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Abstract. In our paper we will rely on research by Grosholz (2007) considering 
her thesis of the irreducibility of iconic representation in mathematics. Against this 
background,  our  aim  will  be  to  discuss  the  epistemic  value  of  “shape”  or  iconicity  
in diagrammatic representations in geometry. We show that iconic aspects of 
diagrams reveal structural relations underlying the method to solve quadrature 
problems developed by Leibniz (1675/76). As a concluding remark, we shall argue 
that in retrieving the information embedded in a diagram the reader must establish 
a meaningful relationship between the information supplied by the diagram and the 
relevant background knowledge which often remains implicit. 
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Introduction  

In our paper we rely on research by Grosholz (2007) considering, in particular, her 
thesis of the irreducibility of iconic representation in mathematics. Against this 
background,   our   aim   is   to   discuss   the   epistemic   value   of   “shape”   or   iconicity   in   the  
representations of diagrams in the case of geometry. In order to illustrate our point, we 
bring in a case-study selected from Leibniz´s work with diagrams in problem-solving 
activities   in   connection  with   a   “master   problem,   the   Squaring   of   the   Circle   – or the 
precise determination  of  the  area  of  the  circle”,  a  problem  which  remains  insoluble  by  
ruler and compass construction within Euclidean geometry.3 Our main reason to focus 
on Leibniz is as follows. On the one hand, throughout his work as a mathematician, 
Leibniz relies on a variety of tools which display rich iconic aspects in the 
implementation of problem-solving activities. On the other hand, it is precisely in the 
case of geometry where Leibniz makes important contributions. Reasoning with 
diagrams plays a central role in this particular case. In order to solve certain 
geometrical problems which could not be solved within the framework of Euclidean 
geometry, Leibniz devises a method that proceeds by transforming a certain 
mathematically intractable curve into a more tractable curve which is amenable to 
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calculation.   This   method   is   sometimes   called   the   method   of   “transmutation”   as   it   is  
based upon the transformation of one curvilinear figure into another. 

For Leibniz depending upon the context of research some methodological tools are 
more fruitful than others, moreover, simplicity and economy is also amongst the 
epistemic virtues guiding the design of methods for problem-solving activities. In our 
case-study, we show how Leibniz devises a method which allows him to re-conceive a 
given  curve  by  “transforming”  it   into  a  more  tractable  curve  as  part  of  his  strategy  to  
calculate the area of curves that may contain irrational numbers (the real number π  in  
the case of the circle). In particular, we aim to show that iconic aspects of diagrams 
reveal   structural   relations   underlying   the   process   of   “transformation”   developed   by  
Leibniz in Quadrature   arithmetique   du   circle,   de   la   ellipse   et   de   l’   hyperbole 
(1675/76).4 

1. The  Idea  of  “Shape”  As Iconic Representation 

Let  us  start  by  focusing  on  the  idea  of  “shape”  in  the  sense  of  “iconic  representation”.  
Representations may be iconic, symbolic and indexical depending upon their role in 
reasoning with signs in specific contexts of work.5 According to the traditional view 
representations are iconic when they resemble the things they represent. In many cases 
this characterization appears as doubtful because of its appeal to a vague idea of 
similarity which would seem untenable when representations of numbers are involved. 
But Grosholz argues that in mathematics iconicity is often an irreducible ingredient, as 
she writes, 

 
In many cases, the iconic representation is indispensable. This is often, though 
not always, because shape is irreducible; in many important cases, the 
canonical representation of a mathematical entity is or involves a basic 
geometrical  figure.  At  the  same  time,  representations  that  are  ‘faithful  to’  the  
things they represent may often be quite symbolic, and the likenesses they 
manifest may not be inherently visual or spatial, though the representations 
are, and articulate likeness by visual or spatial means [3, p. 262]. 
 
In order to determine whether a representation is iconic or symbolic, the context of 

research with its fundamental background knowledge needs to be taken into account in 
each particular case, in other words, iconicity cannot simply be read off the 
representation in isolation of the context of use. We find here a more subtle 
understanding   of   “iconicity”   than   the   traditional   view.   Let   us focus on the idea that 
representations  “articulate  likeness  by  visual  or  spatial  means”.  Grosholz  suggests  that  
even highly abstract symbolic reasoning goes hand in hand with certain forms of 
visualizations. 

Giardino (2010) offers a useful characterization of the cognitive activity of 
“visualizing”   in   the   formal   sciences.   In   visualizing,   she   explains,   we   are   decoding  
articulated information which is embedded in a representation, such articulation is a 
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specific kind of spatial organization that lends unicity to a representation turning it 
intelligible. In other words, spatial organization is not just a matter of physical display 
on   the   surface   (paper   or   table)   but   “intelligible   spatiality”   which   may   require  
substantial background knowledge: 

(...) to give a visualization is to give a contribution to the organization of the 
available information (...) in visualizing, we are referring also to background 
knowledge with the aim of getting to a global and synoptic representation of 
the problem [1, p. 37]. 
 
According to this perspective, the ability to read off what is referred to in a 

representation depends on some background knowledge and expertise of the reader. 
Such cognitive act is successful only if the user is able to decode the encrypted 
information of a representation while establishing a meaningful relationship between 
the representation and the relevant background knowledge which often remains implicit. 
The starting point of this process is brought about by representations that are iconic in a 
rudimentary way, namely, they have spatial isolation and organize information by 
spatial and visual means; and they are indivisible things. In the next section we turn to 
our   case   study   taken   from   Leibniz’s   work   in   geometry which we hope will help to 
illustrate some of the above considerations.  

2. Our Case Study - Leibniz’s  De Quadratura Arithmetica (1675/76) 

In Quadrature arithmétique du cercle, de l'ellipse et de l'hyperbole [8] Leibniz 
provides a general method whereby “quadrature”  problems  for  curvilinear  figures  can  
be solved. The first seven propositions of this work form a unity and as Leibniz himself 
emphasizes, Proposition 7 is the "fruit" of all that has gone before [8, p. 35]. In this 
context of work, Leibniz presents the reader a diagram (Fig. 1). 
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Figure 1. Leibniz Quadrature  arithmetique  du  circle,  de  l’ellipse  et  de  l’huperbole 1675/76, [8, p. 65]. 

 
While for the untrained eye this diagram appears as a set of highly entangled 

shapes, for Leibniz, the diagram should offer the reader an overall assessment of the 
way  his  proposed  method  works.  In  order  to  show  the  most  salient  aspects  of  Leibniz’s  
method we shall try to make more explicit some of the features displayed in Figure 1. 
We proceed to put the original  diagram  “under  the  microscope”  dissecting  it  into  four  
diagrams (Figures 2-5). This will allow us to see some of the most relevant steps 
involved in the resolution of the problem under consideration. These visualizations 
together with the indications as to   how   to   “read”   Figures   2-5 may then be seen as 
offering a brief outline of Leibniz´s method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2     Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4     Figure 5 
 
 
Leibniz aims to show that the area of a curvilinear figure C – which cannot be 

calculated - may be determined by constructing a second figure D, whose area can be 
calculated. A crucial step in Leibniz reasoning relies upon certain geometrical results 
known since Euclid which allow us to assume that the ratio between C and D is known 
to us. This step in the reasoning is represented in the diagram by two different shapes 
that we have highlighted in Figure 2. On the one hand, we see an enclosed area 
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delimited by segments A1C, A3C and the arc 1C2C3C – which represents the area C, 
unknown to us. On the other hand, we see another enclosed area delimited by segments 
1B1D, 1B3B, 3B3D and the curve 1D2D3D which represents the area of the second figure 
D. Finally, we can also see some specific lines that represent geometrical relations 
between both figures according to Euclidean geometry.6 

With a view to determine the area of curvilinear figure C we first need to find the 
area of figure D. Leibniz proceeds to decompose D into a finite number of elemental 
parts - the rectangles 1N1B2B1S and 2N2B3B2S - which are then added up. We have 
highlighted this procedure in Figure 3. As we can also see the sum of rectangles makes 
up a new shape or figure which Leibniz calls “espace  gradiforme”.7 At this stage of the 
reasoning,   the   construction   of   such   “space”   is   crucial   for   Leibniz’s   problem-solving 
strategy. Instead of an exact calculation of the area of D, Leibniz approximates the area 
of D by calculating the area of such “espace   gradiforme”, so that the difference 
between both figures will be less than any assignable number. 

Next,  the  newly  constructed  “espace  gradiforme”  is transposed upon figure C (See 
Figures 4 and 5). This procedure can be described in two steps. 

The   first   step   consists   in   decomposing   the   curvilinear   figure   C   into   “triangles”  
which we highlighted in Figure 4. Note that the number of triangles will be greater than 
any arbitrarily assignable number as it is possible to decompose the figure into 
arbitrarily many triangles where the whole set of triangles has the single vertex A. Here 
Leibniz takes distance from other techniques used at the time. While Cavalieri, for 
instance, often decomposed curvilinear figures into parallelograms, Leibniz proceeds to 
resolve the problem by decomposing curvilinear figures into triangles (for an 
illustration of this difference see Figure 6). Accordingly, instead of rectangles or 
parallelograms, the elemental parts in this case will be triangles, as Leibniz points out 
in Scholium 1 of the treatise: 

 
(...) on peut en effet également décomposer en triangles des figures 
curvilignes  qu’à   l’exemple  d’autres  grands   savants  Cavalieri  ne  décomposait  
souvent   qu’en   parallélogrammes,   sans   utiliser,   à   ma   connaissance,   une  
résolution générale en triangles [8, p. 39]. 
 
 

                                                           
6  Leibniz   relies   upon   a   generalization   of   Euclid’s   Elements   (Proposition   1,   Book   I)   to   justify   his  

reasoning  when  assuming  that  the  “triangle” A2C3C equals  one  half  of  the  “rectangle”  2B2N. 2B3B (A2C3C = 
1/2 2B2N. 2B3B). See [9]. 

7 The expression Leibniz used in the original Latin is "spatium gradiforme" [8, p. 69]. 
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Figure 6. Leibniz’s  method  as  opposed  to  Cavalieri’s  method. 
 
The second step consists in the construction of the “espace  gradiforme” upon C 

(See Figure 5). To this end, Leibniz uses the rectangle with sides 2B2N and 2N2S which 
can be constructed from a given triangle A2C3C relying on certain well-established 
geometrical relations which hold so that the ratio between the areas of figures C and D 
is ½. It is precisely in this context where Leibniz relies upon results already established 
by Euclid.8 

Let   us   now   return   to   Leibniz’s   original   diagram   corresponding to Proposition 7 
(See Figure  1).  With  Euclid’s  results  concerning  structural  relations  between  two  types  
of shapes - triangles and rectangles – in mind, we are justified to establish a correlation 
between triangles A1C2C, A2C3C,…   and   corresponding   rectangles   1B1N2B1S, 
2B2N3B2S,.... For instance, the triangle A2C3C corresponds to the rectangle 2D2B3B2S. 
Next, we recall that the area of figure D can be approximated by the sum of the (finite 
number of) elemental parts – rectangles – the original figure D was decomposed into. 

Finally, the area of the curvilinear figure C can be calculated by applying the ratio 
of ½ upon the area of figure D. According to Leibniz, the calculation obtained by this 
method is not exact but one may consider it is a precise determination of the area of the 
curvilinear figure C. To sum up, it is by recognizing certain geometrical relations 
holding between triangles and rectangles that one can see that the precise determination 
of the area of the curvilinear shape will depend upon the value of the approximation of 
the   area   of   D.   The   latter,   in   turn,   can   be   calculated   on   the   basis   of   the   “espace  
gradiforme”,  the  new  shape  designed  by  Leibniz  which is required to approximate the 
value of D.  

3. Concluding Remarks 

In this section we finally consider some of the requirements which are imposed upon 
the   reader   in  order   to  be   able   to  perform   the   relevant   “cognitive   act”  of   successfully  
decoding   a   visualization   that   includes   “shapes”   in   the   context   of   problem   solving  
activities in mathematics. Again, we shall focus on the diagram of our case-study 
(Figure 1). 

Diagrams are shapes that represent by spatial and visual means. Their intelligibility 
partly depends on their integrity and shape, features that make a diagram intrinsically 
iconic. But diagrams also often combine, as Grosholz argues, iconic aspects with 
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symbolic ingredients. If diagrams were just iconic, they would be but a copy – a more 
or less faithful picture - of what we intent to refer to. However, diagrams are inherently 
general, a drawing of, say, curvilinear shape without being just a drawing of a 
particular curve on this particular page of a text. On the one hand, diagrams resemble a 
particular shape, on the other hand, they represent a whole set of (instances of) a certain 
shape and are in this sense general. To clarify this feature of diagrams we distinguish 
following  M.  Giaquinto  between  “discrete”  and  “indiscrete”  representations, 

 
(...) diagrams very frequently do represent their objects as having properties 
that, though not ruled out by the specification, are not demanded by it. In fact 
this is often unavoidable. Verbal descriptions can be discrete, in that they 
supply no more information than is needed. But visual representations are 
typically indiscrete, because for many properties or kinds F, a visual 
representation cannot represent something as being F without representing it 
as being F in a particular way [1, p. 28]. 
 
“Indiscrete   representations”   as   opposed   to   “discrete   representations”   are  

representations that represent by spatial and visual means including the combination of 
iconic aspects as well as symbolic ingredients. As a consequence of this important 
feature of diagrams, it follows that both particular instances and generality go hand in 
hand. Returning to our case-study and Leibniz’s  diagram,  we  may  offer  the  following  
three observations in this regard: 

 
 The diagram that goes with proposition 7 (Figure 1) exhibits a circular shape. 

We   may   consider   that   Leibniz’s   method   to   calculate   the   area   for   this  
curvilinear shape works only for this particular curve. But Leibniz intends to 
use his method as a general method so as to include any curvilinear shape, as 
he writes in the Schollium to proposition XI: 

 
La  proposition  7  m’a  fourni  le  moyen  de  construire  une  infinité  de  figures  
de longueur   infinie  égales  au  double  d’un  segment  ou  d’un  secteur   (…)  
d’une   courbe   donnée   quelconque,   et   ceci   d’une   infinité   de   manières  
(Leibniz 1676, p. 97).9 
 

 In the diagram (Figure 1) the curvilinear shape C is actually divided into only 
four points, namely, 1C2C3C4C. However, it is possible to divide the arc C into 
as many points as we want. 

 If the number of points is large enough, the diagram will be less faithful to the 
particular instance that it pretends to represent and when the magnitude of 
segment A1C is less than any assignable number, we have the limit-case. At 
this point, the space 1CA3C2C  (called  “triligne”  by  Leibniz)  can  be  assumed  as  
a space composed by curve 1C2C3C and the straight line A3C  (called  “secteur”  
by Leibniz)10. 
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Proposition 6 of Quadrature arithmetique. 
10 See [8, p. 97]. 
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Note that in our case-study, the reader has to select only part of the information 
furnished by the diagram; he/she has to be able to discern the relevant information 
contained in the diagram in the light of the problem under consideration. In particular, 
it is necessary to distinguish in the diagram between iconic ingredients and symbolic 
ingredients. What exactly is required of the reader to be able to decode the relevant 
information encrypted in the diagram? To answer this question we return here to 
Giardino’s   observation   that   “to   give   a   visualization   is   to   give   a   contribution   to   the  
organization   of   the   available   information”.   First   the   reader   needs   to   consider   the  
context in which the diagram is inserted.  As already noted, part of the context is made 
explicit by remarks written in natural language as it is the case in the written text 
accompanying the diagram [8, pp. 65, 67]. In the written text, Leibniz explains how to 
construct the diagram he shows together with Proposition 7 (our Figure 1). But such 
description is hardly enough, as the reader still needs to rely on substantial information 
– background knowledge concerning relevant chapters of the history of geometry – in 
order   to   get   “a   global   and   synoptic   representation   of   the   problem”.      However the 
relevant background knowledge  cannot  be  made  fully  explicit,  at  least  not  “all  at  once”.  
The expertise of the community of mathematicians which includes different traditions 
of  research and, in a broad sense, the history of mathematics, provides different tools 
and techniques which need to be acquired by teaching and learning. For instance, in our 
case-study  Leibniz’s  diagram  relies  heavily  on  procedures  and  techniques  whose  origin  
goes back to Euclid and Archimedes but also recalls the work of some of his 
contemporaries such as Cavalieri's "theorem of indivisibles" and Pascal's 
"characteristic  triangle",  which  is  used  by  Leibniz  in  order  to  “transform”  triangles  into  
rectangles. Finally, as we may divide the arc C into "as many points as we want", 
sometimes the diagram is meant to be read as an infinitesimal configuration and at this 
point the symbolic dimension of the diagram comes into play so that in each case the 
trained eye of the reader will be required to be able to recognize the roles of these 
different dimensions. 
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