
1

Graph-based Editor for SWRL Rule Bases

Jaroslaw Bak, Maciej Nowak, Czeslaw Jedrzejek

Institute of Control and Information Engineering,
Poznan University of Technology,

M. Sklodowskiej-Curie Sqr. 5, 60-965 Poznan, Poland
{firstname.lastname}@put.poznan.pl

Abstract. In this paper we present a prototypical implementation of a graphical
tool for creating and editing (DL-safe) SWRL rules. The tool uses a graph-
based approach to model rules expressed in the SWRL language. Rules are
built from concepts and roles defined in an OWL ontology. Such a knowledge
base can be visualised and edited in a user-friendly interface. Moreover, the
presented tool provides methods for graphical representation of data and results
of reasoning performed with the Pellet engine. We present a process of creating
a knowledge base of family relationships as an example case. Perspectives of
our future work are also presented.

Keywords: graphical rule representation, SWRL, ontology visualisation, rea-
soning

1 Introduction

The Semantic Web1, which is the extension of the World Wide Web, is still in active
research and development. However, emerging technologies provide methods and
standards for processing data according to the defined semantics. The semantics of
data can be expressed by ontologies and rules which are of a special significance in
the layered architecture of the Semantic Web. An ontology and a set of rules consti-
tute a knowledge base of some particular domain. Using the knowledge base and data
with an appropriate reasoner, we can perform reasoning tasks. Thus, additional
knowledge can be inferred.

An ontology can be expressed using one of the OWL family of languages (OWL
1.12 and OWL 2 Profiles3), whereas a rule can be written in the Semantic Web Rule
Language (SWRL) [1] or OWL 2 RL Profile4.

Despite the clear advantages and availability of semantics-based technologies,
there are many software application areas where they do not occur or occur in a rela-

1 http://www.w3.org/standards/semanticweb/
2 http://www.w3.org/Submission/owl11-overview/
3 http://www.w3.org/TR/owl2-profiles/
4 Other appropriate languages also exist (e.g. RDF(S) for simple ontologies, RuleML for rules

etc.) but currently we do not consider them in our work.

2

tively simple form (e.g. ontologies as vocabularies, rules as filters). The main reason
for this is because ontologies and rules are too complex to handle by an ordinary user
[2]. The process of acquiring ontology- and rule-based knowledge can be simplified
with the use of a graphical representation and a user-friendly interface.

Since SWRL provides more powerful reasoning capabilities than OWL and some
of the ontologies can be transformed into rules (e.g. Horn-SHIQ [3]) we focus on the
development of a graph-based environment which will provide an easy way of creat-
ing and managing SWRL rule bases.

The main goal of this paper is to present a graph-based tool, in which an untrained
user is able to construct a set of simple (DL-safe [4]) SWRL rules and to use them in
order to obtain new (inferred) information according to the semantics defined in an
OWL ontology. Both rules and the ontology constitute a knowledge base of a given
domain. The ontology provides necessary concepts and roles, whereas the rules con-
stitute additional knowledge mixing concepts and roles in a way which is not allowed
in OWL. Additionally, a set of facts represents data. The constructed knowledge base
and facts are expressed graphically in the form of directed graphs. The knowledge
base can be applied to facts using a reasoning engine. After the inference process, a
user gets the result, which is also represented graphically.

The paper is organized as follows. Section 2 presents the main overview of the
proposed approach, a set of employed tools and related work. Section 3 describes a
prototypical implementation with a demonstration of creating a simple knowledge
base of family relationships. Section 4 contains concluding remarks and our future
work.

2 Graph-based Representation of an Ontology and Rules

2.1 Existing Methods and Tools

Visualising data in the form of graphs is connected to a problem of knowledge rep-
resentation (KR). Many investigators have created standardized notations for KR
(Unified Modeling Language/Object Constraint Language (UML/OCL) [5], UML-
based Rule Modeling Language (URML) [6], Object Role Modeling (ORM) [7], or
SBVR5 to name a few), however, so far many commercial tools tend to use their own
standards. Other popular KR methods include: decision tables, decision trees and
eXtended Tabular Trees [8]. Most commercial applications use those representations
directly, or in a form of guided textual editors. In our approach, we aim to provide
similar ways of representing both knowledge bases and rules. That is why the ORM
approach, combined with a graph-based representation, seems to be sufficient to start
with.

5 Semantics of Business Vocabulary and Business Rules, http://www.omg.org/spec/SBVR/1.0/

3

There are a number of tools implementing graphical rules representations:
• Visual Rules6 – it allows building of flow rules, decision tables and decision

trees. It is focused on business logic and directs the flow of decision making
by a defined life cycle. Events causing state changes are controlled by the
rules. Both states and rules are converted and executed as Java code. Visual
Rules lacks the ontology background, and focuses solely on business rules
and decision flows.

• Drools Guvnor7 – it provides many guided ways of creating rules: decision
tables, rule flow and a single rule editor. It is a data repository for the Drools
system. Guvnor offers many useful features: versioning and packaging of
rules, models, functions and processes connected to knowledge bases and
supervision of access to rule bases. We considered Drools as our reasoning
module, but the Pellet reasoner is sufficient for the needs of SWRL rules.

• VisiRule8 – it is an extension to Win-Prolog and it only allows creating deci-
sion flow models using a graphical paradigm. It offers a graphical representa-
tion of forward chaining rules with access to Prolog. VisiRule offers collabo-
ration features; diagrams expressed in it may consist of nested parts. It is an-
other platform designed for business flows rather than deductive rules.

• OntoStudio Graphical Rule Editor9 – it is based on Object Logic [9], and
operates on OL and SPARQL10 queries. Diagrams here consist of concepts,
their attributes and connections between them. It handles many known ontol-
ogy formats (OWL, RDF, SPARQL, RIF) as well as UML 2.0. OntoStudio
allows testing and debugging of rules. It does not allow the comparison of
variables (comparisons between value and variable are allowed only). This
approach is similar to ours, except that our tool visualises both ontology and
reasoning results on a graph.

• CoGui11 – it is a visualization tool for creating knowledge bases and concep-
tual graphs. It is based on the conceptual graph model introduced in [10].
The knowledge base of CoGui consists of hierarchies of concepts and rela-
tions, a set of individuals and a set of conceptual rules. It uses the CoGitant
engine for inference tasks. The structure of graphs can be nested; relations
are not restricted to unary or binary relations (n-ary relations are allowed).
This tool does not support the OWL ontology format, nor does it operate on
standardized rule notations.

6 http://www.bosch-si.com/technology/business-rules-management-brm/visual-rules-suite.html
7 http://www.jboss.org/drools/drools-guvnor.html
8 http://www.lpa.co.uk/vsr.htm
9 http://www.semafora-systems.com/en/products/ontostudio/
10 http://www.w3.org/TR/rdf-sparql-query/
11 http://www2.lirmm.fr/cogui/

4

• Protégé OWLViz12 plugin – it creates a hierarchical view of the selected part
of an ontology in the form of a directed graph. It does not allow manipulation
of objects on the graph nor does it visualise SWRL rules.

• Protégé Axiomé13 [11, 12] plugin – it supports visual rule base management,
exploration, automated rule categorization, rule paraphrasing and rule elicita-
tion functionality. It does not provide a way to create SWRL rules; instead it
is designed to help users understand the meaning of rules. Axiomé can repre-
sent rules as a graph where each rule is represented as a node and direct edg-
es between nodes indicate that SWRL atoms are shared by the rules.

• TopBraid Composer14 – it is a visual modelling tool designed to create and
manage ontologies in the Semantic Web standards. It is based on the
Eclipse15 platform and the Jena API16. TopBraid Composer offers drag-and-
drop way of creating and editing OWL ontologies. It allows consistency
checking and debugging of OWL Inference engine. Users are able to incor-
porate SPARQL rules (SPIN17) into the process of class definition to create
some constraints.

• Snoggle18 – a graphical SWRL-based ontology mapper. It creates directed
graphs representing structures of source and destination ontologies and ena-
bles creation of mapping relations between concepts from both ontologies.
Those mapping relations are then converted into SWRL rules.

2.2 Overview of the Approach

The main goal of this paper is to present a graph-based environment, in which a
user can: load an ontology, create and edit SWRL rules, perform reasoning and obtain
results. Moreover, an ontology, rules and data are represented graphically as directed
graphs. Additionally, an ontology can be represented as simple (and calculated) tax-
onomies of concepts and both types of roles (datatype and object properties). As a
result, we obtain a graphical representation of a knowledge base constructed from
concepts, roles, rules and facts (data). The knowledge base can be easily understood
by an ordinary user who tries to work with ontologies and rules. Our aim is to provide
an easy-to-use and easy-to-understand tool which can be used in many domains where
ontologies, rules and graphs can be employed to support a user’s work.

The process of rule creation consists of creating two graphs which represents two
parts of a rule: the body (left hand side) and the head (right hand side). In the present-
ed approach, rules are of the following form: if the body then the head. Both the body

12 http://protegewiki.stanford.edu/wiki/OWLViz
13 http://protegewiki.stanford.edu/wiki/Axiomé
14 http://www.topquadrant.com/products/TB_Composer.html
15 http://www.eclipse.org/
16 http://jena.apache.org/
17 http://spinrdf.org/
18 http://snoggle.semwebcentral.org/

5

and the head consist of positive conjunctions of atoms that are defined in an ontology
as classes (concepts), object properties (roles) and datatypes. Thus, the left hand side
(LHS) of a rule should be perceived as conditional elements that need to be fulfilled
in order to execute instructions written in the right hand side (RHS). The execution of
a rule can add new statements to the given knowledge base in the form of new rela-
tions between objects and new classifications of them. For example, using rule (1) we
can infer that a person which has a male child has a son.

 ����? ��, 	
����? ��, ℎ���ℎ����? �, ? �� → ℎ�����? �, ? ��, ���? �� (1)

In rule (1) ���, 	
��� and �� are OWL classes, ℎ���ℎ��� and ℎ���� are ob-
ject properties and ? �, ? � are variables. By executing this rule we obtain a new rela-
tion between objects under both variables from rule (1) and a new classification of
object under variable ? �.

As mentioned before, we represent rules, an ontology and facts in a graphical form.
Each of them is a different directed graph. Each graph consists of nodes and edges.
The nodes are a graphical representation of OWL classes (or objects in data visualisa-
tion) whereas edges represent appropriate relations between classes (objects); or clas-
ses (objects) and datatypes. Usually, an object may belong to a number of OWL clas-
ses, for example an object of class �� belongs also to the following classes: ���
and 	
���. In our method we decided to use the most detailed class, which is often
represented as the most bottom concept in the taxonomy of OWL classes. The rest of
the applicable classes are shown in a tooltip after moving the mouse above the object.
Moreover, a user can choose which class she/he wants to see on a graph. The same
approach is applied in the object and datatype property taxonomies. An example of
choosing a visible class is presented in Figure 1.

Figure 1. Selecting a visible class is done by clicking on a class name from a popup menu.

When loading an ontology, we can obtain two kinds of visualization. The first one

is a Protégé-like view of taxonomies as trees. We provide three trees: the taxonomy of
classes, the taxonomy of object properties and the taxonomy of datatype properties.
The second visualization type is a graph-based view in which taxonomies are repre-
sented as directed graphs. Since a (rooted) tree is a special kind of directed graph, the
visualization in both types is very similar. The main difference between them is that,
in the graph mode, we can manipulate the graph structure by using specialised layouts
or by manual rearrangement. Both types of OWL classes visualisation are presented
in Figure 2.

6

Figure 2. Visualisation methods of OWL classes.

Our graph-based editor supports the reasoning performed by the Pellet engine (see

Section 2.3). Results are presented to a user as a new graph of objects or as a pair of
graphs representing calculated taxonomies of classes and object properties. Moreover,
a user can check the consistency of an ontology and verify results obtained from on-
tology- and rule-based reasoning.

2.3 Applied Tools

In the presented graph-based editor we apply the Semantic Web Rule Language with
its syntax and semantics to read/write rules from/to an ontology. We employ the
OWL Web Ontology Language version 1.1 as a way to express the semantics of a
given domain. SWRL Built-ins [13] are used as comparison predicates between val-
ues of datatype properties or variables. Since we adapt SWRL as an OWL-based rule
language we follow its semantics. As a result, negated atoms or disjunctions are not
allowed. Moreover, we apply the DL-safe rules [4] approach, which considers decid-
able combinations of OWL DL and rule axioms. Decidability is preserved by forcing
each rule to be DL-safe, which means that each variable is bound only to the individ-
uals that explicitly occur in the assertional part (data) of the knowledge base. In other
words, only facts that are explicitly stated can be used in the reasoning process.

We employed the OWL API19 tool to parse and write OWL ontologies. The Pel-
let20 engine is used as an OWL and SWRL reasoner. As a result of reasoning we can:
check the consistency of an ontology and rules, calculate taxonomies, obtain potential

19 http://owlapi.sourceforge.net/
20 http://clarkparsia.com/pellet/

7

inconsistences and infer new facts. In the editor, we can visualise an ontology before
and after the calculation of taxonomies. Additionally, we can obtain a graph of facts
before and after the reasoning process.

Visualization uses two Java libraries: Gephi21 and Processing22. We use Gephi to
manipulate graph structures. It is also responsible for managing the layout of the
nodes on the graph. Nodes can be rearranged manually or placed according to their
graph-based parameters (centrality, modularity, PageRank, etc.). We use Processing
as a software sketchbook to create the views of an ontology structure and a set of
facts, as well as to create the rule editor.

Our graph-based rule editor for SWRL rule bases is fully implemented in the Java
language.

3 Graph-based Editor

3.1 Rule Creation and Edition Method

Our graph-based editor consists of three tabs: ontology view, rule creation graph and
instances view. The ontology view tab shows a visualisation of an ontology. The user
can select a hierarchical structure of classes, datatypes or object properties to be visu-
alised. Every edge in this view represents a subClassOf or subPropertyOf relation
from the ontology. Our system proposes a calculated layout of classes, however this
graph can be manually rearranged in order to improve the user impression and under-
standing. The hierarchy of classes is represented as grey circle nodes connected with
edges. Structure of object properties is represented as blue square nodes connected
with edges, whereas data properties are represented as green triangle nodes also con-
nected with edges. All edges in the ontology view tab reflect the subsumption relation
between two nodes.

The rule creation tab consists of 3 parts: conditions side, which represents the
body of a rule; conclusions side, which reflects the head; and the class hierarchy pre-
sented in a tree structure. In order to create a rule, a user drags a class from the Class
Hierarchy tree and drops it onto one of the rule sides (conditions or conclusions side).
She/he is asked for a variable name or a value, which indicates the added object. Class
concepts are presented as circles on the graph, with their class name and variable
(value) as their labels. Both datatype properties and comparisons of variables can be
added by right clicking on an object on the graph and selecting an appropriate option.
The system limits datatype properties to those which can be linked with the selected
object type (the selected class is in the domain of that datatype property or the domain
constraint does not occur). Datatype properties are displayed in the form of a triangle
connected by an edge with the corresponding object. The name of datatype is shown
on the edge, and its value as a label of the triangle.

21 https://gephi.org/
22 http://processing.org/

8

Table 1. Representations of main elements in our Graph-based Editor for SWRL rules.
Element Graph-based representation

OWL Class

OWL Class instance

Object property between
two OWL instances

Datatype property between
an object and a value

Relation between objects (object properties) can be added in a similar manner. Af-
ter selecting a node and right clicking the other node, a list of available object proper-
ties is presented. After selecting one of them, it is displayed as an edge between se-
lected nodes. In order to save a rule, the user needs to select an option from the top
menu (File, then Save as…). A user can choose to save the ontology combined with
the created rules.

The instances tab visualizes individuals (facts) stored in a knowledge base. They
are represented as purple rhombs connected with each other by edges (roles from the
ontology). Individuals can have datatype properties, which are visualized in the same
way as in the rule creation panel, by triangles. After the reasoning, objects can belong
to many OWL classes. This fact is impossible to represent on a static graph, however
we present a method to solve this problem. After moving the mouse above an individ-
ual, a tooltip with all inferred classes appears. User can select which class should be
visible on the graph as a default one.

The graphical representation of particular elements, which is applied in our editor,
is presented in Table 1.

3.2 An Example Case

An example application of our tool is performed with an ontology describing family
relationships. We slightly modified an ontology developed by Christine Golbreich
presented in [14]. Her ontology is publicly available23. It contains the usual classes,
e.g. 	
���, ���, ����, �ℎ���, 	��
��, etc., and relationships within a family,
e.g. ℎ�������, ℎ���ℎ���, ℎ��	��
��, etc.

23 http://protege.cim3.net/file/pub/ontologies/family.swrl.owl/family.swrl.owl

9

The main difference between the original family ontology and our version of it, is
the addition of:

• Classes: ��������
��, ��������ℎ
�, �������ℎ
�, ��
����������
��,
��
����������ℎ
�, ��
���������ℎ
�.

• Object properties: ℎ�������, ℎ����������
��, ℎ����������ℎ
�,
ℎ���������ℎ
�, ℎ����
����������
��, ℎ����
����������ℎ
�,
ℎ����
���������ℎ
�.

• Datatype property: ℎ����
.
Since the aforementioned new elements of the ontology are self-explanatory we do
not provide more detailed descriptions. The modified version of the family ontology
was then loaded into our editor. In the tool we created rules which are responsible to
obtain instances of the following:

• Classes: ��������ℎ
�, �������ℎ
�, ��
����������ℎ
�,
��
���������ℎ
�.

• Object properties: ℎ�������, ℎ����������ℎ
�, ℎ���������ℎ
�,
ℎ����
����������ℎ
�, ℎ����
���������ℎ
�.

In this paper, we present two rules created with our editor. Rule (2) asserts an in-
stance of relation ℎ������� which reflects that children of siblings are cousins of
each other (ℎ������� is defined as a symmetric property). Rule (2) is presented in
Figure 3.

	
����? ��,				
����? ��,				
����? �,				
����? !�,		
ℎ��	��
���? , ? !�,			ℎ��	��
���? �, ? ��,			ℎ����"�����? �, ? !�
→ ℎ�������	�? �, ? � (2)

Figure 3. Creation of rule (2).

Rule (3) asserts an instance of class ��
����������ℎ
� and an instance of a role
ℎ����
����������ℎ
�. The rule expresses that a father of our grandparent is our
great grandfather. Rule (3) is presented in Figure 4.

	
����? ��,				
����? ��,				
����? �,		
ℎ����������
���? �, ? ��,			ℎ��#��ℎ
��? �, ? �
→ ℎ����
����������ℎ
�	�? �, ? �,			��
����������ℎ
��? � (3)

10

Figure 4. Creation of rule (3).

Created rules need to be applied to the set of facts in the ontology. After the rea-
soning process, executed by Pellet, a user obtains results presented in a new graph (in
contrast to the graph before execution). Thus, new relations between objects and the
classification of them are obtained. Figures 5 and 6 present two graphs: before reason-
ing (Figure 5) and after reasoning (Figure 6). These figures represent a part of the
knowledge base to which rules (2) and (3) can be applied. Instances preceded by the
letter ‘M’ represent men and instances preceded by ‘F’ represent women.

Figure 5. Graph of instances before reasoning.

11

Figure 6. Graph of instances after reasoning.

4 Conclusions and Future Work

In this paper we have demonstrated a tool which supports graph-based creation and
edition of SWRL rules. The tool provides a visualisation of an OWL ontology, SWRL
rules and data. The graph-based representation is very convenient and intuitive. It is
an initial implementation which supports the creation of SWRL rules in a graphical
manner. The work presented in this paper is based on our previous experiences with
graph-based representation of rules [15].

The developed graph-based editor can be used in many domains where ontologies,
rules and graphs can be employed to support users in their work. Moreover, changes
in a SWRL rule base can be made by business specialists without engaging an experi-
enced programmer. As a result, the usual process of consultation between them is
omitted or shortened in time. Thus, the tool can significantly increase their work’s
efficiency.

In further work, we will implement a query method for searching a knowledge base
in a graphical manner. Moreover, we will provide a relational database interface. As a
result, a semantic query will be posed into an integrated environment which will in-
clude a relational database, a set of rules and an ontology. In this case any graph con-
taining nodes and edges could be entered as a search phrase. The reasoning engine
will search the whole knowledge base for a given set of conditions, and return all
objects that meet the specified requirements.

Another desired feature is to support OWL 2, which contains profiles designed for
reasoning with rules and query answering, the RL and QL profiles respectively. A
method of comparison between inferred and non-inferred knowledge bases is also
planned.

12

Finally, we are going to make our tool available online for download and use with
a free academic license (for non-commercial users) [16].
Acknowledgement. This work was supported by DS-MK 45-102/13 and 45-085/12
DS-PB grants.

References

1. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl: A semantic web

rule language combining owl and ruleml. W3C Member Submission (May 21 2004),

http://www.w3.org/Submission/SWRL/

2. Shotton D., Catton C., Klyne G., Ontologies for Sharing, Ontologies for Use,

http://ontogenesis.knowledgeblog.org/312?kblog-transclude=2

3. Hustadt U., Motik B., Sattler U., Data Complexity of Reasoning in Very Expressive Description

Logics, In IN PROC. IJCAI 2005, pages 466–471. Professional Book Center, 2005. (Cited on pages

5and 37.)

4. Motik B., Sattler U., Studer R., Query Answering for OWL-DL with Rules. In Journal of Web Seman-

tics, pages 549–563. Springer, 2004.

5. Object Constraint Language (OCL), v2.0. http://www.omg.org/spec/OCL/2.0/

6. UML-based Rule Modelling Language, http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=URML

7. Lukichev S., Jarrar M.: Graphical Notations for Rule Modeling. In: A. Giurca, D. Gasevic, and K.

Taveter (Eds), Handbook of Research on Emerging Rule-based Languages and Technologies: Open

Solutions and Approaches, IGI Publishing, 2009

8. Grzegorz J. Nalepa, Antoni Ligęza, and Krzysztof Kaczor. 2011. Overview of knowledge formaliza-

tion with XTT2 rules. In Proceedings of the 5th international conference on Rule-based reasoning,

programming, and applications (RuleML'2011), Nick Bassiliades, Guido Governatori, and Adrian

Paschke (Eds.). Springer-Verlag, Berlin, Heidelberg, 329-336.

9. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object oriented and frame-based

languages. J. ACM, 42(4):741–843, 1995

10. Sowa J. F., Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1984.

11. Hassanpour S., O'Connor M. J., Das A. K., A Rule Management and Elicitation Tool for SWRL Rule

Bases, 3rd International Rule Challenge at RuleML 2009, Las Vegas, NV.

12. Hassanpour S., O'Connor M. J., Das A. K., Exploration of SWRL Rule Bases through Visualization,

Paraphrasing, and Categorization of Rules, International RuleML Symposium on Rule Interchange

and Applications, Las Vegas, NV, 5858, 246-261, 2009.

13. SWRL Built-ins, http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

14. Golbreich C., "Combining rule and ontology reasoners for the semantic web.", Rules and Rule

Markup Languages for the Semantic Web. Springer Berlin Heidelberg, 2004. 6-22.

15. Nowak M., Bak J., Jedrzejek C., Graph-based Rule Editor, in Hassan Aït-Kaci, Yuh-Jong Hu, Grze-

gorz J. Nalepa, Monica Palmirani and Dumitru Roman, editors, RuleML2012@ECAI Challenge and

Doctoral Consortium at the 6th International Symposium on Rules, Montpellier, France, August 27th-

29th, 2012, volume 874 of CEUR Workshop Proceedings. CEUR-WS.org, 2012.

16. Demo site: http://draco.kari.put.poznan.pl/ruleml2013_SWRLEditor/

