
Authoring Collaborative Intelligent Tutoring Systems

Jennifer K. Olsen
1
, Daniel M. Belenky

1
, Vincent Aleven

1
, Nikol Rummel

12
, Jonathan

Sewall
1
, and Michael Ringenberg

1
,

1
Human Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA

jkolsen@cs.cmu.edu, dbelenky@andrew.cmu.edu,

{aleven,sewall,mringenb}@cs.cmu.edu
2Institute of Educational Research, Ruhr-Universität Bochum, Germany

nikol.rummel@rub.de

Abstract. Authoring tools for Intelligent Tutoring System (ITS) have been

shown to decrease the amount of time that it takes to develop an ITS. However,

most of these tools currently do not extend to collaborative ITSs. In this paper,

we illustrate an extension to the Cognitive Tutor Authoring Tools (CTAT) to al-

low for development of collaborative ITSs that can support a range of collabo-

ration scripts. Authoring tools for collaborative ITSs must be flexible enough to

allow for different learning goals and different collaboration scripts. We discuss

how two collaboration scripts that we are using in our research on fractions

learning are implemented in CTAT. The examples illustrate how CTAT flexibly

supports collaborative tutors by running synchronized tutor engines for each

student, and how it supports the development of collaborative tutors through the

use of multiple behavior graphs that use no programming to develop.

Keywords: Problem solving, collaborative learning, intelligent tutoring system,

authoring tools

1 Introduction

Collaborative learning has been shown to be effective for student’s knowledge acqui-

sition in some computer-supported settings [9]. However, there is a lack of effective

and flexible authoring tools for collaborative learning activities. Authoring tools for

Intelligent Tutoring Systems (ITSs) are often geared towards individual learning and

typically do not have support for the components that make collaborative learning

effective [11]. Within Computer Supported Collaborative Learning, collaboration

scripts are often used to support collaborative learning, but are often either developed

specifically for a particular application [8] [17] or, at best, are provided through a tool

that can be used for reuse of the same script across multiple subject areas [1], [3], [7],

[10], [13-14], [16]. In both approaches, the development tailored for particular do-

mains and learning goals is not straightforward and may not even be feasible. A tool

that can be used to flexibly author a range of collaboration scripts for a range of sub-

ject areas would bridge this gap. We are working on creating such a tool, by extend-

ing an existing ITS authoring tool, the Cognitive Tutor Authoring Tools (CTAT) [2],

1

so it aids in the development of tutors that integrate a range of collaboration scripts.

An earlier attempt to extend CTAT [4] focused on log data, not scripting.

Collaboration scripts are used to structure the tasks and interactions within a group.

According to Kollar, Fischer, and Hesse [6], a collaboration script within the educa-

tional domain consists of at least five components: the learning objectives, the types

of learning activities, the sequencing of the activities, role distribution, and how the

script is represented. These components are a way to compare collaboration scripts

across platforms, such as face-to-face and computer-supported settings and provide a

guideline for the coverage that is needed in authoring tools that wish to support col-

laborative learning.

There has been work to make collaboration scripts generalizable across learning

domains. One example of an authoring tool that can be used across different learning

domains is the work done with conversational agents, which monitor a group conver-

sation and can intervene when needed [1], [7]. Although this authoring tool supports

multiple learning domains, it supports only the development of collaboration scripts

that rely on the use of conversational agents and not a more general class of collabora-

tion scripts. Other tools aim to reuse existing collaboration scripts for new scenarios

[3], [10], [13], [16]. These tools are dependent on the learning goals that the existing

collaboration script supports instead of customizing the collaboration script for the

desired learning goals. On the other hand, the tool, XSS, which is a framework for

rapidly developing computer-supported collaboration scripts for new technologies,

does support the creation of collaboration scripts to meet specific learning goals [14].

However, XSS does not have support for authoring scripts through an interface, so it

may be difficult for users with less programming experience.

The enhancement to CTAT described in this paper allows authoring of collabora-

tive ITSs without programming, and the collaboration script can be specific to the

learning goals of the tutor being developed. In this paper we provide collaboration

script examples that support cognitive group awareness [4] and sharing of unique

information, illustrating the flexibility of the CTAT authoring tool for collaboration.

The enhancement to the CTAT system allow students to collaborate through synchro-

nized tutor engines and we will describe how it supports collaborative tutor problems.

2 Collaboration Examples Using CTAT for Collaboration

2.1 An Example of Support for Cognitive Group Awareness

Before we describe how we modified CTAT so it supports authoring of collaborative

tutoring, we describe two examples of collaborative tutoring behavior authored with

this tool. Specifically, building on our prior work on the Fractions Tutor [12], we are

creating a collaborative tutoring system to help elementary students learn fractions.

The current prototype includes four conceptual problems and four procedural prob-

lems focused on equivalent fractions, each with embedded collaboration scripts. The

prototype tutor has been pilot tested with four dyads so far. As students use the tutor,

they talk to each other via Skype. The two examples illustrate the types of collabora-

2

tion scripts can be implemented using the collaborative version of CTAT. In the next

section, we extended CTAT to support the collaborative features of these tutors.

The first example features a collaborative fractions problem with a script that sup-

ports cognitive group awareness, in which the student is learning conceptual

knowledge about equivalent fractions. Cognitive group awareness is the awareness

that comes from having information about group members’ knowledge, information,

or opinions and has been shown to be effective for the collaboration process [5]. This

awareness can be supported through tools such as skill meters or by using an interac-

tive interface to display a partner’s answers. In our tutor, cognitive group awareness

during problem solving is structured as follows: First, the collaborating partners each

answer the same question separately. The tutor then displays both partners’ answers to

promote discussion, and the partners provide a final answer endorsed by both. Each

student is given a pair of contrasting attributes (see Figure 1, panel B2) about the

fractions. The students are not given feedback on their individual answer but are

shown what their partner selected. This allows each student to see their partner’s un-

derstanding of the fractions. The students are then asked to discuss their answers and

decide as a pair what the correct answer will be. Having each student display his or

her knowledge of the given fractions before discussing the question together supports

the cognitive group awareness. This discussion can lead to a mutual understanding of

the fraction attributes, which supports a better understanding of the conceptual

knowledge for equivalent fractions. As may be clear, to support cognitive group

awareness, the collaborative tutor provides different views of the same problem to the

collaborating partners, using two synchronized tutor engines as described below.

Fig. 1. Panel B2 displays an example of support for cognitive group awareness through the use

of multiple radio buttons where each student first selects an answer based on their knowledge

before the group makes a group selection that is tutored.

3

2.2 An Example of Support for Sharing Unique Information

We also used the collaborative version of CTAT to implement a second type of frac-

tions problem, in which students learn how to procedurally evaluate equivalent frac-

tions. As in the previous example, the collaborative tutor provides a different view on

the same problem for each collaborating partner, although this time the collaboration

is scripted differently for the different learning objective. Specifically, we implement-

ed a script that distributes unique information between the partners and supports the

sharing of this information. Students are shown a fraction expressed in symbols (see

Figure 2) that their partner does not see as indicated by the star icon. Each partner is

also given a circle diagram that they can interact with; their partner can see this dia-

gram but cannot interact with it as indicated by the silhouette icon. One student is first

asked to share their fraction with their partner (i.e., by telling their partner about it)

while the second student is asked to make this fraction using their circle diagram. The

students then switch roles and one student shares their fraction while the other student

makes this fraction. Each student sees the feedback from the tutor, so if a student is

struggling to correctly make the fraction, their partner, who can see the fraction and

the tutor feedback, can provide support and help. By providing each student with

different information, the students need to start a dialogue and share. This activity

makes the students aware of the fractions as a first step to supporting procedural

knowledge for evaluating equivalent fractions.

Fig. 2. Panel A displays an example of individual information that needs to be shared between

participants. The top blue fraction was made by the student on the left screen using the infor-

mation shared by the student on the right screen. The purple fraction will be made with the

student on the right screen with the information from the student on the left screen.

4

Both examples illustrate a range of collaborative activities that can be supported

using CTAT for collaboration. Kollar, Fischer, and Hesse specify collaboration scripts

by focusing on five components [6]. These five attributes provide a guideline for the

coverage that is needed in authoring tools. Both examples use different learning activ-

ities to support the learning goals of the problems. The sharing of unique information

uses activities such as sharing and problem solving where as the script that supports

cognitive group awareness uses activities such as sharing knowledge and mutual ex-

planations. Within these activities the students are also assigned to very different roles

where in the unique information scenario they are asked to be a sharer or to be a prob-

lem solver and then switch roles. In the support for cognitive group awareness, both

students are responsible for sharing their knowledge and then discussing the answers.

3 Authoring Tool Extensions to Support Collaboration

Until recently CTAT only supported tutors for individual use. We focus on one type

of tutor that can be authored with CTAT, namely, example-tracing tutors [2]. To de-

velop such a tutor, an author creates two key components, both without programming:

a user interface designed specifically for the problem type being tutored (the interface

lays out the problem steps) and a generalized behavior graph, which stores all of the

acceptable solution paths along with commonly-occurring incorrect steps. The tutor

uses the behavior graph to monitor student problem solving and provide guidance to

students. Each behavior graphs consists of a set of links that correspond to steps that

can be taken in the problem, such as typing in the numerator to a fraction. Some steps

(explicitly marked as such) represent tutor-performed actions, such as showing a

component in the tutor interface that was hidden before. To evaluate student input, the

tutor compares the student’s problem-solving steps against those in the behavior

graph, testing whether the student is on one of the paths in the graph. An author may

specify constraints on the order of steps. Behaviorally, example-tracing tutors are

similar to other types of ITSs, providing all the key functionality singled out by

VanLehn [15] as typical of ITSs.

3.1 Authoring Collaborative Tutors

To expand CTAT so it supports collaborative example-tracing tutors, we added the

capability to run multiple synchronized tutor engines, one for each student in a col-

laborating group. This set up allows for great flexibility in authoring tutors with em-

bedded collaboration scripts. Specifically, each student in a group has their own be-

havior graph file and interface file for the given problem. The collaborative version of

CTAT synchronizes the tutors so that when one of the collaborating students takes an

action, this input is sent to both that student’s tutor engine and their partner’s tutor

engine. Similarly, tutor output is shared among the members of a collaborating group

(i.e., all output from the two synched tutor engines, such as hints and feedback, is sent

to each student interface separately). One result of this output sharing is that student

actions taken on one interface will be “mirrored” on the other interface in the corre-

5

sponding interface component, together with the associated tutor feedback. As we

extended CTAT, we updated the interface tool components to include new actions

that better support collaborative learning activities. As an example, we updated the

existing components to allow students to view the options of a component without

being able to take action on the component, as illustrated in the examples above. We

are also adding a highlighting functionality so each student can easily reference a

component.

Fig. 3. Excerpts from two behavior graphs working for a single problem. Together both behav-

ior graphs capture the first step to be completed by the students for the problem in Fig 2. Box 1

demonstrates the different locking of components for each student, Box 2 demonstrates differ-

ent instructions for each student, and Box 3 demonstrates the use of student-performed actions

to advance the state of the problem where the partnering student can only take the action.

With these collaborative extensions to CTAT, an author can create tutors that do

not differ for the collaborating partners - simply by supplying the same behavior

graph and interface for each collaborating partner. The result would be a tutor with

which two students interact simultaneously and synchronously while each sitting at

their own computer. They would each see the changes that their partner makes. This

kind of collaboration may not be terribly useful, however. The power of the approach

6

comes from being able to craft tutors in which the collaborators have different views

on the same problem and have different sets of actions available to them. There are

many collaboration activities, such as the jigsaw and the tutee/tutor paradigm, where

the benefit of the activity comes from the students having different roles and respon-

sibilities in the problem-solving task. The CTAT authoring tool supports this kind of

differentiation, as an author can create separate behavior graphs, one for each student,

that display different instructions or capture different student problem-solving actions,

dependent on the role of each student, as is used in the cognitive awareness activity.

For example, Figure 3 shows, side-by-side, two behavior graphs for the support of

unique information example illustrated in Figure 2. These two behavior graphs share

common structure, but also differ so as to support different interactions for the two

collaborating students.

To show different instructions for each student, an author can use a different tutor-

performed action at the corresponding link in the two behavior graphs. An example is

shown in Box 2 of Figure 3 where each student receives different directions from the

behavior graph at the same point in time. (The label on the link shows the message

displayed to the student in truncated form.) Similarly, by providing different behavior

graphs for each member, the actions taken by the users can differ. One way to make

different sets of actions available to each collaborating partner is by locking certain

components in the interface, a different set for each partner. This allows both students

to see the action on their respective interfaces while only allowing one student to be

able to take the action. An example is shown in Box 1 of Figure 1 where different

components (the two circle components, pieChartA0002 and pieChartA0003) are

locked for the students through a tutor-performed action, preventing them from inter-

acting with that component. The result of this link in the behavior graph is seen in

Figure 2 where the circle that corresponds to the fraction shown on the screen is

locked for that student, so that each student can perform his/her own role but not

his/her partner’s role. Though the student cannot act on the component that is locked,

a step to solve the component is in the behavior graph (see Box 3 of Figure 3) so that

the problem will not advance until their partner has completed the step. An author can

also make the tutor accept different actions from each student by recording different

actions in each student’s behavior graph. In this case, the student without the action

recorded would not have to wait for this action to take place to continue working on

the next step of the problem.
Another way to provide different interface elements to the members of each dyad

is through an interface file. This file is a SWF file created in Flash. The author can

select the components, control their placement on the interface, set basic parameters,

and use custom code if necessary. In this way, an author can tailor the interface for

the different roles that the collaborators have in the collaboration script that is being

supported. An author can also determine what feedback each student receives during

the problem by setting an initial tutor feedback parameter for each interface compo-

nent. This parameter controls whether or not there will be tutor feedback on actions

on that component. For example, in the cognitive awareness task in Figure 1, the radio

buttons that correspond to the student’s individual answers provide no feedback, as

they serve mainly to support the partners’ mutual awareness of each other’s reason-

7

ing. On the other hand, the radio buttons for the group answer (on the right in Figure

1) provide correct or incorrect feedback.

The steps to develop a tutor using CTAT consist of developing a user interface,

creating a behavior graph, and annotating the behavior graph [2]. Within CTAT, an

interface is built using an interface builder and the different components of the inter-

face are adding using a drag-and-drop method. Each component has a set of parame-

ters that can be set allowing the developer to customize the look and feel of the pa-

rameter to match their tutor layout. This allows a developer to create a tutor interface

without the need for any coding on the part of the developer. Once an interface is

created, a behavior graph can be created that maps out the tutor steps through correct

and incorrect actions. The behavior graph can be created through demonstrating the

actions to be taken on the interface. While having the CTAT Behavior Recorder in

demonstration mode, any action that is taken on the interface will be recorded on a

behavior graph. By starting at different points in the behavior graph, different branch-

es can be created. This allows a developer to create a behavior graph without the need

of programming. After the behavior graph is created through demonstration, the graph

can be annotated. Annotation includes adding hints to the links and identifying

knowledge components.

To author a collaborative tutor each of the steps to create an individual tutor are

followed for each member of the collaboration. Depending on the type of collabora-

tion activities and roles depends on if different tutor interfaces and behavior graphs

need to be made for each student in the group or if the same files can be used. If the

students are going to be seeing something visually similar then the same tutor inter-

face can be used. If the students are going to take the same actions during the prob-

lem, then the same behavior graph can be used. When developing a collaborative

tutor, if different interfaces are going to be used and an action that one student takes

should be reflected in the view to the other students, then the components that are

used for this activity need to be named the same in both interfaces. This is shown in

Box 3 of Figure 3 where the same component name is referenced in both behavior

graphs. This allows the tutors to reflect an action taken on one interface on the other

interface as well. On the other hand, if the author wants particular actions within a

tutor interface to be private to one of the collaborating students, one way to do so is to

not provide a corresponding interface component in the interface for the other student.

The enhancements to CTAT did not add a need for a developer to program to create a

tutor. Currently, to test a collaborative tutor, the tutor must be run through the tutoring

service. A different browser window can be opened for each student interface so the

actions can be seen simultaneously. By assigning each interface and behavior graph to

a “student” and then identifying those students as being in a class together, the differ-

ent tutors are synced and allows communication between the tutors. This assignment

can be done through filling out fields in a user interface and no special programming

is needed on the part of the author.

8

4 Discussion, Conclusion and Future Work

Computer-supported collaboration has been shown to be an effective learning para-

digm for knowledge acquisition [9], yet most tools that support collaboration do not

allow for the authoring of a range of collaboration scripts. Authoring tools for ITSs

have been used to address a wide range of domains, but we are not aware of any that

support collaboration scripts, other than an early attempt to extend CTAT [4] so it

builds collaborative tutors from log data. We extended CTAT so it supports the au-

thoring of collaborative tutors while maintaining its advantages for individual tutoring

without programming. With this new version of CTAT, authors can develop collabo-

rative ITSs to meet a range of domains and collaboration scripts. The developer does

not need to have a strong background in programming to make a functional tutor.

The extension to CTAT allows for a range of collaboration scripts to be developed.

Two examples were provided in this paper, but we also created tailored collaboration

scripts to match the learning objectives of six other fractions problems. The flexibility

to develop these scripts is because the collaborative version of CTAT was not devel-

oped to implement a specific script but to remain open-ended. This design also allows

flexibility while developing tutors. As we continue to develop our collaborative frac-

tions tutor, we are taking an iterative approach in which we repeatedly test the collab-

oration script with students and then refine it to best support the learning goals based

on the outcomes of the pilot studies. The collaborative version of CTAT allows for

these changes to be made easily in a problem, as behavior graphs are relatively malle-

able.

Future work will consist of extending CTAT so it can support more than two stu-

dents in the group. Other future work will be to allow the specifying of groups at

runtime instead of needing to specify groups ahead of time. By being able to specify

the members of a group at runtime, there would be more flexibility in grouping stu-

dents in a classroom on any given day. Students would not be dependent on their

partner also being there that day. Also to improve the authoring process, functionality

is being added to allow an author to have multiple behavior graphs open so they can

compare the steps and can copy and paste steps from one graph to another that are

similar. The eventual goal of our project is to investigate how best to combine indi-

vidual and collaborative modes of learning.

Acknowledgments. We thank the Cognitive Tutor Authoring Tools team for their

help. This work was supported by Graduate Training Grant # R305B090023 and by

Award # R305A120734 both from the US Department of Education (IES).

5 References

1. Adamson, D., & Rosé, C. P.: Coordinating Multi-Dimensional Support in Collaborative

Conversational Agents. In: Intelligent Tutoring Systems (pp. 346-351). Springer Berlin

Heidelberg (2012)

9

2. Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R.: A New Paradigm for Intelli-

gent Tutoring Systems: Example-tracing Tutors. International Journal of Artificial Intelli-

gence in Education, 19, 105-154 (2009)

3. Harrer, A., Malzahn, N., & Wichmann, A.: The remote Control Approach-An architecture

for Adaptive Scripting Across Collaborative Learning Environments. Journal of Universal

Computer Science, 14(1), 148-173 (2008)

4. Harrer, A., McLaren, B. M., Walker, E., Bollen, L., & Sewall, J.: Creating cognitive tutors

for collaborative learning: Steps toward realization. User Modeling and User-Adapted In-

teraction, 16(3-4), 175-209 (2006)

5. Janssen, J., & Bodemer, D.: Coordinated Computer-Supported Collaborative Learning:

Awareness and Awareness Tools. Educational Psychologist, 48(1), 40-55 (2013)

6. Kollar, I., Fischer, F., & Hesse, F. W.: Collaboration scripts–a conceptual analy-

sis. Educational Psychology Review, 18(2), 159-185 (2006)

7. Kumar, R., Rosé, C. P., Wang, Y., Joshi, M., & Robinson, A.: Tutorial dialogue as adap-

tive collaborative learning support. Frontiers in Artificial Intelligence and Applica-

tions, 158, 383 (2007)

8. Lesgold, A., Katz, S., Greenberg, L., Hughes, E., & Eggan, G.: Extensions of intelligent

tutoring paradigms to support collaborative learning. In S. Dijkstra, H. P. M. Krammer, &

J. J. G. van Merrienboer (Eds.), Instructional models in computer-based learning environ-

ments. (pp. 291-311). Berlin: Springer-Verlag (1992)

9. Lou, Y., Abrami, P. C., & d’Apollonia, S.: Small group and individual learning with tech-

nology: A meta-analysis. Review of educational research, 71(3), 449-521 (2001)

10. Miao, Y., Hoeksema, K., Hoppe, H. U., & Harrer, A.: CSCL Scripts: Modelling Features

and Potential Use. In Proceedings of the 2005 conference on Computer support for collab-

orative learning: learning 2005: the next 10 years! (pp. 423-432). ISLS (2005)

11. Murray, T., Blessing, S., & Ainsworth, S.: Authoring tools for advanced technology learn-

ing environments: Toward cost-effective adaptive, interactive and intelligent educational

software. Amsterdam: Kluwer Academic Publishers (2003)

12. Rau, M., Aleven, V., Rummel, N., & Rohrbach, S.: Sense Making Alone Doesn’t Do It:

Fluency Matters Too! ITS Support for Robust Learning with Multiple Representations.

In: Intelligent Tutoring Systems, pp. 174-184. Springer Berlin/Heidelberg (2012)

13. Ronen, M., Kohen-Vacs, D., & Raz-Fogel, N.: Adopt & Adapt: Structuring, Sharing and

Reusing Asynchronous Collaborative Pedagogy. In Proceedings of the 7th International

Conference on Learning Sciences (pp. 599-605). ISLS (2006)

14. Stegmann, K., Streng, S., Halbinger, M., Koch, J., Fischer, F., & Hußmann, H.: eXtremely

Simple Scripting (XSS): A framework to speed up the development of computer-supported

collaboration scripts. In Proceedings of the 9th International Conference on Computer sup-

ported Collaborative Learning-Volume 2 (pp. 195-197). ISLS (2009)

15. VanLehn, K.: The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Sys-

tems, and Other Tutoring Systems. Educational Psychologist, 46, 197-221, (2011)

16. Wecker, C., Stegmann, K., Bernstein, F., Huber, M. J., Kalus, G., Rathmayer, S., Kollar, I.,

& Fischer, F.: Sustainable script and scaffold development for collaboration on varying

web content: the S-COL technological approach. In Proceedings of the 9th international

conference on Computer supported collaborative learning-Volume 1 (pp. 512-516). ISLS

(2009)

17. Walker, E., Rummel, N., & Koedinger, K.: CTRL: A research framework for providing

adaptive collaborative learning support. User Modeling and User-Adapted Interaction: The

Journal of Personalization Research (UMUAI), 19(5), 387-431 (2009)

10

