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Abstract. We briefly describe three approaches to simulating students to devel-

op and improve intelligent tutoring systems.  We review recent work with simu-

lated student data based on simple probabilistic models that provides important 

insight into practical decisions made in the deployment of Cognitive Tutor 

software, focusing specifically on aspects of mastery learning in Bayesian 

Knowledge Tracing and learning curve analysis to improve cognitive (skill) 

models.  We provide a new simulation approach that builds on earlier efforts to 

better visualize aggregate learning curves. 
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1 Introduction 

There are at least three general approaches to simulating students for the purposes 

of improving cognitive (skill) models and other features of intelligent tutoring sys-

tems (ITSs).  One approach, generally connoted in discussions of “simulated” stu-

dents or learners, employs aspects of cognitive theory to simulate students’ learning 

and progression through ITS problems (e.g., via machine learning or computational 

agents like SimStudent [2]).  Another class of simulations makes use of relatively 

simple probabilistic models to generate response data (i.e., Bayesian Knowledge 

Tracing [BKT] [1]) intended to represent a (simulated) student’s evolving perfor-

mance over many practice attempts. Third, there are data-driven approaches that do 

not easily fit into either of the first two categories.   

In this work, we explicate and provide examples of each approach and briefly de-

scribe Carnegie Learning’s Cognitive Tutors (CTs) [3]. We then focus on the second 

approach and review recent work on simulations of student learning with simple 

probabilistic models. These simulation studies provide novel insights into a variety of 

features of CTs and their practical deployment.  



 CTs implement mastery learning; mathematics content is adaptively presented to 

students based upon whether the tutor has judged that a student has mastered particu-

lar skills.  Mastery is assessed according to whether the tutor judges that the probabil-

ity that a student has mastered a particular skill exceeds a set threshold. We review a 

simulation study that provides for best and worst-case analyses (when “ground truth” 

characteristics of simulated learner populations are known) of tutor skill mastery 

judgment and efficient student practice (i.e., adaptively providing students with op-

portunities to practice only those skills they have not mastered). This study not only 

provides justification for the traditionally used 95% probability threshold, but it also 

illuminates how the threshold for skill mastery can function as a “tunable” parameter, 

demonstrating the practical import of such simulation studies.     

Finally, learning curves provide a visual representation of student performance on 

opportunities to practice purported skills in an ITS. These representations can be used 

to analyze whether a domain has been appropriately atomized into skills.  If opportu-

nities correspond to practice for a single skill, we expect to see a gradual increase in 

the proportion of correct responses as students get more practice opportunities.  If, for 

example, the proportion of students responding correctly to an opportunity drastically 

decreases after three practice opportunities, it seems unlikely that the opportunities 

genuinely correspond to one particular skill. Turning to the third, data-driven ap-

proach to simulating students, we provide a new method to visualize aggregate learn-

ing curves to better drive improvements in cognitive (skill) models used in CTs, This 

approach extends recent work that explores several problems for utilizing learning 

curves aggregated over many students to determine whether practice opportunities 

correspond to a single skill. 

2 Cognitive Tutors  

CTs are ITSs for mathematics curricula used by hundreds of thousands of K-12 

and undergraduate students every year.  Based on cognitive models that decompose 

problem solving into constituent knowledge components (KCs) or skills, CT imple-

ments BKT to track student skill knowledge.  When the system’s estimate of a stu-

dent’s knowledge of any particular skill exceeds a set threshold, the student is judged 

to have mastered that skill. Based on the CT’s judgment of skill mastery, problems 

that emphasize different skills are adaptively presented so that the student may focus 

on those skills most in need of practice. 

3 Three Approaches to Simulating Learners 

There are at least three general simulation methods used to model student or learn-

er performance.  One simulation strategy, based on cognitive theories such as ACT-R 

[4], explicitly models cognitive problem-solving processes to produce rich agent-

based simulated students. The SimStudent project ([2], [5]), for example, has been 

developed as a part of a suite of authoring tools to develop curricula for CTs, called 

Cognitive Tutor Authoring Tools (CTAT) [6]. SimStudent learns production rules 



from problem-solving demonstrations (e.g., an author providing simple demonstra-

tions of problem solutions or via ITS log data). These human-interpretable production 

rules correspond to KCs that comprise cognitive models vital to CTs.  SimStudent 

aims to simplify development of new CT material by automating the discovery of KC 

models in new domains via a bottom-up search for skills that potentially explain the 

demonstrations. 

Second, there are numerous probabilistic methods that model task performance as a 

function of practice, according to various task and learner-specific parameters.  One 

may instantiate numerous such models, with varying parameters, and sample from the 

resulting probability distributions to obtain simulated performance data for an entire 

hypothetical learner population. 

One common example is a Hidden Markov Model (HMM) with two latent and two 

observable states, that can serve as a generative BKT model, using parameters speci-

fied according to expert knowledge or inferred by a data-driven estimation procedure.  

Two hidden nodes in the HMM represent “known” and “unknown” student 

knowledge states.  In practice, of course, student knowledge is latent.  Simulated stu-

dents are assigned to a knowledge state according to BKT’s parameter for the proba-

bility of initial knowledge, P(L0), and those in the “unknown” state transition to the 

“known” state according to the BKT parameter for the probability of learning or 

transfer, P(T).  Simulated, observed responses are then sampled according to BKT 

parameters that represent the probability of student guessing, P(G) (i.e., responding 

correctly when in the unknown state) and slipping, P(S) (i.e., responding incorrectly 

when in the known state), depending upon the state of student knowledge at each 

practice opportunity. 

Contrary to her real-world epistemological position, simulations generally allow an 

investigator to access the student’s knowledge state at each simulated practice oppor-

tunity.  This allows for comparisons between the “ground truth” of skill mastery and 

any estimate derived from resulting simulated behavior.  Clearly, richer cognitive 

agents, such as SimStudent, provide a more complete picture of the student’s cogni-

tive state at any point. 

Simpler probabilistic models represent student knowledge of a skill with a single 

state variable, so they correspondingly scale better to larger scale simulations of 

whole populations. While a probabilistic model only requires a reasonable distribution 

over initial parameters, richer cognitive models may require training on a great deal of 

detailed, behavioral or demonstration data.  Nevertheless, cognitive model-based 

simulations allow us to investigate issues like timing (i.e., response latency), sensitivi-

ty to input characteristics, and error patterns in learner responses. 

There are many cases in which a relatively simple probabilistic model may be of 

utility, despite its impoverished nature.  A simplistic representation of student 

knowledge provides an ideal situation to test the performance and characteristics of 

inference methods using data from a known generating process and parameters.  One 

might, for example, compare the point at which simulated students acquire knowledge 

of a skill to the point at which the CT judges the student to have mastered the skill.  

The approach thus allows for students of “best” and “worst” case scenarios with re-

spect to the relationship between how the CT models students and the actual make up 



of (simulated) student populations.  We can better understand the dynamics of the 

student sub-populations we inevitably face in practice by simulating data from diverse 

sub-populations, the make up of which we can specify or randomize in various ways.  

Furthermore, we can simulate student performance (sometimes augmenting available 

empirical data) both with and without mastery learning (i.e., students being removed 

from a population because they have mastered a skill) on learning curves constructed 

from aggregate data. 

Previous work [7] explored a third, data-driven simulation method that “replays” 

empirical student performance data through CT in order to estimate the impact of a 

change in BKT parameters in a more substantive way. For each KC that occurred in a 

given problem, we sampled the next observed response on that KC from the sequence 

actually observed from a real student.  These responses would then drive updates to 

CT’s cognitive model, knowledge tracing, and the problem-selection mechanism.  If 

more data were required than were observed for a given student, further observations 

were sampled from a BKT model initialized to the state inferred from the student’s 

actions thus far.  By repeating this process for all students in the observed data set, we 

could obtain estimates of the number of problems students would be expected to 

complete if a change to the cognitive model were implemented. 

This method has the advantage of preserving characteristics of real student data ra-

ther than resorting to a theoretical model of student performance.  However, it does 

make several assumptions about the reproducibility of that behavior under the hy-

pothesized changes.  Specifically, it assumes that the observed sequence of cor-

rect/incorrect responses would not change even given a different selection of prob-

lems, potentially emphasizing different KCs.  This assumption may be justified if we 

believe we have complete coverage of all KCs relevant to the task in question in the 

cognitive model and that all KCs are truly independent of each other. 

While simulation methods based on rich cognitive theory and data-driven re-play 

of empirical data provide many opportunities for future research, we focus in this 

paper on simple, probabilistic simulations in the context of the BKT framework.  

4 Substantive Measures of Efficient Student Practice 

Before we discuss how the BKT mastery threshold probability functions as a “tun-

able” parameter in an ITS like the CT, we provide “substantive” quantification of 

goodness of fit of cognitive/skill models for CTs beyond mere RMSE of prediction 

(i.e., beyond the extent to which models can predict whether students will respond 

correctly to particular practice opportunities) [8-11].  New error or goodness of fit 

measures are countenanced in terms of efficient student practice, based on the number 

of practice opportunities (i.e., “over-practice” or “under-practice”) we might expect a 

student to experience in a CT. Over-practice refers to the continued presentation of 

new practice opportunities, despite the student’s mastery or knowledge of the relevant 

KC.
1
 Student “under-practice” instances are those in which a student has yet to 

                                                             
1
 One exception is an experimental study [11] that reports increased efficiency by deploying 

parameters estimated using a data mining method called Learning Factors Analysis (LFA).  



achieve knowledge of a KC, and yet the mastery learning system has judged the stu-

dent as having mastered it, ending the presentation of further learning opportunities.  

From estimates of expected under- and over-practice, one can calculate other mean-

ingful measures of students gains and losses, such as time saved or wasted.   

Some of this work [8, 9] uses empirical data to estimate the extent of under-

practice and over-practice we might expect students to experience.  Specifically, the 

expected numbers of practice opportunities it takes a student to reach mastery when 

parameters are individualized per student are compared to the expected practice when 

a single (population) set of parameters is used to assess all students.  One individuali-

zation scheme used to study under and over-practice estimates all four BKT parame-

ters, per student, from response data over all relevant skills (i.e., each student receives 

one individualized quadruple of BKT parameters for all KCs) [8].  Another approach 

[9] only individualizes P(T) for each student based on both per-student and per-skill 

components estimated from observed data [12].  Both individualization schemes pro-

vide for substantive gains (compared to using a set of population parameters to assess 

all students’ progress to mastery) in the efficiency of practice (i.e., fewer expected 

under and over-practice opportunities) as well as better prediction performance 

judged, in the standard way, by a metric like RMSE. 

5 Idealized Performance of Mastery Learning Assessment  

Now we address how BKT performs with respect to efficiency of practice in ideal-

ized cases in which the composition of student (sub-) populations is known.  Simula-

tion studies can shed light on how BKT performs when mastery learning parameters 

used by the CT run-time system exactly match those of the generating model (i.e., the 

best case), and in worst cases in which student parameters either maximally differ 

from mastery learning parameters or vary at random for each student. 

Recent work addresses these issues by adopting a probabilistic simulation regime 

[10].  Since we can track the point at which a simulated student acquires knowledge 

of a skill, we are able to compare this to the opportunity at which the mastery learning 

system first judges it to be acquired.  Simulations were run for fourteen skills, a subset 

of those found by [13] to be representative of a substantial portion of skills in de-

ployed CT curricula, across thousands of virtual students.   

Even in idealized, best case scenarios (i.e., when parameters used to assess skill 

mastery perfectly match simulated student data-generating parameters), for most 

skills and a large number of students, we expect there to be one to four “lagged” prac-

tice opportunities between the point at which simulated students transition to mastery 

and the point at which the BKT run-time system judges mastery.  That is, in general, 

even when a student population is modeled “perfectly,” and given the traditional set-

ting of the probability threshold for mastery at 95%, most students should be expected 

to see at least a few opportunities beyond the point of skill acquisition. That some 

“over-practice” may be inevitable provides a relevant context within which to consid-

                                                                                                                                                  
Efficiency is operationalized as decreased time required to work through material in the Ge-

ometry CT without decreasing overall learning. 



er empirically driven results of [8, 9]. Although a certain amount of lag may be inher-

ent in the nature of BKT, we seek to establish a range for the “acceptable” lag, and to 

better appraise efficiency of practice [10]. 

6 Mastery Learning Threshold as a “Tunable” Parameter 

In addition to lagged opportunities and over-practice, situations in which students 

under-practice skills are important to consider.  Given the possibly inevitable lag be-

tween skill acquisition and mastery judgment, simulations [10] have also been used to 

explore how the mastery probability threshold might be “tuned” to influence the 

trade-off of over-practice and under-practice experienced by students in mastery 

learning systems like CTs. 

  Pre-mature mastery judgments can lead, for example, to students being moved 

along by the CT to problems that emphasize new KCs without having mastered pre-

requisite KCs.  Other things held equal, simulations in [10] provide that pre-mature 

mastery judgment is more likely to occur in worst-case scenarios, when mastery-

learning parameters do not match parameters for sub-populations of simulated stu-

dents.   

Simulations in [10] also establish that the mastery-learning threshold can function 

as a tuning parameter, partially governing the trade-off between the expected propor-

tion of students pre-maturely judged to have reached skill mastery and the number of 

over-practice opportunities they are likely to experience.  As the threshold probability 

is increased, the proportion of students assessed as having pre-maturely mastered 

skills decreases while the proportion of those that are exposed to practice opportuni-

ties after skill acquisition increases (along with the number of lagged and over-

practice opportunities, i.e., those beyond a calculated acceptable lag they experience). 

The results of [10] show that the traditionally used 95% threshold seems to provide 

for a “conservative” tutor that is more likely to present opportunities after skill acqui-

sition rather than under-practice.  Depending upon course design and practice re-

gimes, the mastery-learning threshold might be manipulated to important, practical 

effect.  For example, pre-mature mastery judgments might be acceptable in larger 

numbers when there is a mixed-practice regime that will allow students to practice 

KCs later in the curriculum. 

7 Using Simulations to Illuminate Learning in Learning Curves 

Learning curves provide a visual representation of student performance over op-

portunities to practice skills.  For each (purported) skill, we construct a learning curve 

by plotting opportunities (i.e., 1
st
, opportunity, 2

nd
 opportunity, and so on) on the x-

axis and the proportion of students that provide correct responses at each opportunity 

on the y-axis. Aggregated over real-world student practice opportunity data, such 



curves provide means by which to visually
2
 inspect whether opportunities genuinely 

correspond to practice of one particular skill.  If opportunities correspond to one par-

ticular skill, we expect a gradual increase in the proportion of students that respond 

correctly with increasing practice.  Generally, for well-modeled skills (and a variety 

of other cognitive tasks), it is thought that such a plot should correspond roughly to a 

power law function (i.e., the power law of practice [14]), though this point is not 

without controversy [15].  Recent research [16-17] demonstrates how some aggregate 

learning curves can distort the picture of student learning. Aggregate learning curves 

may, for example, appear to show no learning, when, in fact all students are learning 

at different rates.  Others may provide for a small rise in probability of correct re-

sponse initially but then “drop,” as if students were forgetting, even when individual 

students are consistently mastering their skills. 

The learning curve of Fig. 1 illustrates aspects of both problems, with a relatively 

flat portion, followed by a drop, after a small increase in probability correct from its 

initial value.  The red line, representing the size of the student population at each op-

portunity, illustrates that BKT is determining that students are mastering the skill 

relatively quickly. 

 

Fig. 1. Empirical Learning Curve for Skill “Select form of one with numerator of one”; the blue 

line represents empirical data plotted as percentage of correct responses, and the black line 

represents a fitted power function.  The red line provides the size of the student population. 

Two ways to re-visualize problematic, aggregated learning curves have been suggest-

ed [16].  One is to provide multiple learning curves (on the same plot) for individual 

                                                             
2
 Developers at Carnegie Learning also deploy several data-driven heuristics (that correspond to 

various visual features of learning curves) to analyze our large portfolio of KCs (i.e., several 

thousand KCs over several mathematics CT curricula) and observed student data to draw at-

tention to those KCs that may require revision in our deployed cognitive models. 
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“segments” of students based upon how many opportunities students, in observed 

data, take to reach the mastery learning threshold for a skill.  Such segmented learning 

curves are provided with the same x-axis and y-axis as standard learning curves (i.e., 

practice opportunity count on the x-axis and, e.g., percentage of student correct re-

sponse on the y-axis).   

The second approach suggested by [16] has the analyst plot “mastery-aligned” 

learning curves.  In such learning curves, students are also segmented according to the 

number of opportunities required to reach mastery, but the end-point of the x-axis 

corresponds to the opportunity at which students’ reach mastery (m) and moving left 

along the x-axis corresponds to the opportunity before mastery (m-1), the second to 

last opportunity before mastery (m-2), and so on.   

Further work [17] provides a mathematical explanation, along with proof-of-

concept simulation studies based on HMMs, for the dynamics of aggregate learning 

curves to explain how both mastery learning itself and differing student sub-

populations, when aggregated, can contribute to learning curves that do not show 

learning (or manifest other peculiar, possible deceptive, phenomena like “negative” 

learning). 

We illustrate an alternative to [16] by providing a method that relies on probabilis-

tic simulation to construct aggregate learning curves that better represent learning in 

empirical student data.  Specifically, we “pad” empirical data for student skill oppor-

tunities with simulated data to mask the effects of attrition due to mastery learning 

and possibly “reveal” student learning.  Student opportunity data are generated with 

the same parameters used to track student progress and the probability of student 

knowledge estimated at the point at which the student crossed the mastery threshold.  

Such simulations provide us data after a student no longer receives practice opportu-

nities for a particular skill because they have been judged as having achieved mastery. 

For the aggregate learning curve of Fig. 1, the “padded” learning curve is Fig. 2.  

The fitted power-law slope parameter decreases from -0.042 to -0.363 (indicating 

more learning), and the goodness-of-fit of the power law function (R
2
) increases from 

0.0571 to 0.875.  We apply the method to 166 skills identified
3
 by [16] as possibly 

problematic in the Cognitive Tutor Algebra I (CTAI) curriculum.  We find an im-

provement (i.e., power-fit parameter decreases from above -0.1 to below -0.1, a crite-

rion deployed by [16]) for 98 skills (59%).  While this method provides an improved 

visualization and understanding of fewer skills than the disaggregation procedures 

suggested by [16], this seems to provide evidence of the great extent to which mastery 

learning attrition obfuscates evidence for student learning. 

 Importantly, our simulation method does not eliminate the early dip in the learning 

curve at opportunity 3 when little attrition has yet to take place, but only masks the 

effects of attrition due to mastery learning.  Such an approach focuses largely on a 

better representation or visualization of the “tail” of aggregate learning curves.  This 

                                                             
3
  These skills were chosen because the over-whelming majority of students are judged to 

eventually master them (i.e., CT “thinks” the students are learning); they are not pre-

mastered (i.e., P(L0) < 0.95); they do not show learning in their aggregate learning curve 

(i.e., power-law fit parameter > -0.1); aggregate learning curves for these skills do not have 

multiple maxima; and we have data for at least 250 students for these skills [16]. 



allows us to focus on other features of the learning curve that may indicate ill-

modeled KCs in a cognitive model, software bugs, and other possible problems. 

 

 

Fig. 2. Simulation-Padded Learning Curve for Skill “Select form of one with numerator of one”   

8 Summary 

We briefly reviewed several methods for simulating learners.  We focused on ways 

in which simple probabilistic models, in contrast to methods that rely on rich cogni-

tive theory, can be used to generate student performance data to help drive practical 

decision-making about CT deployment, focusing first on the mastery threshold proba-

bility of BKT as a tunable parameter to determine aspects of efficient practice.  Then 

we introduced a new method for visualizing aggregate learning curves that relies on 

both empirical and simulated data that helps to mask the bias introduced by mastery 

learning attrition.  Future work will further explore these methods, new simulation 

regimes, and their practical import. 
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