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ABSTRACT
Ontologies are used to represent and share knowledge. Nu-
merous ontologies have been developed so far, especially in
knowledge intensive areas such as the biomedical domain.
As the size of ontologies increases, their continued devel-
opment and maintenance is becoming more challenging as
well. Detecting and representing semantic differences be-
tween versions of ontologies is an important task for which
automated tool support is needed. In this paper we investi-
gate the logical difference problem using a hypergraph rep-
resentation of EL-terminologies. We focus solely on the con-
cept difference wrt. a signature. For computing this differ-
ence it suffices to check the existence of simulations between
hypergraphs whereas previous approaches required a combi-
nation of different methods.

1. INTRODUCTION
Ontologies are widely used to represent domain knowledge.
They contain specifications of objects, concepts and relation-
ships that are often formalised using a logic-based language
over a vocabulary that is particular to an application do-
main. Ontology languages based on description logics [2]
have been widely adopted, e.g., description logics are under-
lying the Web Ontology Language (OWL) and its profiles.1

Numerous ontologies have already been developed, in par-
ticular, in knowledge intensive areas such as the biomedical
domain.2 Ontologies constantly evolve, they are regularly
extended, corrected and refined. As the size of ontologies
increases, their continued development and maintenance be-
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comes more challenging as well. For instance, the ontology
SNOMED CT contains now definitions for about 400 000
terms, and the ‘NCBI organismal classification’ ontology
even for about 850 000 terms. In particular, the need to
have automated tool support for detecting and represent-
ing differences between versions of an ontology is growing in
importance for ontology engineering. Current support from
ontology editors, such as Protegé, SWOOP, OBO-Edit, and
OntoView, is mostly based on syntactic differences and does
not capture the semantic differences between ontologies. An
early detection of possibly unwanted semantic changes can
contribute to an error-resilient authoring process of ontolo-
gies.

The aim of this paper is to propose and investigate the
logical difference problem using a hypergraph representa-
tion of ontologies. The logical difference problem was intro-
duced in [7], where the logical difference is taken to be the
set of queries formulated in a vocabulary of interest, called
signature, that produce different answers when evaluated
over ontologies that are to be compared. In this paper we
concentrate on ontologies expressed as terminologies in the
lightweight description logic EL [1, 3] and on queries that
are concept inclusions formulated in EL. Even though EL-
terminologies merely serve as a starting point for this inves-
tigation, we can illustrate the elegance of the hypergraph-
based approach and the advantages over existing approaches
to computing the logical difference. The relevance of EL is
emphasised by the fact that many ontologies are largely for-
mulated in EL, notable examples being SNOMED CT and
NCI.

An EL-terminology can easily be translated into a directed
hypergraph by taking the signature symbols as nodes and
treating the axioms as hyperedges. For instance, the axiom
A v ∃r.B is translated into the hyperedge ({xA}, {xr, xB}),
and the axiom A ≡ B1 u B2 into the three hyperedges
({xA}, {xB1}), ({xA}, {xB2}) and ({xB1 , xB2}, {xA}), where
each node xY corresponds to the signature symbol Y , respec-
tively. A feature of the translation of axioms into hyperedges
is that all information about the axiom and the logical oper-
ators in it is preserved. We can actually treat the ontology
and its hypergraph interchangeably. The existence of cer-
tain simulations between hypergraphs characterises the fact
that the corresponding terminologies are logically equivalent
and, thus, no logical difference exists. If no simulation ex-



ists, we can directly extract the axioms responsible for the
concept inclusion that witnesses the logical difference from
the hypergraph.

The main advantages of the hypergraph-based approach to
logical difference are: (i) an elegant algorithm for detecting
the existence of concept differences (solely involving check-
ing for simulations in hypergraphs), even for large or cyclic
terminologies; (ii) a straightforward way to construct con-
cept inclusions that witness the logical difference between
two terminologies, even for cyclic terminologies; and (iii) a
simple computation of explanations, i.e., sets of axioms that
entail such concept inclusions. Currently, the algorithms im-
plemented for detecting the logical difference work for large
but acyclic terminologies such as SNOMED CT [5–7]. The
algorithm in [6] can also handle “small” cyclic terminologies,
but the concept inclusions witnessing a difference cannot
easily be constructed using that algorithm.

The paper is organised as follows. We start by reviewing
some notions regarding the description logic EL, the logical
difference problem, and ontology hypergraphs. In Section 3,
we introduce two simulation notions, a forward and a back-
ward simulation, one for each type of concept inclusion that
may witness the logical difference between two terminolo-
gies. In each case we show that the existence of a simula-
tion between two terminologies corresponds to the absence
of difference witnesses. We analyse the computational com-
plexity of checking for simulations, and we sketch how to
construct counter-examples. In Section 4, we discuss previ-
ous approaches to computing the logical difference in [5] and
explain the advantages of the hypergraph-based approach
introduced in this paper. Finally we conclude the paper.

2. PRELIMINARIES
We start by briefly reviewing the lightweight description
logic EL and some notions related to the logical difference,
together with some basic results.

2.1 The Logic EL
Let NC and NR be mutually disjoint sets of concept names
and role names. We assume these sets to be countably infi-
nite. We typically use A,B to denote concept names and r
to denote role names. The set of EL-concepts C is defined
inductively as:

• > and all concept names in NC are EL-concepts,

• if C,D are EL-concepts, then C uD and ∃r.C are EL-
concepts, where r ∈ NR.

An EL-TBox T is a finite set of axioms, where an axiom
can be a concept inclusion C v D, or a concept equation
C ≡ D, where C,D range over EL-concepts.

The semantics of EL is defined using interpretations I =
(∆I , ·I), where the domain ∆I is a non-empty set, and ·I is a
function mapping each concept name A to a subset AI of ∆I

and every role name r to a binary relation rI over ∆I . The
extension CI of a concept C is defined inductively as follows:
>I := ∆I , (C uD)I := CI ∩DI and (∃r.C)I := {x ∈ ∆I |
∃y ∈ CI : (x, y) ∈ rI}. An interpretation I satisfies a
concept C, an axiom C v D or C ≡ D if, respectively,

CI 6= ∅, CI ⊆ DI , or CI = DI . We write I |= α if I
satisfies the axiom α. An interpretation I satisfies a TBox T
if I satisfies all axioms in T ; in this case, we say that I is
a model of T . An axiom α follows from a TBox T , written
T |= α, if for all models I of T , we have that I |= α.
Checking that T |= α can be done in polynomial time in the
size of T and α [1, 3].

A signature Σ is a finite set of symbols from NC and NR. The
signature sig(C), sig(α) or sig(T ) of the concept C, axiom α
or TBox T is the set of concept and role names occurring in
C, α or T , respectively. An ELΣ-concept C is an EL-concept
such that sig(C) ⊆ Σ.

Two TBoxes T and T ′ are logically equivalent wrt. a sig-
nature Σ, written T ≡Σ T ′, if for all EL-axioms α with
sig(α) ⊆ Σ: T |= α iff T ′ |= α. In other words, two TBoxes
are logically equivalent wrt. a signature if the same axioms
formulated in the signature follow from them. In this case,
the TBoxes are also said to be Σ-inseparable. Conserva-
tive extensions are a special case of logical equivalence: for
T ⊆ T ′ and Σ = sig(T ), T ′ is a conservative extension of
T wrt. Σ iff T ≡Σ T ′. Deciding the logical equivalence of
EL-TBoxes wrt. a signature is ExpTime-complete [9].

To be able to better deal with complex concepts in a TBox,
we assume that there are no nested existential restrictions.
We say that a TBox T is flattened if all conjunctions C uD
and existential restrictions ∃r.E in T are such that C,D are
concept names or conjunctions, and E is a concept name.
We ignore the nesting of binary conjunctions and treat them
as n-ary conjunctions of n concept names, where n ≥ 2.
The axioms of a flattened TBox are of the form X ./ Y ,
where X,Y ∈ {>} ∪ {B1 u · · · u Bn | n > 0, Bi ∈ NC} ∪
{∃r.A | r ∈ NR, A ∈ NC} and ./ ∈ {v,≡}. Any EL-TBox
can be flattened by appropriately replacing nested complex
concepts C by fresh concept names XC and adding concept
equations XC ≡ C to the TBox that define the new symbols.
It can be readily seen that this transformation is tractable
and that it does not change the meaning of the original
TBox. The following lemma makes this precise.

Lemma 1. For every EL-TBox T , there is a flattened EL-
TBox T ’ of polynomial size in the size of T such that T ≡Σ

T ′ with Σ = sig(T ).

For the remainder of the paper we assume that TBoxes are
flattened.

2.2 Terminologies in Normal Form
An important motivating feature of EL is that it exhibits
a low complexity for standard reasoning tasks. However,
as we have seen above, deciding the logical equivalence of
EL-TBoxes wrt. a signature already requires exponential
time.3 To gain tractability for deciding the logical equiva-
lence, TBoxes are restricted to a particular form as in [5,7].

Definition 1. An EL-TBox T is called an EL-terminology
if it satisfies the following conditions:

3Note that it is tractable to check the logical equivalence of
two EL-TBoxes without restricting the signature [1, 3].



• all concept inclusions and equations in T are of the
form A v C, A ≡ C, where A is a concept name, and

• no concept name A occurs more than once on the left-
hand side of an axiom in T .

The restriction to EL-terminologies yields that deciding log-
ical equivalence wrt. a signature becomes tractable [5, 7].

Definitions in terminologies can be cyclic, which may cause
difficulties for reasoning algorithms. A terminology is cyclic
if a concept name refers to itself along concept inclusions
and equations. To be precise, for a terminology T , let ≺T
be a binary relation over NC such that A ≺T B if there is
an axiom of the form A v C or A ≡ C in T such that
B ∈ sig(C). A terminology T is acyclic if the transitive
closure of ≺T is irreflexive; otherwise T is cyclic. An acyclic
terminology can be unfolded (i.e. the process of substituting
concept names by their definitions stops).

In this paper we do not restrict terminologies to be acyclic.
However, we have to take care of certain cycles. In our
approach we want all conjunctions to be unfolded. That is,
for any conjunction A1 u · · · u Am in T , we substitute any
Ai with B1u· · ·uBn if Ai ≡ B1u· · ·uBn ∈ T . To this end
we need to handle the cycles along such concept equations.
Formally, a terminology T has unfoldable conjunctions if it
does not contain any concept equations A1 ≡ F1, . . . , An ≡
Fn, where F1, . . . , Fn are conjunctions of concept names such
that Ai+1 ∈ sig(Fi) for every 1 ≤ i < n, and A1 ∈ sig(Fn).
Any terminology can be rewritten such that it has unfoldable
conjunctions without changing the logical consequences (cf.
proof of Lemma 1 in [5]). We say that a concept name A is
conjunctive in T iff there exist concept names B1, . . . , Bn,
n > 0, such that A ≡ B1 u . . .uBn ∈ T ; otherwise A is said
to be non-conjunctive in T . Note that after the unfolding
of conjunctions (and removing of cycles) in a terminology T
no concept name that appears as a conjunct is defined as a
conjunction in T .

To simplify the presentation we assume that terminologies
do not contain trivial axioms of the form A ≡ > or A ≡ B,
where A and B are concept names.

An EL-terminology T is normalised if it consists of EL-
concept inclusions and equations of the following forms:

• A ≡ ∃r.B, A ≡ ∃r.>, A ≡ B1 u . . . uBm, and

• A v ∃r.B, A v ∃r.>, A v B1 u . . . uBn,

where m ≥ 2, n ≥ 1, and A, B, Bi are concept names such
that every conjunct Bi is non-conjunctive in T .

2.3 Logical Difference
The logical difference between two TBoxes witnessed by con-
cept inclusions over a signature Σ is defined as follows.

Definition 2. The Σ-concept difference between two EL-
TBoxes T1 and T2 for a signature Σ is the set DiffΣ(T1, T2)
of all EL-concept inclusions α such that sig(α) ⊆ Σ, T1 |= α,
and T2 6|= α.

As the set DiffΣ(T1, T2) is infinite in general, we make use
of the following “primitive witnesses” theorem from [5] that
states that we only have to consider two specific types of
concept differences.

Theorem 1 (Primitive witnesses). Let T1 and T2 be
EL-terminologies and Σ a signature. If α ∈ DiffΣ(T1, T2),
then either C v A or A v D is a member of DiffΣ(T1, T2),
where A ∈ sig(α) is a concept name and C, D are EL-
concepts occurring in α.

We define cWtnlhs
Σ (T1, T2) as the set of all concept names

A from Σ such that there exists an ELΣ-concept C with
A v C ∈ DiffΣ(T1, T2). Similarly, cWtnrhs

Σ (T1, T2) is the set
of all concept names A ∈ Σ such that there exists an ELΣ-
concept C with C v A ∈ DiffΣ(T1, T2). The concept names
in cWtnlhs

Σ (T1, T2) are called left-hand side witnesses and the
concept names in cWtnrhs

Σ (T1, T2) right-hand side witnesses.
Note that these sets are subsets of Σ, and by Theorem 1
their union is a finite and succinct representation of the set
DiffΣ(T1, T2), which is typically infinite.

Checking for the concept difference between two terminolo-
gies equals checking for the existence of left- and right-hand
side witnesses. As a corollary of Theorem 1, we have that:
DiffΣ(T1,T2)=∅ iff cWtnlhs

Σ (T1,T2)=∅ and cWtnrhs
Σ (T1,T2)=∅.

2.4 Ontology Hypergraphs
Hypergraphs are a generalisation of graphs with many ap-
plications in computer science and discrete mathematics.
In knowledge representation hypergraphs have been used
implicitly to define reachability-based modules of ontolo-
gies [11], and explicitly to define locality-based modules [10].
In this paper we also make the notion of a hypergraph ex-
plicit by transforming terminologies into hypergraphs in or-
der to be able to define simulations on the graphs.

A directed hypergraph is a tuple G = (V, E), where V is a non-
empty set of nodes (or vertices), and E is a set of directed
hyperedges of the form e = (S, S′), where S, S′ ⊆ V. We use
hypergraphs to represent terminologies as follows.

Definition 3. For a normalised terminology T and a sig-
nature Σ, the ontology hypergraph GΣ

T of T for Σ is a directed
hypergraph GΣ

T = (V, E) defined as follows:

V = {xA | A ∈ NC ∩ (Σ ∪ sig(T )) }
∪ {xr | r ∈ NR ∩ (Σ ∪ sig(T )) }
∪ {x>}

and

E = { ({xA}, {xBi}) | A v B1 u . . . uBn ∈ T , 1 ≤ i ≤ n }
∪ { ({xA}, {xBi}) | A ≡ B1 u . . . uBn v T , 1 ≤ i ≤ n }
∪ { ({xA}, {xr, xY }) | A v ∃r.Y ∈ T , Y ∈ NC ∪ {>} }
∪ { ({xA}, {xr, xY }) | A ≡ ∃r.Y ∈ T , Y ∈ NC ∪ {>} }
∪ { ({xr, xY }, {xA}) | A ≡ ∃r.Y ∈ T , Y ∈ NC ∪ {>} }
∪ { ({xB1 , . . . , xBn}, {xA}) | A ≡ B1 u . . . uBn ∈ T }



An ontology hypergraph GΣ
T contains a node for > and for

every role and concept name in Σ or T . Hyperedges in
GΣ
T represent axioms in T . Every hyperedge is directed

and can be understood as an implication, i.e., ({xA}, {xB})
represents T |= A v B. The complex hyperedges are of
the form ({xA}, {xr, xB}) and ({xr, xB}, {xA}) represent-
ing T |= A v ∃r.B and T |= ∃r.B v A, and of the form
({xB1 , ..., xBn}, {xA}) standing for T |= B1 u . . . uBn v A.
Note that due to the normalisation of T , conjunctions al-
ways have more than one conjunct (i.e. n ≥ 2).

Example 1. Let T = {A ≡ B1uB2uB3, B3 v ∃r.B4, B4 v
B1} and Σ = {B5}. Then the ontology hypergraph GΣ

T of T
for Σ can be depicted as follows:

xA

xB1

xB2

xB3

xB4

xB5 x>

xr

3. LOGICAL DIFFERENCE USING
HYPERGRAPHS

Our approach for detecting logical differences wrt. Σ is based
on finding appropriate simulations between the hypergraphs
GΣ
T1

and GΣ
T2

such that every node xA in GΣ
T1

with A ∈ Σ is

simulated by the node xA in GΣ
T2

. It is well known that the
existence of a simulation between two graph structures can
be used to characterise some notion of equivalence between
the graphs [4], for example reachability. In this paper we aim
to capture logical entailment wrt. a signature by defining the
simulation relations appropriately.

We first introduce an auxiliary relation →T over the nodes
of the ontology hypergraph GΣ

T of the terminology T . The
relation→T is a special reachability notion in GΣ

T that mim-
ics reasoning wrt. T . The definition of →T is related to
the completion algorithm for classification in EL [1] and
OWL 2 QL [8]. Afterwards we define two types of sim-
ulations between the hypergraphs of two terminologies T1

and T2, one type of simulation for each type of witness.

Definition 4. Let GΣ
T = (V, E) be the ontology hypergraph

of a normalised terminology T for a signature Σ. The re-
lation →T ⊆ V(1) × V(2) is inductively defined as follows,
where V(k) = {S ⊆ V | 0 < |S| ≤ k }:

(i) {x} →T {x} for every x ∈ V;

(ii) {x} →T {z} if {x} →T {y}, ({y}, {z}) ∈ E ;

(iii) {x} →T {xr, z} if {x} →T {y}, ({y}, {xr, z}) ∈ E ;

(iv) {x} →T {z} if {x} →T {xr, y}, {y} →T {y′}, and
({xr, y′}, {z}) ∈ E ;

(v) {x} →T {z} if {x} →T {xr, y}, ({xr, x>}, {z}) ∈ E ;

(vi) {x} →T {z} if {x} →T {yi} for all i ∈ {1, . . . , n},
({y1, . . . , yn}, {z}) ∈ E .

Note that the relation →T associates nodes xA that repre-
sent concept names A either with nodes xB that stand for
concept names B or with pairs of nodes {xr, z} representing
concepts of the form ∃r.A or ∃r.>. The binary relation →T
is reflexive and transitive on single nodes by Conditions (i)
and (ii). Moreover, in Condition (vi) transitivity of →T is
extended to hyperedges with complex left-hand sides, repre-
senting axioms of the form A ≡ B1u. . .uBn. The other con-
ditions handle pairs of nodes. Condition (iii) states that any
indirectly reachable pair {xr, z} via an intermediate node
is also directly reachable via →T , while Condition (iv) en-
sures the same property for indirectly reachable nodes via
intermediate pairs. Condition (v) is a special case of (iv)
for handling pairs involving > as ontology hypergraphs for
normalised terminologies T do not contain hyperedges from
nodes xA representing concept names to x> representing >
(T does not contain any axioms of the form A v > or
A ≡ >).

It can be readily seen that the relation→T can be computed
in polynomial time.

We emphasise here that the relation →T does not coincide
with the usual reachability notion in a hypergraph. The
following example shows that →T connects reachable nodes
but not all reachable nodes are connected via →T . This
means that the usual reachability relation does not correctly
mimic logical consequences entailed by T .

Example 2. Let T = {A v ∃r.B′, ∃r.B′ v B, ∃r.B v
A′}. It holds that {xA} →T {xB}, i.e. T |= A v B, and
the node xB is reachable from xA (in terms of standard
graph reachability). However, xA′ is also reachable from xA
whereas {xA} 6→T {xA′} and T 6|= A v A′.

The notion of reachability induced by the relation →T can
be characterised in terms of entailment.

Lemma 2. Let GΣ
T = (V, E) be the ontology hypergraph

of a normalised terminology T for a signature Σ. Then we
have for every A,B, r ∈ Σ ∪ sig(T ):

(i) T |= A v B iff {xA} →T {xB};

(ii) T |= A v ∃r.B iff {xA} →T {xr, xB′} and {xB′} →T
{xB} for some B′ ∈ Σ ∪ sig(T );

(iii) T |= A v ∃r.> iff {xA} →T {xr, xY } for some Y ∈
Σ ∪ sig(T ) ∪ {>}.

As described above, we want to check for every concept
name A ∈ Σ whether A belongs to cWtnlhs

Σ (T1, T2) or to
cWtnrhs

Σ (T1, T2). For the former, we check for the existence
of a forward simulation, and for the latter, for the existence
of a backward simulation between the ontology hypergraphs
GΣ
T1

and GΣ
T2

. We define the simulations in the following
subsections.



3.1 Forward Simulation
Based on the relation →T we can now give the definition of
the forward simulation, which connects nodes in GΣ

T1
with

nodes in GΣ
T2

that are reachable via →T1 and →T2 , respec-
tively.

Definition 5. Let GΣ
T1

= (V1, E1), GΣ
T2

= (V2, E2) be ontol-
ogy hypergraphs of two normalised terminologies T1 and T2

for a signature Σ. A relation ↪→f
Σ ⊆ V1×V2 is a forward Σ-

simulation between GΣ
T1

and GΣ
T2

if the following conditions
hold:

(if ) if xA ↪→f
Σ xA′ , then for every B ∈ Σ with {xA} →T1

{xB} it holds that {xA′} →T2 {xB};

(iif ) if xA ↪→f
Σ xA′ , then for every r ∈ Σ such that {xA} →T1

{xr, xX} there is a xX′ ∈ V2 such that {xA′} →T2

{xr, xX′} and xX ↪→f
Σ xX′ .

We write GΣ
T1
↪→f

Σ G
Σ
T2

iff there exists a forward Σ-simulation

↪→f
Σ ⊆ V1 × V2 such that (xA, xA) ∈ ↪→f

Σ for every A ∈ Σ.

For a node xA in GΣ
T1

to be forward simulated by xA′ in GΣ
T2

,
Condition (if ) enforces that every Σ-concept name B that
is entailed by A in T1 must also be entailed by A′ in T2.
Condition (iif ) ensures a similar requirement for concepts
of the form ∃r.X with X ∈ sig(T1) ∪ {>} such that T1 |=
A v ∃r.X while propagating the simulation to the successor
node xX .

Example 3. Let T1 = {A v ∃r.A}, T2 = {A v ∃r.X, X v
A u Y, Y v ∃r.X}, and Σ = {A, r}. Then one can see
that DiffΣ(T1, T2) = ∅. Furthermore, wrt. GΣ

T1
it only holds

that {xA} →T1 {xA}, {xA} →T1 {xr, xA}. Regarding GΣ
T2

,
we have {xA} →T2 {xA}, {xA} →T2 {xr, xX}, {xX} →T2

{xA}, {xX} →T2 {xr, xX}. Hence, one can see that S =
{(xA, xA), (xA, xX)} is a forward Σ-simulation between GΣ

T1

and GΣ
T2

with (xA, xA) ∈ S. A graphical representation of

the ontology hypergraphs GΣ
T1

, GΣ
T2

and of the simulation S
can be found below.

xY

xA xA

xX
xr xr

GΣ
T1

GΣ
T2

x> x>

Example 4. Let T1 = {A v ∃r.X, X v AuB}, T2 = {A v
X u Y, X v ∃r.A, Y v ∃r.B}, and Σ = {A,B, r}. Then,
for instance, A v ∃r.(A u B) ∈ DiffΣ(T1, T2). It holds that
{xA} →T1 {xr, xX}, {xX} →T1 {xA}, {xX} →T1 {xB},
{xA} →T2 {xr, xA}, {xA} →T2 {xr, xB}. However, for
x = xA or x = xB it does not hold that {x} →T2 {xA}
and {x} →T2 {xB}, i.e. the node xX in GΣ

T1
cannot be sim-

ulated by xA or xB in GΣ
T2

as Condition (if ) cannot be sat-
isfied. Thus, one can see that there cannot exist a forward
Σ-simulation S between GΣ

T1
and GΣ

T2
with (xA, xA) ∈ S.

We now prove that the existence of a forward simulation
between a node xA1 in GT1 and a node xA2 in GT2 exactly
captures the property that T1 |= A1 v C entails that T2 |=
A2 v C for every Σ-concept C.

Lemma 3. Let T1, T2 be normalised terminologies, and
let Σ be a signature such that GT1 ↪→

f
Σ GT2 . Then for ev-

ery ELΣ-concept C and for every (xA1 , xA2) ∈ ↪→f
Σ with

T1 |= A1 v C it holds that T2 |= A2 v C.

Lemma 4. Let T1, T2 be normalised terminologies, and
let Σ be a signature such that cWtnlhs

Σ (T1, T2) = ∅. Then

GT1 ↪→
f
Σ GT2 .

We obtain Theorem 2 as a consequence of the previous two
lemmas.

Theorem 2. Let T1, T2 be normalised terminologies, and
let Σ be a signature. Then cWtnlhs

Σ (T1, T2) = ∅ iff GT1 ↪→
f
Σ

GT2 .

3.2 Backward Simulation
We now turn to right-hand side witnesses, i.e. we want to
devise an algorithm that checks whether cWtnrhs

Σ (T1, T2) = ∅.
Analogously as for the left-hand side witnesses, we introduce
a backward simulation which has the property that a node
xA1 in GΣ

T1
is simulated by a node xA2 in GΣ

T2
iff T1 |= C v A1

entails T2 |= C v A2 for every Σ-concept C. Intuitively, the
hypergraph has to be traversed backwards to identify all
essential concepts C for which T1 |= C v A1. In particular,
concept names A1 for which there does not exist an ELΣ-
concept C with T1 |= C v A1 do not have to be simulated by
a node in GΣ

T2
since such concept names cannot become right-

hand side witnesses. We identify such concept names A1 by
checking whether the node xA1 is Σ-entailed in the following
sense.

Definition 6. Let GΣ
T = (V, E) be the ontology hypergraph

of a normalised terminology T for a signature Σ. Moreover,
let VΣ ⊆ V be the smallest set of nodes defined inductively
as follows:

(i) x> ∈ VΣ;

(ii) if xA ∈ V such that there exists B ∈ Σ with {xB} →T
{xA}, then xA ∈ VΣ;

(iii) if xB ∈ VΣ with B ∈ NC ∪ {>}, ({xB , xr}, {xA}) ∈ E ,
and r ∈ Σ, then xA ∈ VΣ;

(iv) if xB1 , . . . , xBn ∈ VΣ with ({xB1 , . . . , xBn}, {xA}) ∈ E ,
then xA ∈ VΣ.

We then say that a node x ∈ V is Σ-entailed in GΣ
T iff x ∈ VΣ.

The node x> is always Σ-entailed for every signature Σ. A
node x is Σ-entailed if it is reachable via→T from a node xB
with B ∈ Σ, or if its direct predecessors in the ontology
hypergraph are Σ-entailed. In particular, every node xA
with A ∈ Σ is Σ-entailed.



Example 5. Let T = {A ≡ ∃r.X, X ≡ B1uB2}. For Σ1 =

{B1, B2, r}, all the nodes are Σ1-entailed in GΣ1
T . However,

for Σ2 = {B1, B2} only the nodes xB1 , xB2 xX , and x> are

Σ2-entailed in GΣ2
T , whereas for Σ3 = {B1, r} only the node

x> is Σ3-entailed in GΣ3
T . Note that T |= C v A holds for

C = ∃r.(B1 u B2) and sig(C) ⊆ Σ1 but sig(C) 6⊆ Σ2 and
sig(C) 6⊆ Σ3.

Lemma 5. Let GΣ
T = (V, E) be the ontology hypergraph

of a normalised terminology T for a signature Σ, and let
xA ∈ V. Then the node xA is Σ-entailed in GΣ

T iff there
exists an ELΣ-concept C such that T |= C v A.

To compute all the nodes in a given graph GT that are Σ-
entailed, we can proceed as follows. In a first step identify
all the nodes x that fulfill conditions (i) and (ii) by using the
relation→T . Subsequently, propagate the Σ-entailed status
to other nodes using conditions (iii) and (iv). It can be
readily seen that these computation steps can be performed
in polynomial time.

Before we can give the definition of the backward simula-
tion, we have to introduce the following notion: we associate
with every node xA in a hypergraph GT a set of concept
names non-conj(xA) which are “essential” to entail A in T
(also see [5] for a similar notion).

Definition 7. Let GΣ
T = (V, E) be an ontology hypergraph.

For xA ∈ V, let non-conj(xA) be defined as follows

• if ({xB1 , . . . , xBn}, {xA}) ∈ E, let

non-conjT (xA) = {xB1 , . . . , xBn};

• otherwise, let non-conjT (xA) = {xA}.

For a graph GΣ
T = (V, E) we have ({xB1 , . . . , xBn}, {xA}) ∈ E

iff A ≡ B1 u . . . u Bn ∈ T . Hence, it holds for every ELΣ-
concept C that T |= C v A iff T |= C v X for every
X ∈ {X | xX ∈ non-conjT (xA) }.

We can now give the definition of a backward simulation.

Definition 8. Let GΣ
T1

= (V1, E1), GΣ
T2

= (V2, E2) be the
ontology hypergraphs of the normalised terminologies T1

and T2 for a signature Σ. A relation ↪→b
Σ ⊆ V1 × V2 is a

backward Σ-simulation between GΣ
T1

and GΣ
T2

if the following
conditions hold:

(ib) if xA ↪→b
Σ xA′ , then for every B ∈ Σ with {xB} →T1

{xA} it holds that {xB} →T2 {x′A};

(iib) if xA ↪→b
Σ xA′ and ({xX , xr}, {xA}) ∈ E1 such that

r ∈ Σ and xX is Σ-entailed in GΣ
T1

, then for every xB′
i
∈

non-conjT2
(xA′) there exists ({xX′

i
, xr}, {xB′

i
}) ∈ E2

such that xX ↪→b
Σ xX′

i
;

(iiib) if xA ↪→b
Σ xA′ and ({xB1 , . . . xBn}, {xA}) ∈ E1 where

xBi are Σ-entailed in GΣ
T1

for every 1 ≤ i ≤ n, then
for every x′ ∈ non-conjT2

(xA) there exists an x ∈
non-conjT1

(xA) with x ↪→b
Σ x′.

In the following, we write GΣ
T1

↪→b
Σ GΣ

T2
iff there exists a

backward Σ-simulation ↪→b
Σ ⊆ V1 ×V2 with (xA, xA) ∈ ↪→b

Σ

for every A ∈ Σ.

For a node xA in GΣ
T1

to be backward simulated by xA′

in GΣ
T2

, Conditions (ib) and (iib) are the equivalent of the
Conditions (if ) and (iif ), respectively, for forward simu-
lations. Condition (iiib) handles axioms of the form A ≡
B1u. . .uBn in T1. Note that we quantify over the conjuncts
of A′ in T2 since, intuitively speaking, fewer conjuncts suffice
to preserve logical entailments. Take, for instance, the two
normalised terminologies T1 = {A ≡ B1 u B2}, T2 = {A v
B1 uB2, B1 v A} and the signature Σ = {A,B1, B2}; then
cWtnrhs

Σ (T1, T2) = ∅ and, in particular, T2 |= B1 u B2 v A
holds as well.

Example 6. Let T1 = {A ≡ ∃r.X, X ≡ B1 u B2}, T2 =
{A ≡ XuY,X ≡ ∃r.B1, Y ≡ ∃r.B2}, and Σ = {A,B1, B2, r}.
First we observe that the nodes xB1 , xB2 , xX , and xA are
Σ-entailed in GΣ

T1
. As only {xBi} →T1 {xBi} for i ∈ {1, 2},

one can see that the node xBi in GΣ
T1

can be simulated by the

node xBi in GΣ
T2

for i ∈ {1, 2}. Due to non-conjT2
(xBi) =

{xBi} for i ∈ {1, 2} and non-conjT1
(xX) = {xB1 , xB2}, we

can infer that the node xX in GΣ
T1

can be simulated both

by xB1 and xB2 in GΣ
T2

(there does not exist X ′ ∈ Σ with
{xX′} →T1 {xX}). Finally, as non-conjT2

(xA) = {xX , xY },
we conclude that the node xA in GΣ

T1
can be simulated by xA

in GΣ
T2

due to Condition (iib) (Condition (ib) is trivially sat-
isfied). Overall,

S = {(xA, xA), (xX , xB1), (xX , xB2), (xB1 , xB1), (xB2 , xB2)}

is a backward Σ-simulation between GΣ
T1

and GΣ
T2

such that
(Z,Z) ∈ S for every Z ∈ NC∩Σ. A graphical representation
of the ontology hypergraphs GΣ

T1
, GΣ

T2
and of the simulation S

can be found below.

xA
xA

xB1 xB1xB2 xB2

xX
xY xXxr

xr

GΣ
T1

GΣ
T2

x> x>

Example 7. Let T1 = {A ≡ B1 u B2}, T2 = {A ≡ B1 u
B′}, and Σ = {A,B1, B2}. First we observe that there
does not exist a concept name Z ∈ Σ with {xZ} →T2

{xB′}, i.e. the nodes xB1 , xB2 in GΣ
T1

cannot be simulated

by xB′ in GΣ
T2

as Condition (ib) would be violated. Hence,
as non-conjT1

(xA) = {xB1 , xB2} and as non-conjT2
(xA) =

{xB1 , xB′}, we can conclude that there cannot exist a back-
ward Σ-simulation such that xA in GΣ

T1
is simulated by xA

in GΣ
T2

as Condition (iiib) cannot be fulfilled.

We can now establish the correctness and completeness prop-
erties regarding backward simulations.



Lemma 6. Let T1, T2 be normalised terminologies, and
let Σ be a signature such that GT1 ↪→b

Σ GT2 . Then for ev-
ery ELΣ-concept C and for every (xA1 , xA2) ∈ ↪→b

Σ with
T1 |= C v A1 it holds that T2 |= C v A2.

Lemma 7. Let T1, T2 be normalised terminologies, and
let Σ be a signature such that cWtnrhs

Σ (T1, T2) = ∅. Then
GT1 ↪→b

Σ GT2 .

We obtain Theorem 3 as a consequence of the previous two
lemmas.

Theorem 3. Let T1, T2 be normalised terminologies, and
let Σ be a signature with A ∈ Σ. Then cWtnrhs

Σ (T1, T2) = ∅
iff GT1 ↪→b

Σ GT2 .

3.3 Computational Complexity
Given two hypergraphs GΣ

T1
= (V1, E1) and GΣ

T2
= (V2, E2),

one can proceed as follows to check whether GΣ
T1

↪→f
Σ G

Σ
T2

holds. First, let Sf
0 ⊆ V1 × V2 be the set of all the pairs

that fulfill Conditions (if ). Subsequently, iterate over the

elements contained in the set Sf
i and remove those pairs

which do not satisfy Conditions (iif ) to obtain the set Sf
i+1.

Eventually we will have Sf
j = Sf

j+1 for some index j and one

can conclude that GΣ
T1

↪→f
Σ G

Σ
T2

holds iff (xA, xA) ∈ Sf
j for

every A ∈ Σ.

It is easy to see that the simulation Conditions (if ) and (iif )
can be checked in polynomial time. Thus, as the procedure
described above terminates in at most |V1×V2| iterations, we
can infer that it can be checked in polynomial time whether
GT1 ↪→

f
Σ GT2 holds.

Similar arguments show that the existence of a backward Σ-
simulation can be checked in polynomial time as well, which
gives us the following result.

Theorem 4. Let GΣ
T1

= (V1, E1), GΣ
T2

= (V2, E2) be ontol-
ogy hypergraphs of two normalised terminologies T1 and T2

for a signature Σ. Then it can be checked in polynomial time
whether GΣ

T1
↪→f

Σ G
Σ
T2

and GΣ
T1
↪→b

Σ GΣ
T2

holds.

Note that in a practical implementation it would not be re-
quired to take the complete ontology graphs GΣ

T1
and GΣ

T2
into

account if one wants to check whether a concept name A ∈ Σ
is a difference witness. It is sufficient to consider the sub-
graph only which is induced by the →T1 and →T2 either in
the“forward”or“backward”direction depending on the type
of witnesses that should be computed. For a typical (prac-
tical) terminology T , S →T S′ only holds for relatively few
sets of nodes S, S′, which suggests that the number of nodes
that have to be considered for a simulation check should
remain fairly small as well.

3.4 Computing Difference Examples
So far we have focused on finding difference witnesses, i.e.
concept names A belonging either to the set cWtnlhs

Σ (T1, T2)
or the set cWtnrhs

Σ (T1, T2), which is sufficient to decide the
existence of a logical difference between T1 and T2. However,
in practical applications of logical difference it can be helpful

for users to have a concrete concept inclusion C v A or
A v D in DiffΣ(T1, T2) that corresponds to a witness A. We
now sketch how to read such concept inclusions directly off
a hypergraph using Example 7.

Recall that xB1 , xB2 in GΣ
T1

cannot be simulated by xB′

in GΣ
T2

as T2 6|= B1 v B′ and T2 6|= B2 v B′, i.e. for the
Σ-concept C = B1 u B2 it holds that T1 |= C v B1 u B2,
but T2 6|= C v B1 u B′. Hence, we have T1 |= C v A but
T2 6|= C v A.

In general, if a node xA in GΣ
T1

cannot be simulated by xA
in GΣ

T2
, there exists a node x in GΣ

T2
which is the main cause

for the failure to find a simulation (x = xB′ in the example
above). By following the path from that node to the node xA
in GΣ

T2
and by constructing conjunctions over all the failing

possibilities to fulfill the simulation conditions (B1 u B2 in
the example above) one can construct an example inclusion
C v A (or A v C) that matches the difference witness A.
The correctness of the algorithm described above can be seen
by using Lemma 2. It is known that such concepts C can be
of exponential size [5], and consequently, we cannot hope to
devise an algorithm that is guaranteed to run in polynomial
time.

4. COMPARISON OF APPROACHES
We now compare the hypergraph-based approach with the
previous method for detecting logical differences that is de-
veloped in [5]. The previous approach also makes use of the
fact that it is sufficient to search for left- and right-hand side
witnesses to decide whether a logical difference exists. For
computing left-hand side witnesses, the method described
in [5] is similar to checking for the existence of a forward
simulation. The two simulation notions are virtually iden-
tical with the difference that we work with hypergraphs,
whereas canonical models are used in [5].

Fundamental differences can be found regarding the compu-
tation of right-hand side witnesses. Recall from Section 2.3
that A ∈ cWtnrhs

Σ (T1, T2) iff there exists a Σ-concept C such
that T1 |= C v A but T2 6|= C v A. The general aim of [5] is
to find a complete representation of all Σ-concepts C with
T2 6|= C v A. Note that typically infinitely many such con-
cepts C exist. For every n ≥ 0, finite sets noimplynT2,Σ

(A) of
ELΣ-concepts are inductively defined which have the prop-
erty that there exists an ELΣ-concept C with T1 |= C v
A and T2 6|= C v A iff there exists n ≥ 0 and a D ∈
noimplynT2,Σ

(A) such that T1 |= D v A. The parameter n
represents the maximal number of nestings of existential re-
strictions in C.

Two different algorithms are then presented in [5] for han-
dling the depth parameter n. Algorithm 1 makes use of
reasoning on ABoxes, i.e. finite sets of assertions of the
form A(c) or r(c1, c2), where A is a concept name, r a
role name, and c, c1, c2 are constants. For a TBox T , an
ABox A and a constant c we write (T ,A) |= A(c) iff every
model I of T and A fulfills cI ∈ AI . The infinite sequence
noimplynT2,Σ

(A), n ≥ 0, is now encoded into a polynomial-
size ABox AT2,Σ. In this way a reduction of the original
problem to an instance checking problem for the knowledge
base (T1,AT2,Σ) can be obtained. It can be shown that
A ∈ cWtnrhs

Σ (T1, T2) iff (T1,AT2,Σ) |= A(ξ) for some con-



stant ξ which occurs in AT2,Σ and which is connected to A
(in some specific sense). The ABox AT2,Σ can be seen as an
encoding of the infinite sequence noimplynT2,Σ

(A) for n ≥ 0;
Algorithm 1 also works for cyclic terminologies, but one of
its drawbacks is that for typical terminologies and large Σ,
the ABox AT2,Σ is of quadratic size in T2, which makes
it more challenging to obtain an implementation that can
compare very large terminologies together with large sig-
natures Σ. Also, it is not straightforward to extract ex-
amples of DiffΣ(T1, T2) which correspond to right-hand side
witnesses from an instance checking algorithm.

Algorithm 2 uses a dynamic programming approach to de-
rive conditions that allow us to identify which concepts in
noimplynT2,Σ

(A) are relevant for deciding whetherA is a right-
hand side witness. This approach has been implemented in
the logical difference tool CEX [6], which can compare large
terminologies like Snomed ct on large signatures Σ in rea-
sonable time (cf. [5] for further details). Additionally, it is
possible to extend Algorithm 2 in such a way that it becomes
possible to construct examples of differences that correspond
to right-hand side witnesses (which is also implemented in
version 2.5 of CEX). As drawbacks, however, we have to note
that this approach only works for acyclic terminologies and
that possible extensions to more expressive description log-
ics are rather challenging as the complexity and the number
of the conditions that have to be checked to find right-hand
side witnesses for EL extended with role inclusions and do-
main/range restrictions is already rather involved.

On the other hand, the approach presented in this paper
works for cyclic TBoxes, and it benefits from the fact that
the same technique, i.e. checking for the existence of certain
simulations, can be used both for finding left- and right-
hand side witnesses. The structures that are simulated im-
mediately correspond to the TBoxes involved (hyperedges
correspond to axioms). Moreover, the conditions that have
to be fulfilled for a node to simulate another node are fairly
straightforward in the sense that they only depend either
on the structure of the graph, or on the logical entailment
of Σ-concept names. Note that such conditions on the en-
tailment of concept names are also present in Algorithm 1
and 2. However, the practical usefulness of our approach will
still have to be demonstrated in an experimental evaluation.

5. CONCLUSION
We have presented a novel approach to the logical difference
problem using a hypergraph representation of ontologies. As
ontologies we consider (possibly cyclic) terminologies given
in the description logic EL. As differences between termi-
nologies we only consider EL-concept inclusions formulated
in a given signature. A terminology is transformed into a
hypergraph by taking the signature symbols as nodes and
treating the axioms as hyperedges. We have devised two
simulation notions between hypergraphs. The existence of
the simulations is equivalent to the fact that every concept
inclusion which is formulated in the considered signature
and which follows from the first corresponding terminology
also follows from the second terminology. Checking for the
existence of simulations is tractable, confirming the estab-
lished complexity bounds in [7]. If a simulation does not
exist, we have sketched how to construct a concept inclu-
sion witnessing a difference using the hypergraph. We have

also discussed how the hypergraph-based approach simpli-
fies previous approaches to computing the logical difference
that required a combination of different methods.

In this paper we have considered EL-terminologies only. This
serves to illustrate the approach to the logical difference
problem based on hypergraphs, but extensions to richer log-
ics are possible. For instance, dealing with the bottom con-
cept, role inclusions and domain and range restrictions of
roles should not pose any problem. An extension to general
EL-TBoxes and even to Horn SHIQ ontologies would be in-
teresting. It remains to be seen whether and in how far the
form and the number of concepts witnessing a logical dif-
ference can be restricted, analogous to the primitive witness
theorem (cf. Theorem 1). In any case the hypergraph and
the simulation notion would need to be adapted to the richer
logic, but checking for the existence of a simulation may not
be tractable anymore. We leave this for future work as well
as a performance evaluation of the current approach and any
of its extensions on real-life ontologies. We also envision to
integrate our approach for detecting logical differences into
the OWL-API and into popular ontology editors such as
Protégé.
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