic hydrology ontology”. In:
OWLED. 2007.

[5] Patrick Hayes and Chris Menzel. IKL specification document. 2006. url:
http://www.ihmc.us/users/phayes/ikl/spec/spec.html.

[6] ISO/IEC 24707-2007. Information technology Common Logic (CL): a frame-
work for a family of logic-based languages. 2007.

[7] Ian Niles and Adam Pease. “Towards a standard upper ontology”. In: Pro-
ceedings of the international conference on Formal Ontology in Information
Systems-Volume 2001. ACM. 2001, pp. 2–9.

[8] Object Management Group (OMG). Semantics of Business Vocabulary and
Rules v1.0. Tech. rep. 2010. url: http://www.omg.org/spec/SBVR/1.0/.

[9] Adam Pease. Standard Upper Ontology Knowledge Interchange Format.
2009. url: http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/
sigma/suo-kif.pdf.

[10] Adam Pease and William Murray. “An English to Logic Translator for
ontology-based knowledge representation languages”. In: Natural Language
Processing and Knowledge Engineering, 2003. Proceedings. 2003 Interna-
tional Conference on. IEEE. 2003, pp. 777–783.

[11] Francis Jeffry Pelletier. “Mass Terms: A philosophical Introduction”. In:
Kinds, Things, and Stuff: Mass Terms and Generics. Oxford University
Press, USA, 2009.

[12] Bertrand Russell. “On denoting”. In: Mind 14.56 (1905), pp. 479–493.
[13] John Sowa. Common Logic Controlled English. 2004. url: http://www.

jfsowa.com/clce/specs.htm.
[14] World Wide Web Consortium (W3C). OWL Web Ontology Language Ref-

erence. 2004. url: http : / / www . w3 . org / TR / 2004 / REC - owl - ref -

20040210/.
[15] Xtext 2.3 Documentation. url: http : / / www . eclipse . org / Xtext /

documentation/2.3.0/Documentation.pdf.

A Study on Translating Regulatory Rules from Natural
Language to Defeasible Logic

Adam Wyner1 and Guido Governatori2

1 Department of Computing Science, University of Aberdeen, Aberdeen, United Kingdom
azwyner@abdn.ac.uk

2 NICTA, Brisbane, Australia
guido.governatori@nicta.com.au

Abstract. Legally binding regulations are expressed in natural language. Yet, we
cannot formally or automatically reason with regulations in that form. Defeasible
Logic has been used to formally represent the semantic interpretation of regula-
tions; such representations may provide the abstract specification for a machine-
readable and processable representation as in LegalRuleML. However, manual
translation is prohibitively costly in terms of time, labour, and knowledge. The
paper discusses work in progress using the state-of-the-art in automatic transla-
tion of a sample of regulatory clauses to a machine readable formal representation
and a comparison to correlated Defeasible Logic representations. It outlines some
key problems and proposes tasks to address the problems.

1 Introduction
Legal regulations are expressed in natural language.3 To make them automatically pro-
cessable for reasoning or information extraction, they must be represented in a machine-
readable form. There are several approaches to making regulations machine-readable,
e.g. linked documents and annotated documents. We focus on the translation of state-
ments in regulations into formal semantic representations that could then be provided
to automated deduction engines, which can then be used to check for consistency and
redundancy, draw inferences given ground facts, and provide users with meaningful ex-
planations following a consultation, among other processing tasks. The use cases for
such translations are very widespread: extracting and formalising relevant rules from
regulations to form rule books for particular industries; checking for compliance to reg-
ulations; serving expert system web-front ends to users, and others.

The language of regulations seems particularly problematic to process. In [1], a
range of issues were identified such as the sentence length, clausal embedding, and list
structures, which contributed to long parse times or failures to parse. Beyond parsing
issues, we want to translate the expressions in regulations into a formal semantic repre-
sentation to support the sorts of reasoning tasks and use cases mentioned above. Efforts
along these lines appear in early work in artificial intelligence and law [2], though with-
out natural language processing (NLP). Some commercial products are available that
support aspects of this process and serve the resultant expert systems to users on the web
Oracle Policy Management. However, the source material is heavily preprocessed into
a controlled language with limited expressivity (on controlled languages, see [3]). An

3 Copyright c©2013 for the individual papers by the papers’ authors. Copying permitted only
for private and academic purposes. This volume is published and copyrighted by its editors.

http://www.oracle.com/industries/government/pdfs/oracle-haley-enterprise-public-sector-ds.pdf

open-source, implemented, controlled-language, Attempto Controlled English (ACE),
has been applied to clinical practice guidelines [4] and to policy-making statements [5]
with some, but limited, success. Pilot studies of parsing and semantic representation of
regulations with broad coverage, open source tools, C&C/Boxer [6], have been carried
out [7]. On the side of logical representations of regulations, there have been efforts to
formalise portions of regulation using Defeasible Logic [8]. Machine-readable repre-
sentations for legal rules, LegalRuleML, have been developed [9].

The studies with ACE and C&C/Boxer highlight two limitations: the output parse
and semantic representation given by the tools must be manually checked to accurately
correlate to the intended semantic interpretation of the input expression; relatedly, the
outputs have not been associated with logical or machine-readable representations that
could serve as requirements for the semantic representation. On the other hand, studies
using Defeasible Logic and LegalRuleML do not systematically relate to natural lan-
guage or the issues of acquiring the formal representations from the source material
that is represented in natural language. There remains, then, a significant gap between
natural language source material and formal, machine-processable representations.

In this paper, we discuss a pilot study in which we use C&C/Boxer to translate reg-
ulatory statements to semantic representations and then compare the output representa-
tions against logical representations in Defeasible Logic (DL) that have been manually
created. By doing so, we gain a better idea of what each form of representation contains,
what is gained or lost, how to scope and evaluate such work, the overall process in the
analysis, and what next steps are required in order to improve automatic processing of
regulatory text.

In Section 2, we provide information about our method, briefly covering the corpora,
C&C/Boxer, and DL. A sample of the output from C&C/Boxer applied to the corpora
are reported in Section 3. The DL representation of the sentences is pesented in Section
4. In Section 5, we discuss the C&C/Boxer and DL representations in comparison as
well as future work.
2 Materials and Method
In this section, we present the materials and the method we apply to the materials (e.g.
C&C/Boxer and DL).
2.1 Materials
We examine a selection of Section 8.2 of Australia’s Telecommunications Consumer
Protections Code (2012) on complaint management. Broadly speaking, we take a piece-
meal approach to the overall problem of processing the text, filtering and preprocessing
the original material to some degree to make it amenable to automatic processing, yet
leaving most of the relevant structure intact. Each of the preprocessing editorial moves
is recorded, justified, and systematically applied; however, to economise on space, we
suppress discussion of the edits here. The orginal material contained 173 words, and
given the structure of the document, an unclear number of sentences. As the original
data has formatting conventions that are not relevant at this point for the semantic con-
tent, we have reformatted the data, which we refer to as the Source Data. An additional
layer of filtering is applied to the Source Data, which contains a range of complications
which are not relevant to our current exercise such as lists, subordinate clauses, and
references. We have manually preprocessed the data, resulting in Modified Source Data
of 125 words in five sentences:

Modified Source Data
8.2.1.a.xii. Suppliers must advise consumers in everyday language of the resolution
of their complaint as soon as practicable after the supplier completes its investiga-
tion of the complaint.
8.2.1.a.xiii. A. Suppliers must complete all necessary actions to deliver the resolu-
tion offered within 10 working days of the consumer’s acceptance of that resolution
unless otherwise agreed with the consumer.
8.2.1.a.xiii. B. Suppliers must complete all necessary actions to deliver the resolu-
tion offered within 10 working days of the consumer’s acceptance of that resolution
unless the actions are contingent on actions by the consumer that have not been
completed.
8.2.1.a.xi. Suppliers must provide a means for the consumer to monitor the com-
plaint’s progress.
8.2.1.a.xiv. Suppliers must only close a complaint with the consent of the consumer
or if clause c below has been complied with.

While this is a small corpus, it still allows for instructive semantic representations as
well as challenges.

2.2 Method
C&C/Boxer C&C/Boxer automatically parses the sentences of the Modified Source
Data and gives an associated semantic representation.4 C&C/Boxer consists of a fast,
robust combinatory categorial grammar (CCG) parser and Boxer [6], a tool that pro-
vides semantic representations in Discourse Representation Structures (DRSs) of Dis-
course Representation Theory (DRT) [10] for discourses, including pronominal anaphora
and discourse relations. DRSs have equivalent First-order Logic statements in represen-
tations that are suitable for FOL theorem provers, e.g. vampire.

To economise our presentation, we omit parses and only consider DRSs. We provide
a simple illustration of the DRS output for Bill threw the ball into the street in Figure
1. In Figure 1, there is a box notation, where boxes represent a knowledge base or

Fig. 1. DRS of Bill threw the ball into the street.

Discourse Unit of FOL expressions: a top sub-box represents discourse referents and a
lower sub-box the FOL predications. In the example, we have six discourse referents
and ten predications (including set and order relations). We discuss some of these. In

4 http://urd.let.rug.nl/basile/gsb/webdemo

http://urd.let.rug.nl/basile/gsb/webdemo

the example, a named entity relation is introduced between a variable x1, the string bill,
and the type nam. There is an entity which is a ball, another which is a street. Given
the neo-Davidsonian, event-theoretic representation [11], we have an event e5, which
is a throwing event, and thematic roles, one for the Cause of the event and another
for the Theme. Bill is associated with the cause of the throwing and the ball with the
theme (the object) that is thrown. Finally, there is temporal information. While there
may be some disputes about the semantic representation (e.g. about thematic roles or
the interpretation of the preposition), by and large we find this an acceptable semantic
representation.

Applying C&C/Boxer to longer, more complex sentences such as in our corpus
results in correlatively more complex derivations and semantic representations. Such
complex sentences and discourses must be carefully checked that the parse is correct
and, more importantly, that the semantic output corresponds to semantic intuitions for
an interpretation of the meanings of the sentences (assuming some way to determine
these). We illustrate this further later.

Defeasible Logic and Deontic Logic In this section, we give a brief overview of Defea-
sible Logic (DL) [12], which we use to represent rules that are defeasible, and Deontic
Logic, which represents concepts of obligation, prohibition, and permission.

In the legal domain, rules are well-known to be non-monotonic, that is, they admit of
exceptions where the rule does not apply or where new information blocks the inference
from the rule. DL takes an approach to non-monotonicity that is easy to implement
and has been used in various application domains, e.g. regulations, business rules, and
contracts [12]. In DL, there are five key features:

– facts - indisputable statements, e.g. Bill is happy is happy(bill);
– strict rules - material implication in classical logic, e.g. Emus are birds is r’: emu(X)
→ bird(X);

– defeasible rules - rules from which we draw inferences, unless the rule is defeated
by superior, contrary evidence, e.g. Birds typically fly is r”: bird(X) ⇒ fly(X);

– defeaters - rules that prevent conclusion of a defeasible rule from holding. They
produce contrary evidence, e.g. If an animal is heavy then it might not be able to fly
is heavy(X) ; ¬fly(X), which only prevents the conclusion fly(X) where heavy(X);

– a superiority relation among rules - the relation allows us to draw a “winning”
conclusion from rules with opposition conclusions, e.g. where r”’: brokenWing(X)
⇒¬fly(X) and r”’ > r”, the bird with a broken wing does not fly.

A defeasible theory is a program or knowledge base with these features.
In addition to defeasibility, legal reasoning engages the deontic concepts, that is,

the concepts bearing on obligation (O), prohibition (PR), and permission (PER) along
with related concepts of violation, where a violation obtains if what is obligated has not
been fulfilled or if what is prohibited has come to pass. There area range of subsorts
of obligations (see [13] for the subsorts and definitions), where OM is relevant to our
example:

Maintenance obligation (OM) - obligations that, once introduced, require that a
state be maintained for a given period of time, e.g. After opening a bank account,
customers must keep a positive balance until bank charges are taken out.

3 Semantic Representation
In section 2, we presented the corpora and analysis method using C&C/Boxer and De-
feasible Logic with deontic operators. C&C/Boxer was applied to the five sentences in
our Modified Source Data, and every sentence was parsed and given a semanic repre-
sentation. Essential for our purposes is to consider the semantic representation. In this
paper, we only have space to discuss one of the examples.

In Figure 2, we have the representation for statement 8.2.1.a.xi, containing one main
DRS, 10 entities, 16 predications, and one subordinated DRS. The main clause Suppli-
ers must provide a means for the consumer is paraphrased: the modal must, given as 2,
has wide scope over the whole representation; the agent of the event of providing is the
supplier and the means is the theme; the means are in the for relation with the consumer;
the time of the event is in the future with respect to now. The portion representing the
subordinate clause to monitor the complaint’s progress is paraphrased: a proposition p2
represents a monitoring event with the supplier as agent, with a progress entity in the of
relation to a complain, where the progress entity is the location of the monitoring event.

There are several issues to note about the semantic representation. The main clause
has an acceptable representation. Semantic operators, e.g. must and predications rela-
tions, e.g. for, are semantically underspecified. Other predications have some intuitive
sense, e.g. Agent. For the law, some bearer of the obligation is required, even if this is
universal or generic; in the semantic representation above, there is no such indication
of bearer. An important point is that the generic, law-like meaning of the sentence, sig-
nalled by the plural subject noun in combination with present tense, is not represented.
Substantive problems arise with the subordinate clause: progress is taken as a location
of the event of monitoring rather than a theme, which arises given the lexical specifi-
cation of the verb monitor; the agent of the monitoring is the supplier, rather than the
consumer. The first problem relates to the lexical specification of verbs, which are often
polysemous. The second problem relates to what is known as control such as appears
in the difference between the inferred subjects of leaving found in Bill promised Jill to
leave and Bill persuaded Jill to leave; there are classes of verbs that behave one way or
the other; in the example, provide is like persuade, not like promise. These issues may
be resolved through better implementations of thematic role structure and control.

This is an example of the sort of output and analysis available for each of the sen-
tences in our corpus. However, it is difficult to generalise about the outputs or the issues
of the semantic representations, as each sentence has particularities that bear further
discussion. In the next section, we discuss the related DL representation.

4 Representation in Defeasible Logic

In 2.1, we indicated the Source Data, which was used to manually translate into 10
DL rules and one rule ordering. However, as space is limited, we only present the DL
representation associated with our C&C/Boxer output and mention aspects of the others.

– Sentence: Suppliers must provide a means for the consumer to monitor the com-
plaint’s progress.

– DL 8.2.1.a.xi: complaint(X),complaint acknowledgment(X) =>
[OM]customer monitor progress(X)

Fig. 2. 8.2.1.xi: Suppliers must provide a means for the consumer to monitor the complaint’s
progress.

The method of translation is entirely manual and intuitive. Between the sentence and
DL, we see a range of differences: in the DL representation, the supplier is missing;
complex predicates are introduced into the DL representation that are presuppositions,
e.g. the compliant is acknowledged; what is linguistically complex is rendered as a DL
predicate, e.g. customer monitor progress; while the deontic operator appears in both
the sentence and DL, it appears as complex operator, maintenance obligation, which is
not clearly associated with the linguistic source (which arises from the generic meaning
of the plural subject with present tense); tense is not represented; the bearer of the
obligation, e.g. suppliers, is not explicit.

5 Discussion

In this section, we discuss observations about the two approaches, how they relate, draw
out some general points, and end with future work.

C&C/Boxer automatically provides a parse and a correlated semantic representa-
tion for each of our sentences; however, there may be some issues with the accuracy
and completeness of the semantic representation. This is, in many respects, an issue
to be addressed by refinements to C&C/Boxer itself. The semantic representations are
highly articulated, identifying all the individuals, events, and relations, whether found in
explicit linguistic forms (e.g. noun objects) or implicit (e.g. thematic roles). Temporal
relations are represented. However, as noted, the generic interpretation is not repre-
sented, nor is the bearer of the obligation indicated.

In contrast, DL is a manual translation that represents the meaning of the source
clause at a high level of syntactic and semantic abstraction in several respects and in
contrast to the C&C/Boxer representations. In DL, complex combinations of words that
form a phrase are represented as complex predicates; complex operators such as OM
are not composed from their parts; temporal order is lost (or subsumed under the in-
terpretation of the defeasible conditional); fine-grained elements of the source material
are omitted, e.g. means; different participants and their roles in the actions are either
omitted or incorporated into a predicate, e.g. suppliers are omitted and the customer

appears in customer monitor progress. The disadvantage of such complex predicates is
that syntactic structure and semantic compositionality are largely obscured.

Asides from issues about granularity, the two most significant differences between
the C&C/Boxer and DL representations are the representation of defeasiblity and the
scope of the modal. In the C&C/Boxer examples, no conditional representations arise
without explicit, linguistic conditionals (or related operators) in the sentences. More-
over, C&C/Boxer provided only specific rather than generic interpretations, which could
be taken to represent defeasibility. In combination, we can say that C&C/Boxer out-
puts do not represent defeasible rules as in DL. Yet, in natural language semantics,
non-monotonicity is usually treated quantificationally, whether with adverbs of quan-
tification [14], as generalised quantifiers [15], or in terms of genericity [16]. The first
question is, then, what is the most useful or appropriate representation of defeasi-
bility where we are concerned with the automatic translation from natural language
into a formal representation? A second related question is to what extent can a tool
such as C&C/Boxer accommodate the chosen representation or, turning it around, to
what extent ought DL be revised to accommodate natural language semantics of non-
monotonicity? Turning to the modal, the scope with respect to a conditional is a com-
plex, largely unresolved matter in natural language semantics [17].

Some of the differences outline above may be taken informatively, in the sense that
they indicate how each approach might incorporate or adapt to useful components of
the other. There may be ways to bridge the differences; for example, complex predicates
can be systematically related to component parts, and quantificational representations
of non-monotonic operators could be translated into correlated statements of defeasible
logic. But, bridging the differences requires first identifying what those are and whether
to bridge them.

We have not discussed evaluation. In statistical or machine-learning analyses, re-
sults are usually provided in terms of precision and recall measures, where the perfor-
mance of a proposed algorithm is measured against a gold standard corpus. However,
in the absence of such gold standards, we cannot provide such measures; and the cre-
ation of such corpora rest on the specification of what the corpora ought to encode,
which in our view, remains unclear in the research community. Rather, the results re-
ported here bear on: (1) the extent to which existing technologies produce more or less
intuitively accurate output; and (2) specific observations about the outputs in compari-
son; and (3), setting an agenda for future research. Nonetheless, for future work, some
explicit measures for evaluation of each approach must be provided. This is tied to the
issue of requirements; while initially it seemed that DL representations could be used
as abstract specifications to which C&C/Boxer should fulfill, this is not clear. Indeed,
this study only serves to highlight that the two approaches have rather different means
and objectives, even if somewhat related. Howeer, these topics must be for future work.

References

1. Wyner, A., Peters, W.: On rule extraction from regulations. In Atkinson, K., ed.: Proceedings
of the 24th International Conference on Legal Knowledge and Information Systems (JURIX
2011), Vienna, IOS Press (2011) 113–122

2. Sergot, M., Sadri, F., Kowalski, R., Kriwaczek, F., Hammond, P., Cory, T.: The British
Nationality Act as a logic program. Communications of the ACM 29(5) (1986) 370–386

3. Wyner, A., Angelov, K., Barzdins, G., Damljanovic, D., Davis, B., Fuchs, N., Hoefler, S.,
Jones, K., Kaljurand, K., Kuhn, T., Luts, M., Pool, J., Rosner, M., Schwitter, R., Sowa, J.:
On controlled natural languages: properties and prospects. In: Proceedings of the 2009 con-
ference on Controlled natural language. CNL’09, Berlin, Heidelberg, Springer-Verlag (2010)
281–289

4. Shiffman, R.N., Michel, G., Krauthammer, M., Fuchs, N.E., Kaljurand, K., Kuhn, T.: Writing
clinical practice guidelines in controlled natural language. In: Proceedings of the 2009 con-
ference on Controlled natural language. CNL’09, Berlin, Heidelberg, Springer-Verlag (2010)
265–280

5. Wyner, A., van Engers, T., Bahreini, K.: From policy-making statements to first-order logic.
In: Proceedings of International Conference on Electronic Government and the Information
Systems Perspective EGOVIS-2010. (2010) 47–61

6. Bos, J.: Wide-coverage semantic analysis with boxer. In Bos, J., Delmonte, R., eds.: Seman-
tics in Text Processing. STEP 2008 Conference Proceedings. Research in Computational
Semantics, College Publications (2008) 277–286

7. Wyner, A., Bos, J., Basile, V., Quaresma, P.: An empirical approach to the semantic repre-
sentation of law. In: Proceedings of 25th International Conference on Legal Knowledge and
Information Systems (JURIX 2012), Amsterdam, IOS Press (2012) 177–180

8. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: On the modeling and analysis
of regulations. In: Proceedings of the Australian Conference Information Systems. (1999)
20–29

9. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: OASIS Legal-
RuleML. In: Proceedings of the 14th International Conference on Artificial Intelligence and
Law (ICAIL 2013), Rome, ACM (2013) xx–xx To appear.

10. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Model-theoretic Semantics
of Natural Language: Formal Logic and Discourse Representation Theory. Springer (1993)

11. Parsons, T.: Events in the Semantics of English: a Study in Subatomic Semantics. MIT Press
(1990)

12. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Trans. Comput. Log. 2(2) (2001) 255–287

13. Governatori, G., Rotolo, A.: Norm compliance in business process modeling. In: Proceed-
ings of the 2010 international conference on Semantic web rules. RuleML’10, Berlin, Hei-
delberg, Springer-Verlag (2010) 194–209

14. Lewis, D.: Adverbs of quantification. In: Formal Semantics of Natural Language. Cambridge
University Press (1975) 178–188

15. Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguistics and Phi-
losophy 4 (1981) 159–219

16. Pelletier, F., Carlson, G.: The Generic Book. The University of Chicago Press (1995)
17. Wyner, A.Z.: Violations and Fulfillments in the Formal Representation of Contracts. PhD

thesis, Department of Computer Science, King’s College London (2008)

	R-CoRe: A Rule-based Contextual Reasoning Platform for AmI The present research is supported by the National Research Fund, Luxembourg, CoPAInS project (code: CO11/IS/1239572).
	Introduction
	Background
	An Ambient Assisted Living Example
	Kevoree - A component based software platform
	Kevoree: Modeling Framework and Components
	Kevoree Critical Features

	R-CoRe Architecture
	Java Library
	Query Component
	Query Servant
	Query Interceptor
	Query class and loop detection mechanism

	Demonstrating R-Core
	Setup
	Execution

	Conclusion and Future Work

	 Advanced Knowledge Base Debugging for Rulelog
	Introduction
	Rulelog
	Challenge of Debugging Knowledge in a Rulelog System

	Justification
	Trace-based Analysis
	Table dump: Examining Subqueries, Answers, and Rules
	Forest logging
	Analyzing Recursive Components
	Analyzing Runaway: Terminyzer

	Restraint: Bounded Rationality and Prevention of Runaway
	Overall Process of Knowledge Debugging
	Discussion: Scale, Skill
	Acknowledgements

	A Study on Translating Regulatory Rules from Natural Language to Defeasible Logic

