Graph-based Editor for SWRL Rule Bases

Jaroslaw Bak, Maciej Nowak, Czeslaw Jedrzejek

Institute of Control and Information Engineering,
Poznan University of Technology,
M. Sklodowskiej-Curie Sqr. 5, 60-965 Poznan, Poland
{firstnane. | ast name} @ut . poznan. pl

Abstract. In this paper we present a prototypical impleragonh of a graphical
tool for creating and editing (DL-safe) SWRL rul@he tool uses a graph-
based approach to model rules expressed in the SlRjuage. Rules are
built from concepts and roles defined in an OWLobogy. Such a knowledge
base can be visualised and edited in a user-fijeimtérface. Moreover, the
presented tool provides methods for graphical sspretion of data and results
of reasoning performed with the Pellet engine. \WWss@nt a process of creating
a knowledge base of family relationships as an @karoase. Perspectives of
our future work are also presented.

Keywords: graphical rule representation, SWRL, ontology Viisagion, rea-
soning

1 I ntroduction

The Semantic Webwhich is the extension of the World Wide Websii#l in active
research and development. However, emerging teofiea provide methods and
standards for processing data according to thene@fsemantics. The semantics of
data can be expressed by ontologies and rules venelof a special significance in
the layered architecture of the Semantic Web. Atology and a set of rules consti-
tute a knowledge base of some particular domaimdJhe knowledge base and data
with an appropriate reasoner, we can perform réagotasks. Thus, additional
knowledge can be inferred.

An ontology can be expressed using one of the O#hily of languages (OWL
1.7% and OWL 2 Profiley, whereas a rule can be written in the Semantib Wele
Language (SWRL) [1] or OWL 2 RL Proffle

Despite the clear advantages and availability ohas#ics-based technologies,
there are many software application areas wheredbenot occur or occur in a rela-

! http://ww.w3.org/standards/semanticweb/

2 http://ww.w3.org/Submission/owl11-overview/

3 http://www.w3.org/TR/owl2-profiles/

4 Other appropriate languages also exist (e.g. RDiB{Simple ontologies, RuleML for rules
etc.) but currently we do not consider them inwark.

tively simple form (e.g. ontologies as vocabularieges as filters). The main reason
for this is because ontologies and rules are toopdex to handle by an ordinary user
[2]. The process of acquiring ontology- and rulesdsh knowledge can be simplified
with the use of a graphical representation ancea-fuendly interface.

Since SWRL provides more powerful reasoning cajiggsilthan OWL and some
of the ontologies can be transformed into ruleg. (dorn-SHIQ [3]) we focus on the
development of a graph-based environment whichprdlvide an easy way of creat-
ing and managing SWRL rule bases.

The main goal of this paper is to present a gragged tool, in which an untrained
user is able to construct a set of simple (DL-$4feSWRL rules and to use them in
order to obtain new (inferred) information accoglito the semantics defined in an
OWL ontology. Both rules and the ontology consétat knowledge base of a given
domain. The ontology provides necessary concemg@es, whereas the rules con-
stitute additional knowledge mixing concepts aneégan a way which is not allowed
in OWL. Additionally, a set of facts representsaddthe constructed knowledge base
and facts are expressed graphically in the forndicdcted graphs. The knowledge
base can be applied to facts using a reasoningi@ngiter the inference process, a
user gets the result, which is also representgohgrally.

The paper is organized as follows. Section 2 ptes#ie main overview of the
proposed approach, a set of employed tools antkdelmork. Section 3 describes a
prototypical implementation with a demonstration aoéating a simple knowledge
base of family relationships. Section 4 containacbading remarks and our future
work.

2 Graph-based Representation of an Ontology and Rules

21 Existing Methodsand Tools

Visualising data in the form of graphs is connedted problem of knowledge rep-
resentation (KR). Many investigators have createshdardized notations for KR
(Unified Modeling Language/Object Constraint LangeaUML/OCL) [5], UML-
based Rule Modeling Language (URML) [6], Object &dodeling (ORM) [7], or
SBVR® to name a few), however, so far many commercialsttend to use their own
standards. Other popular KR methods include: dmtisables, decision trees and
eXtended Tabular Trees [8]. Most commercial apfiices use those representations
directly, or in a form of guided textual editors. dur approach, we aim to provide
similar ways of representing both knowledge basesrales. That is why the ORM
approach, combined with a graph-based representa@@ms to be sufficient to start
with.

® Semantics of Business Vocabulary and Business Fhttps/www.omg.org/spec/SBVR/1.0/

2

There are a number of tools implementing graphidals representations:

« Visual Rule§ — it allows building of flow rules, decision takland decision
trees. It is focused on business logic and dirdetsflow of decision making
by a defined life cycle. Events causing state chargre controlled by the
rules. Both states and rules are converted anduee@@s Java code. Visual
Rules lacks the ontology background, and focusésyson business rules
and decision flows.

« Drools Guvnof — it provides many guided ways of creating ruldscision
tables, rule flow and a single rule editor. It idata repository for the Drools
system. Guvnor offers many useful features: vemsgrand packaging of
rules, models, functions and processes connectdehdwledge bases and
supervision of access to rule bases. We consid@redls as our reasoning
module, but the Pellet reasoner is sufficient fier heeds of SWRL rules.

« VisiRule® — it is an extension to Win-Prolog and it onlyoalk creating deci-
sion flow models using a graphical paradigm. leddfa graphical representa-
tion of forward chaining rules with access to Pgol¥isiRule offers collabo-
ration features; diagrams expressed in it may sbuginested parts. It is an-
other platform designed for business flows rathantdeductive rules.

« OntoStudio Graphical Rule Edifor it is based on Object Logic [9], and
operates on OL and SPAR&Lqueries. Diagrams here consist of concepts,
their attributes and connections between themaridies many known ontol-
ogy formats (OWL, RDF, SPARQL, RIF) as well as UMIO. OntoStudio
allows testing and debugging of rules. It does allwtw the comparison of
variables (comparisons between value and variatdeabiowed only). This
approach is similar to ours, except that our taslizlises both ontology and
reasoning results on a graph.

« CoGui' - it is a visualization tool for creating knowlexlgases and concep-
tual graphs. It is based on the conceptual grapteiimtroduced in [10].
The knowledge base of CoGui consists of hierarcbfesoncepts and rela-
tions, a set of individuals and a set of conceptuls. It uses the CoGitant
engine for inference tasks. The structure of gragdrs be nested; relations
are not restricted to unary or binary relationsaafp-relations are allowed).
This tool does not support the OWL ontology formmady does it operate on
standardized rule notations.

® http://mww.bosch-si.com/technology/business-rutemiagement-brm/visual-rules-suite.html
7 http://mww.jboss.org/drools/drools-guvnor.html

8 http://ww.Ipa.co.uk/vsr.htm

® http://www.semafora-systems.com/en/products/onthst

10 http:/iwww.w3.0rg/TR/rdf-spargl-query/

1 http:/ivww2.lirmm.fr/cogui/

« Protégé OWLViZ* plugin — it creates a hierarchical view of theesetd part
of an ontology in the form of a directed graphddes not allow manipulation
of objects on the graph nor does it visualise SWiRés.

« Protégé Axiom¥ [11, 12] plugin — it supports visual rule base agement,
exploration, automated rule categorization, rulephrasing and rule elicita-
tion functionality. It does not provide a way teate SWRL rules; instead it
is designed to help users understand the meaninges. Axiomé can repre-
sent rules as a graph where each rule is represasta node and direct edg-
es between nodes indicate that SWRL atoms aredhgrthe rules.

« TopBraid Composéf — it is a visual modelling tool designed to crearel
manage ontologies in the Semantic Web standardéss hased on the
Eclips€® platform and the Jena Al TopBraid Composer offers drag-and-
drop way of creating and editing OWL ontologies.altows consistency
checking and debugging of OWL Inference engine.r&Jsgee able to incor-
porate SPARQL rules (SPN into the process of class definition to create
some constraints.

« Snogglé® — a graphical SWRL-based ontology mapper. It esatirected
graphs representing structures of source and dg¢istinontologies and ena-
bles creation of mapping relations between conckpta both ontologies.
Those mapping relations are then converted into BWikes.

2.2 Overview of the Approach

The main goal of this paper is to present a gragged environment, in which a
user can: load an ontology, create and edit SWHRdsryperform reasoning and obtain
results. Moreover, an ontology, rules and datarepeesented graphically as directed
graphs. Additionally, an ontology can be represgte simple (and calculated) tax-
onomies of concepts and both types of roles (da¢agnd object properties). As a
result, we obtain a graphical representation ofhawkedge base constructed from
concepts, roles, rules and facts (data). The krdyeéase can be easily understood
by an ordinary user who tries to work with ontoksgand rules. Our aim is to provide
an easy-to-use and easy-to-understand tool whichbeaised in many domains where
ontologies, rules and graphs can be employed toostip user's work.

The process of rule creation consists of creativg graphs which represents two
parts of a rule: the body (left hand side) andhtéad (right hand side). In the present-
ed approach, rules are of the following foiifrthe body then the heaBoth the body

12 http://protegewiki.stanford.edu/wiki/OWLViz

13 http://protegewiki.stanford.edu/wiki/Axiomé

4 http://ww.topquadrant.com/products/TB_Composer.html
15 http://mww.eclipse.org/

18 http://jena.apache.org/

7 http://spinrdf.org/

18 http://snoggle.semwebcentral.org/

and the head consist of positive conjunctions ofmstthat are defined in an ontology
as classes (concepts), object properties (rotes)datatypes. Thus, the left hand side
(LHS) of a rule should be perceived as conditiclaments that need to be fulfilled

in order to execute instructions written in thentipand side (RHS). The execution of
a rule can add new statements to the given knowld&dge in the form of new rela-

tions between objects and new classifications efithFor example, using rule (1) we

can infer that a person which has a male childahsn.

Man(?y), Person(?x), hasChild(?x, ?y) = hasSon(?x, ?y), Son(?y) (1)

In rule (1) Man, Person and Son are OWL classesiasChild andhasSon are ob-
ject properties and x, ?y are variables. By executing this rule we obtairew rela-
tion between objects under both variables from (@)eand a new classification of
object under variabley.

As mentioned before, we represent rules, an onyadmgl facts in a graphical form.
Each of them is a different directed graph. Eadplgrconsists of nodes and edges.
The nodes are a graphical representation of OWdsek (or objects in data visualisa-
tion) whereas edges represent appropriate relafietvgeen classes (objects); or clas-
ses (objects) and datatypes. Usually, an objectbrebong to a number of OWL clas-
ses, for example an object of claks belongs also to the following classééan
andPerson. In our method we decided to use the most detailesk, which is often
represented as the most bottom concept in the temprof OWL classes. The rest of
the applicable classes are shown in a tooltip afi@ving the mouse above the object.
Moreover, a user can choose which class she/heswargee on a graph. The same
approach is applied in the object and datatype grtgggaxonomies. An example of
choosing a visible class is presented in Figure 1.

l Select default label

Father
Father, .,
Brother

Uncle

Figure 1. Selecting a visible class is done by clicking arleess name from a popup menu.

When loading an ontology, we can obtain two kinflgisualization. The first one
is a Protégé-like view of taxonomies as trees. Vdeide three trees: the taxonomy of
classes, the taxonomy of object properties andakenomy of datatype properties.
The second visualization type is a graph-based wiewhich taxonomies are repre-
sented as directed graphs. Since a (rooted) t@special kind of directed graph, the
visualization in both types is very similar. Theimdifference between them is that,
in the graph mode, we can manipulate the grapletstrei by using specialised layouts
or by manual rearrangement. Both types of OWL elsisgsualisation are presented
in Figure 2.

Clazss Hierarchy
[E.2 Granapdreric

."!

“Un
Relative

Mother
. . . & Nephew

" &-# Child
e . Nephew Parent .~ ® Daughter
_incle i @ Son
Aunt £-# Sibling
. . @ Sister

& Brother

Miece . t Uncle
. . & Niece
{ Maother = # Builtin
'j’l"-’j . Feallhe Object Property Hierarchy
L"iEIil': # TopObjectProperty
| [le =
propertyPredicate

hasGreatGrandparent
hasChild
hasGranularity
® -~ iy &
o hasGrandparent
Daughter Brother Sister w-# hasParent
Figure 2. Visualisation methods of OWL classes.

[

hasNephew

teeene

Our graph-based editor supports the reasoning qpeefi by the Pellet engine (see
Section 2.3). Results are presented to a usemasvagraph of objects or as a pair of
graphs representing calculated taxonomies of cdaaise object properties. Moreover,
a user can check the consistency of an ontologyvarifly results obtained from on-
tology- and rule-based reasoning.

2.3 Applied Tools

In the presented graph-based editor we apply theaStc Web Rule Language with
its syntax and semantics to read/write rules fronaih ontology. We employ the
OWL Web Ontology Language version 1.1 as a wayxgress the semantics of a
given domain. SWRL Built-ins [13] are used as corgmn predicates between val-
ues of datatype properties or variables. Since de@paSWRL as an OWL-based rule
language we follow its semantics. As a result, tedy@atoms or disjunctions are not
allowed. Moreover, we apply tHeL-safe ruleg4] approach, which considers decid-
able combinations of OWL DL and rule axioms. Debitity is preserved by forcing
each rule to be DL-safe, which means that eactabtariis bound only to the individ-
uals that explicitly occur in the assertional gddta) of the knowledge base. In other
words, only facts that are explicitly stated carubed in the reasoning process.

We employed the OWL AP tool to parse and write OWL ontologies. The Pel-
le”® engine is used as an OWL and SWRL reasoner. Asutrof reasoning we can:
check the consistency of an ontology and rulegutaile taxonomies, obtain potential

18 http://owlapi.sourceforge.net/
20 http://clarkparsia.com/pellet/

inconsistences and infer new facts. In the editer can visualise an ontology before
and after the calculation of taxonomies. Addititjyalve can obtain a graph of facts
before and after the reasoning process.

Visualization uses two Java libraries: Géplaind Processiig We use Gephi to
manipulate graph structures. It is also respondibtemanaging the layout of the
nodes on the graph. Nodes can be rearranged mamughllaced according to their
graph-based parameters (centrality, modularity,eRagk, etc.). We use Processing
as a software sketchbook to create the views afraalogy structure and a set of
facts, as well as to create the rule editor.

Our graph-based rule editor for SWRL rule basdalig implemented in the Java
language.

3 Graph-based Editor

3.1 RuleCreation and Edition M ethod

Our graph-based editor consists of three tabs:lagyoview, rule creation graph and
instances view. The ontology view tab shows a Visa@on of an ontology. The user
can select a hierarchical structure of classestyjas or object properties to be visu-
alised. Every edge in this view representsubClassOf or subPropertyOf relation
from the ontology. Our system proposes a calcullgdut of classes, however this
graph can be manually rearranged in order to ingtbe user impression and under-
standing. The hierarchy of classes is represergagtey circle nodes connected with
edges. Structure of object properties is repredeageblue square nodes connected
with edges, whereas data properties are represantgteen triangle nodes also con-
nected with edges. All edges in the ontology viaty teflect the subsumption relation
between two nodes.

The rule creation tab consists of 3 parts: conditigside, which represents the
body of a rule; conclusions side, which reflects tiead; and the class hierarchy pre-
sented in a tree structure. In order to creatdeg auuser drags a class from the Class
Hierarchy tree and drops it onto one of the rutkesi(conditions or conclusions side).
She/he is asked for a variable name or a valueshwihdicates the added object. Class
concepts are presented as circles on the graph, théir class name and variable
(value) as their labels. Both datatype properties @@mparisons of variables can be
added by right clicking on an object on the grapt selecting an appropriate option.
The system limits datatype properties to those isn be linked with the selected
object type (the selected class is in the domathaif datatype property or the domain
constraint does not occur). Datatype propertieslm@ayed in the form of a triangle
connected by an edge with the corresponding objdat.name of datatype is shown
on the edge, and its value as a label of the tiéang

21 https://gephi.org/
22 http://processing.org/

Table 1. Representations of main elements in our Graphebadéor for SWRL rules.

Element Graph-based representation
OWL Class .
Son
OWL Class instance ’
Sister(F31)

Object property between ’ - _ ‘
two OWL instances hasChild

Sister(F31) Mother(F21)
Datatype property between . .
an object and a value hasAge

Person(?x) 18

Relation between objects (object properties) caadsed in a similar manner. Af-
ter selecting a node and right clicking the otheden a list of available object proper-
ties is presented. After selecting one of thenis isplayed as an edge between se-
lected nodes. In order to save a rule, the usaldsneeselect an option from the top
menu File, thenSave as.). A user can choose to save the ontology combividd
the created rules.

The instances tab visualizes individuals (factejest in a knowledge base. They
are represented as purple rhombs connected withaher by edges (roles from the
ontology). Individuals can have datatype propertietsich are visualized in the same
way as in the rule creation panel, by trianglese”Athe reasoning, objects can belong
to many OWL classes. This fact is impossible ta@eent on a static graph, however
we present a method to solve this problem. Aftevimpthe mouse above an individ-
ual, a tooltip with all inferred classes appearsetucan select which class should be
visible on the graph as a default one.

The graphical representation of particular elemenmksch is applied in our editor,
is presented in Table 1.

3.2 An Example Case

An example application of our tool is performedtwitn ontology describing family

relationships. We slightly modified an ontology deped by Christine Golbreich

presented in [14]. Her ontology is publicly avalkf It contains the usual classes,
e.g. Person, Man, Woman, Child, Parent, etc., and relationships within a family,
e.g.hasConsort, hasChild, hasParent, etc.

23 http://protege.cim3.net/file/pub/ontologies/famsiyrl.owl/family.swrl.owl

The main difference between the original familyadogy and our version of it,
the addition of:

e ClassesGrandparent, Grandfather, Grandmother, GreatGrandparent,

GreatGrandfather, GreatGrandmother.

* Object propertieshasCousin, hasGrandparent, hasGrandfather,
hasGrandmother, hasGreatGrandparent, hasGreatGrandfather,
hasGreatGrandmother.

« Datatype propertyhasAge.

Since the aforementioned new elements of the ogyotoe self-explanatory we do
not provide more detailed descriptions. The modifiersion of the family ontology
was then loaded into our editor. In the tool weatgd rules which are responsible to
obtain instances of the following:

» ClassesGrandfather, Grandmother, GreatGrandfather,
GreatGrandmother.

e Object properties: hasCousin, hasGrandfather, hasGrandmother,
hasGreatGrandfather, hasGreatGrandmother.

In this paper, we present two rules created withealitor. Rule (2) asserts an in-
stance of relatiothasCousin which reflects that children of siblings are cmssof
each otherHKasCousin is defined as a symmetric property). Rule (2)risspnted in
Figure 3.

Person(?x), Person(?y), Person(?w), Person(?z),
hasParent(?w,?z), hasParent(?x,?y), hasSibling(?y,?z)
— hasCousin (?x,?7w) 2)

S

. = hasSibling .
. 4
Person(?z) Person(?y) . hasCousin ".

X w

hasParent hasParent

Person(?w) Person(?x)

Figure 3. Creation of rule (2).

Rule (3) asserts an instance of cl&sgatGrandfather and an instance of a role
hasGreatGrandfather. The rule expresses that a father of our grandpaseour
great grandfather. Rule (3) is presented in Fidure

Person(?x), Person(?y), Person(?w),
hasGrandparent(? x,?y), hasFather(?y,?w)
— hasGreatGrandfather (?x,?w), GreatGrandfather(?w) 3)

o n
Person(?w)
GreatGranéfather(?w)
hasFather
(. hasGreatGrandfather
Person(?y)
hasGrandparent
X
Person(?x)

Figure 4. Creation of rule (3).

Created rules need to be applied to the set of fiacthe ontology. After the rea-
soning process, executed by Pellet, a user obtagsudts presented in a new graph (in
contrast to the graph before execution). Thus, reations between objects and the
classification of them are obtained. Figures 5 @pdesent two graphs: before reason-
ing (Figure 5) and after reasoning (Figure 6). EhBigures represent a part of the
knowledge base to which rules (2) and (3) can lpdiegh Instances preceded by the
letter ‘M’ represent men and instances precedetFepresent women.

’ = hasSibling . ‘ .

»

s e Mothe‘r(FiZ) Brother(M32)
hasChild hasChild hasChild
hasParent hasParent

L §

F'S $

Father(MO1
Daughter(F22) ather(M01)
»

|

Son(M20)
Figure 5. Graph of instances before reasoning.

10

. ~ hasSibling - ’ - hasGrandparent ‘

v >
i
Father(M12) Mother(F12) Brother(M32)
hasChild hasAunt hasChild hasChild hasGreatGrandfather
hasNephew hasParent hasParent

e Y

‘ hasGrandparent - ‘

v
Daughter(F22) Father(M01)

hasCousin hasGrandparent

A\’P
Son(M20)
Figure 6. Graph of instances after reasoning.

4 Conclusions and Future Work

In this paper we have demonstrated a tool whiclpeup graph-based creation and
edition of SWRL rules. The tool provides a visuatisn of an OWL ontology, SWRL
rules and data. The graph-based representatioarysconvenient and intuitive. It is
an initial implementation which supports the creatof SWRL rules in a graphical
manner. The work presented in this paper is bagseguo previous experiences with
graph-based representation of rules [15].

The developed graph-based editor can be used iy d@mains where ontologies,
rules and graphs can be employed to support useheir work. Moreover, changes
in a SWRL rule base can be made by business sigéxiaithout engaging an experi-
enced programmer. As a result, the usual procesomdultation between them is
omitted or shortened in time. Thus, the tool camificantly increase their work’s
efficiency.

In further work, we will implement a query methait §earching a knowledge base
in a graphical manner. Moreover, we will providestational database interface. As a
result, a semantic query will be posed into angrdted environment which will in-
clude a relational database, a set of rules ar@htoiogy. In this case any graph con-
taining nodes and edges could be entered as ahsphrase. The reasoning engine
will search the whole knowledge base for a givehaseconditions, and return all
objects that meet the specified requirements.

Another desired feature is to support OWL 2, whiohtains profiles designed for
reasoning with rules and query answering, the Ril @h profiles respectively. A
method of comparison between inferred and nontiefeknowledge bases is also
planned.

11

Finally, we are going to make our tool availabléirmfor download and use with
a free academic license (for non-commercial u§éf)
Acknowledgement. This work was supported by DS-MK 45-102/13 and085/12
DS-PB grants.

References

1. Horrocks, I., Patel-Schneider, P.F., Boley, H., &tals., Grosof, B., Dean, M.: Swrl: A semantic web
rule language combining owl and ruleml. W3C Memb8ubmission (May 21 2004),
http://iwww.w3.org/Submission/SWRL/

2. Shotton D., Catton C., Klyne G., Ontologies for &g Ontologies for Use,
http://ontogenesis.knowledgeblog.org/312?kblogschrde=2

3. Hustadt U., Motik B., Sattler UData Complexity of Reasoning in Very ExpressivecBbgton
Logics,In IN PROC. IJCAI 2005, pages 466-471. ProfessiBuk Center, 2005. (Cited on pages
5and 37.)

4. Motik B., Sattler U., Studer RQuery Answering for OWL-DL with Rulds Journal of Web Seman-
tics, pages 549-563. Springer, 2004.

5. Object Constraint Language (OCL), v2.0. http://wemug.org/spec/OCL/2.0/

UML-based Rule Modelling Language, http://oxygefarmatik.tu-cottbus.de/rewerse-i1l/?q=URML

7. Lukichev S., Jarrar M.: Graphical Notations for &Modeling. In: A. Giurca, D. Gasevic, and K.
Taveter (Eds), Handbook of Research on Emerging-Bated Languages and Technologies: Open
Solutions and Approaches, IGI Publishing, 2009

8. Grzegorz J. Nalepa, Antoni lgga, and Krzysztof Kaczor. 2011. Overview of knowedormaliza-
tion with XTT2 rules. In Proceedings of the 5theimtational conference on Rule-based reasoning,
programming, and applications (RuleML'2011), NicksBiliades, Guido Governatori, and Adrian
Paschke (Eds.). Springer-Verlag, Berlin, Heidelb8&p-336.

9. Michael Kifer, Georg Lausen, and James Wu. Lodicahdations of object oriented and frame-based
languages. J. ACM, 42(4):741-843, 1995

10. Sowa J. F.Conceptual Structures: Information Processing imdland Machine Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1984

11. Hassanpour S., O'Connor M. J., Das A. KRule Management and Elicitation Tool for SWRLeRul
Bases3rd International Rule Challenge at RuleML 2008s Vegas, NV.

12. Hassanpour S., O'Connor M. J., Das A. Rxploration of SWRL Rule Bases through Visualiratio
Paraphrasing, and Categorization of Ryldsternational RuleML Symposium on Rule Interchang
and Applications, Las Vegas, NV, 5858, 246-261,200

13. SWRL Built-ins, http://www.w3.0rg/Submission/2004/BM-SWRL-20040521/

14. Golbreich C., "Combining rule and ontology reassnfor the semantic web.", Rules and Rule
Markup Languages for the Semantic Web. SpringeliBeleidelberg, 2004. 6-22.

15. Nowak M., Bak J., Jedrzejek @yraph-based Rule Editpin Hassan Ait-Kaci, Yuh-Jong Hu, Grze-
gorz J. Nalepa, Monica Palmirani and Dumitru Roretitors, RuleML2012@ECAI Challenge and
Doctoral Consortium at the 6th International Synipmson Rules, Montpellier, France, August 27th-
209th, 2012, volume 874 of CEUR Workshop Proceedi@g8JR-WS.org, 2012.

16. Demo site: http://draco.kari.put.poznan.pl/rulerd20SWRLEditor/

12

