
Toward a reflective SimStudent: Using

experience to avoid generalization errors

Christopher J. MacLellan, Noboru Matsuda, and Kenneth R. Koedinger

Human-Computer Interaction Institute
Carnegie Mellon University
Pittsburgh PA 15213, USA

cmaclell@cs.cmu.edu, mazda@cs.cmu.edu, and koedinger@cmu.edu

Abstract. Simulated learner systems are used for many purposes rang-
ing from computational models of learning to teachable agents. To sup-
port these varying applications, some simulated learner systems have
relied heavily on machine learning to achieve the necessary generality.
However, these efforts have resulted in simulated learners that sometimes
make generalization errors that the humans they model never make. In
this paper, we discuss an approach to reducing these kinds of generaliza-
tion errors by having the simulated learner system reflect before acting.
During these reflections, the system uses background knowledge to recog-
nize implausible actions as incorrect without having to receive external
feedback. The result of this metacognitive approach is a system that
avoids implausible errors and requires less instruction. We discuss this
approach in the context of SimStudent, a computational model of human
learning that acquires a production rule model from demonstrations.

Keywords: simulated learners, metacognition, cognitive modeling, rep-
resentation learning, grammar induction, generalization error

1 Introduction

Simulated learning systems can be used for a wide range of tasks, such as mod-
eling how humans learn, as teachable agents, and as a means to automate the
construction of models that can be used in cognitive tutors. In an effort to re-
duce the amount of developer effort needed to deploy simulated learners for these
tasks, researchers have been relying increasingly on the use of machine learning
algorithms. However, by increasing the generality of these systems through ma-
chine learning approaches, these systems become more susceptible to making
unrealistic generalization errors.

When using simulated learners to model human learning, we desire systems
that predict student’s errors as well as their correct behavior. Unrealistic general-
ization errors, in the context of these systems, are errors that the system predicts
humans will make, but that they never actually make. If a system is prone to
making these kinds of errors, then it becomes difficult to draw conclusions from
the predictions the simulated learners makes for novel tasks.

These generalization errors also complicate the use of simulated learners as
teachable agents because they result in a system that produces non-human be-
havior. When human students are teaching a simulated learner in a peer-tutoring
scenario and it makes errors that humans never make, then it decreases the au-
thenticity of the experience. This inauthenticity might effect the social dynamics
of the learning-by-teaching scenario possibly making the teachable agent less ef-
fective.

Finally, generalization errors also have negative effects when using simulated
learners to automatically build cognitive tutors. For this purpose, simulated
learners have been used to author production rule models via interactive demon-
strations of the solutions to the problems the system will tutor. This approach
may decrease the amount of work required to build a cognitive tutor and allow
subject-matter experts to author tutors directly, without an AI developer. In
this paradigm, SimStudent’s errors are useful to the extent that they correspond
with typical student errors; in these cases, the resulting production rules can
be added to the tutor’s bug library. However, if the errors are unrealistic, the
author must waste time identifying and deleting these nonsensical production
rules.

In this paper, we propose an approach that uses background knowledge to
mitigate unrealistic generalization errors with no changes to the underlying al-
gorithms and which should increase the effectiveness of the underlying learning
mechanisms. Before presenting this approach in section 4, we first review Sim-
Student, the simulated learning system that provides the context for this work
(section 2) and introduce a motivating example of a nonsensical generalization
error SimStudent currently makes (section 3). After presenting this approach,
we present some initial results and discuss conclusions and future work.

2 The SimStudent Architecture

The simulated learner system that we focus on in this paper is SimStudent, a
system that induces production rule models from demonstration and problem
solving. The SimStudent system is used primarily for three tasks: to model and
predict human learning, to author cognitive tutors, and to function as a teachable
peer-agent.

In order to understand how SimStudent works and the situations in which
it makes unrealistic generalization errors, we will review the types of knowl-
edge used by SimStudent, how this knowledge is represented, and the learning
mechanisms SimStudent uses to acquire this knowledge from experience.

2.1 Knowledge and Representation

There are three kinds of knowledge in SimStudent: primitive operator function
knowledge, conceptual knowledge, and procedural knowledge. The first kind of
knowledge is hand-constructed and consists of the low-level functions for ma-
nipulating data available to the system (i.e., adding two values, appending two

strings together, etc.). One example of a low-level function is SkillAdd, which
accepts two arguments, each of type arithmetic expression, and returns the sum
of these two expressions as a single arithmetic expression. These functions con-
stitute SimStudent’s background knowledge. Depending on the task SimStudent
is being used for, different kinds of background knowledge may be appropriate.

Head Body Prob

Expression ← Number Variable 0.95
Expression ← Minus Variable 0.05
Variable ← x 1.0
Minus ← - 1.0
Number ← 0 0.1

...
Number ← 9 0.1

Fig. 1. A simple probabilistic context-free grammar and example parses of two expres-
sions using this grammar.

The second kind of knowledge is conceptual, or representational, knowledge,
which is encoded as a probabilistic context-free grammar. It is automatically
acquired by SimStudent and is used to interpret the interface and information
in it. Figure 1 shows a simple example of the conceptual knowledge SimStudent
might possess about expressions for an algebra domain. This knowledge enables
SimStudent to automatically extract plausible “chunks” from the input, such as
the coefficient or term in an equation, which can subsequently be manipulated
by primitive operator functions or procedural rules. Furthermore, this knowledge
can be used to determine the likelihood that a given example was produced by
the grammar.

If (current-row ’output-cell ’row) then (write-text ’output-cell
(cell-in-row ’row 1 ’left-side) → (append “divide” ’coefficient)).
(is-left-child-of ’left-side ’coefficient)

Fig. 2. An example production rule for division.

The final kind of knowledge is procedural knowledge, which represents the
skills that we desire students to learn. This knowledge is encoded as production
rules, which contain conditions under which the rules apply and what to do
under those conditions. Figure 2 shows an example of a production rule signifying
that when the left side of the equation’s parse tree has a left child (here called
coefficient), then enter “divide <the coefficient>” into the output cell.

2.2 Learning Mechanisms

Fig. 3. A diagram of the SimStudent learning mechanisms and how they interact.

Of the three kinds of knowledge manipulated by the SimStudent system, two
are learned automatically: the conceptual and procedural knowledge. To acquire
these two kinds of knowledge the system employs four learning mechanisms: what
learning, where learning, when learning, and how learning. The what learning
is used to acquire the conceptual knowledge whereas the where, when, and how
learning are used to acquire the procedural knowledge. Figure 3 shows how these
four learning mechanisms interact. Before SimStudent is used, the what learning
is run to acquire the conceptual knowledge. When SimStudent encounters a
situation where it does not know how to act, which is common initially, it requests
a demonstration from the author (the tutor developer or student tutor). This
demonstration is comprised of four parts:

• Focus of attention: the set of relevant interface elements (e.g., the left and
right hand sides of an equation);

• Selection: the interface element to manipulate (e.g., the output cell);

• Action: the action taken in the selection (e.g., update the text value); and,

• Input: the argument to the action (e.g, the text string used to update the
selection).

Every time the system sees a new demonstration or gets corrective feedback on
its performance, it learns or modifies a production rule. Production rule learning
is done in three parts: 1) how learning attempts to explain the demonstration
and produce the shortest sequence of primitive operator functions that replicates
the demonstrated steps and ones like it, 2) where learning identifies a generalized
path to relevant elements in the tutor interface that can be used as arguments
to the function sequence, and 3) when learning identifies the conditions under
which the learned production rule produces correct actions. We will now review
each of these learning mechanisms.

What This mechanism operates off-line to acquire a probabilistic context-free
grammar from only positive examples. This task can be defined as:

• Given: a set of examples of correct input;

• Find: a probabilistic context-free grammar with the maximal likelihood of
producing the examples.

This task is performed using a grammar induction approach outlined by Li et
al. [1], which uses a greedy approach to hypothesize the grammar structure and
Expectation Maximization to estimate the grammar parameters.

Whenever a demonstration is given to SimStudent, it augments the provided
information with the most likely parse trees of the content of each element in
the focus of attention. This additional information is used by SimStudent in
the subsequent learning mechanisms to extract deep feature knowledge from the
content (e.g., to recognize and extract the coefficient of a term in an equation).
The parse trees make this deep feature information directly accessible to Sim-
Student through the nodes in the parse tree (e.g., the left child of the parse tree
for “3x” in Figure 1 corresponds to the coefficient).

How This is the first of three mechanisms executed in response to a demon-
stration. The how learning task can be defined as:

• Given: a set of demonstrations consisting of the state of the relevant inter-
face elements and the parse trees of the contents of these elements as well
as the resulting input for each state;

• Find: a sequence of primitive functions that when applied to each state
produces the corresponding input.

This task is performed by exhaustively applying the primitive operator functions
over all nodes in the focus of attention parse trees until the input is produced.
The iterative-deepening depth-first search strategy is used to find the shortest
sequence of functions that explains the data [1]. If no sequence exists, then a
special functions is created that takes the states and produces the corresponding
inputs.

Where This learning mechanism identifies the path to the relevant tutor inter-
face elements. The tutor interface elements are specified by a hierarchical tree
structure (a table is comprised of rows which each contain cells). During inter-
active instruction, the relevant interface elements are specified by the author
teaching SimStudent. For each relevant element, SimStudent generates a parse
tree for the contents. The relevant portions of these parse trees are defined as
those that are utilized by the operator function sequence acquired through the
how learning. The task of learning a general path to this relevant information
can be defined as:

• Given: a hierarchical representations of the interface elements and their
parse trees, the function sequence from the how learner, and a set of elements
that have been identified as relevant;

• Find: a list of paths through the representation hierarchy to all of the rele-
vant elements and the relevant portions of their parse trees.

The SimStudent approach to this task is to conduct specific-to-general learning
over the set of relevant interface elements and parse trees [1]. Returning to the
table examples, if the first cell in the first row of the table is always relevant,
then a path to that specific cell will be returned. However, if all of the elements
in the row are specified as relevant, then the entire row will be returned. After
the location to the relevant elements has been identified, the system utilizes
the function sequence to identify the relevant portions of the parse trees for
each element. This same specific-to-general learning is then conducted over these
relevant parse trees (within each element).

When This final mechanism identifies the conditions when the learned produc-
tion rule is applicable. This task is defined as:

• Given: a set of positive and negative examples, each consisting of a set of
features and their associated label;

• Find: a set of conditions over the features that separate the positive and
negative examples.

As specified, this is a supervised learning task. The features used by SimStudent
to represent each example are predicates that are automatically generated from
the relevant portions of the parse trees. For example, there exists an “is-left-
child-of” predicate, which says that a particular argument is the left child of a
given node in one of the parse trees. This type of feature enables the retrieval
of equations, terms, coefficients, and variables. Given the feature descriptions of
each example, the positive and negative labels come from the user instructing
the SimStudent system. The first positive example is the initial demonstration.
Subsequent examples are generated when SimStudent tries to use the learned
rules to solve novel problems and receives yes/no feedback from the author.
To derive the set of conditions given the examples, SimStudent uses the FOIL
algorithm [2], which uses information theory to perform a general-to-specific
exploration of the space of hypothetical conditions.

These four learning mechanisms result in a simulated learning system that
accepts user demonstrations and feedback and automatically acquires probabilis-
tic context-free grammar rules and production rules. The system requires little
background knowledge; for each task only the primitive functions need to be
defined by the developer. However, the cost of this generality is a system that
sometimes makes unrealistic generalization errors.

3 An example of an unrealistic generalization error

To explore the types of generalization errors that SimStudent makes, we turn
to the algebra domain. One of the skills that students learn in this domain is
how to proceed when given a problem of the form < Symbol >< V ariable >=<

Symbol > (e.g., 3x = 6). The skill that we desire the student to learn in this
situation is to specify that their next step is to divide both sides by the coefficient
of the term on the left side of the equation (the production rule from Figure 2).

Fig. 4. SimStudent requesting a demonstration in an algebra tutor interface after the
author has just entered “divide 3.”

When SimStudent is first presented with a problem of this form, such as
3x = 6, it will inform the author that it does not know how to proceed and
ask for a demonstration. The author might demonstrate to SimStudent that the
cells containing the left and right hand sides of the equation are relevant to the
problem (by double-clicking on these cells) and update the next step interface
element with “divide 3” (see Figure 4).

After receiving this demonstration, SimStudent parses the contents of the
focus of attention (The first parse tree in Figure 1 shows an example of what
the left hand of the equation might look like). Next, it employs the how learning
mechanism, which searches for a sequence of functions that when applied to
the nodes in the parse tree produce the input. In this example, it might learn
to append the left child of the parse tree (for the left side of the equation) to
the word “divide” and place it into the tutor interface (the then part of the
production rule in Figure 2). Using the locations of the relevant elements (the
left child of the parse tree), SimStudent then learns a general path through
the representation hierarchy to the relevant elements and the relevant portions
of the parse trees for these elements. Finally, SimStudent runs FOIL over the
relevant information to learn the conditions under which the learned behavior is
applicable. This results in the if portion of the production rule in Figure 2.

The learned production rule is more general than the single demonstration it
was learned from; it is applicable for many equations, such as 4x = 12 or 2x = 8.
However, when SimStudent is presented with a subtly different example that
utilizes the same skill, −x = 2, it results in the mistaken generation of the input
“divide -” (instead of “divide -1”). This is because in this situation the left child
of the parse tree on the left hand side of the equation is a minus sign instead of
the coefficient (see the second parse tree in Figure 1). In a review of problems
of the form −x =< Constant > in the ‘Self Explanation CWCTC Winter 2008
(CL)’ dataset accessed via DataShop [3], none of the human student made this
error– therefore it is an example of unrealistic generalization error.

4 Reflecting before Acting

One reason that humans do not make this error is that they have a “sense” for
what are reasonable output actions and they (subconsciously) reflect on actions
before taking them. When a student is faced with the problem −x = 2 they may
mentally produce the output “divide -,” but realize that a “-” by itself is not
mathematically grammatical because they have never seen an instance where
this has occurred. This might lead them to consider a different action or to ask
for help.

To reproduce this type of behavior, we modified SimStudent to utilize its
conceptual knowledge, the probabilistic context-free grammar trained on exam-
ple inputs (described as “what” learning in section 2). The acquired grammar is
used to recognize when a potential output is not grammatical (when it cannot
be parsed) and automatically flag the situation as a negative example. In other
words, the system supervises itself and provides negative feedback (which the
when learner uses) to improve its learning.

Now, when SimStudent is presented with a problem and finds an applicable
rule, it simulates the execution of the rule and constructs a probabilistic parse
of the value generated by the rule. If the value cannot be parsed by the current
grammar (there is a 0% probability that the grammar produced the value),
then SimStudent flags the trace as a negative instance and re-runs the when
learning, which refines the conditions of the rule so that it no longer applies
in the erroneous situation. If SimStudent has no other applicable rules, then it
request a demonstration from the author, exactly like a human student.

5 Initial Results

To evaluate the effectiveness of this metacognitive loop, we have tested the prob-
abilistic parser’s ability to separate correct from incorrect actions based on the
parse probability defined by the probabilistic context-free grammar. Table 1
shows five problems where SimStudent might make unrealistic errors. The first
three are problems where SimStudent might induce a rule for dividing by the
symbol before the variable instead of the coefficient. The last two problems cor-
respond to inducing a rule retrieving the symbol after the variable and division
sign instead of the entire denominator. On all five problems, the probabilistic
grammar was capable of identifying the correct from the incorrect actions.

These results suggest that this approach is capable of identifying these kinds
of errors. In general, this approach will be effective at identifying errors that re-
sult in non-grammatical output, where grammatical is defined by the probabilis-
tic context-free grammar. This is effective because the rules are learned specific-
to-general on a substantial amount of positive example inputs. By bringing this
previous experience to bare, SimStudent can avoid nonsensical generalization
errors and produce its own negative feedback, which enhances the effectiveness
of its other learning mechanisms (more self-labeled examples for the when learn-
ing). Furthermore, this requires no additional work from an author and should
reduce the amount of required author feedback.

Table 1. Five examples of problems where SimStudent might make the generalization
error of retrieving the character before the variable or after the variable and the division
sign, the corresponding correct and incorrect actions, the validity of these actions, and
the parse probability of the actions.

Example Possible Action Valid Parse Probability

−x = 2
divide − No 0.00%
divide −1 Yes 19.64%

(−2)x = 6
divide) No 0.00%

divide (−2) Yes 0.09%

3(x+ 1) = 6
divide (No 0.00%
divide 3 Yes 27.90%

x/(−3) = 3
multiply (No 0.00%

multiply (−3) Yes 0.09%

x/− 5 = 1
multiply − No 0.00%
multiply −5 Yes 19.64%

This task of verifying the output could alternatively be viewed as apply-
ing constraints to SimStudent’s output and learning from constraint violations.
Viewed this way, our work is related to the work on constraint-based tutor-
ing systems [4]. In our case, there is only one constraint, “the output must be
grammatical” where grammatical is defined as the probability of the output be-
ing produced by the grammar must be greater than 0%. We use a threshold of
greater than 0% to signify grammatical, but one could imagine using a different
threshold (e.g., greater than 0.05%). Thus, this constraint could be viewed as
a probabilistic constraint that is automatically acquired from positive training
examples.

6 Conclusion and Future work

In this paper, we outlined a novel approach to detecting and learning from unre-
alistic generalization errors that can be employed by simulated learner systems.
The implications of this approach are threefold: (1) its use will result in mod-
els of learning that more closely aligns with human data, (2) teachable agents
using this approach will be more realistic for the students using them, and (3)
developers can produce cognitive tutor models with less work.

While this approach shows promise, it clearly has some shortcomings that
should be remedied in future work. First, a more in-depth analysis of the align-
ment between SimStudent and human students is necessary. Previous work [5, 6]
has looked at the human errors that SimStudent is capable of predicting, but a
more detailed analysis of the unrealistic generalization errors, or errors that Sim-
Student makes that human students do not, would be useful. This would serve
as a baseline to evaluate the SimStudent model and to evaluate the effectiveness
of this approach.

A second direction for future work is to compare this approach to other ap-
proaches that might reduce these errors. We could imagine a system that has
additional condition knowledge for the operator functions so that it would not
generalize to situations where the function sequence would not be applicable
(such as trying to divide by a symbol instead of a number). It would also be
interesting to explore how reflection might facilitate the acquisition of this ad-
ditional condition knowledge for the operator functions.

Finally, we are interested in applying this approach in other more complex
and open-ended domains such as in RumbleBlocks, an educational game that
teaches K-3 children about the relationships between the concepts of stability,
low center of mass, wide base, and symmetry. We have been exploring how prob-
abilistic grammars can be used to learn conceptual knowledge in RumbleBlocks
[7] and we believe that this approach should scale up to this more complex
domain.

References

1. Li, N., Schreiber, A.J., Cohen, W.W., Koedinger, K.R.: Efficient Complex Skill
Acquisition Through Representation Learning. Advances in intelligent tutoring sys-
tems 2 (2012) 149–166

2. Quinlan, J.R.: Learning Logical Definitions from Relations. Machine Learning 5

(1990) 239–266
3. Koedinger, K.R., Baker, R.S.J.d., Cunningham, K., Skogsholm, A., Leber, B., Stam-

per, J.: A Data Repository for the EDM community: The PSLC DataShop. In
Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.J.d., eds.: Handbook of Edu-
cational Data Mining. CRC Press (2010)

4. Mitrovic, A., Ohlsson, S.: Evaluation of a constraint-based tutor for a database
language. International journal of artificial intelligence in Education 10 (1999)
238–256

5. Lee, A., Cohen, W.W., Koedinger, K.R.: A Computational Model of How Learner
Errors Arise from Weak Prior Knowledge. In Taatgen, N., van Rijn, H., eds.: Pro-
ceedings of the Annual Conference of the Cognitive Science Society, Austin, TX
(2009) 1288–1293

6. Matsuda, N., Cohen, W., Sewall, J., Lacerda, G., Koedinger, K.R.: Evaluating a
Simulated Student using Real Students Data for Training and Testing. In Conati,
C., McCoy, K., Paliouras, G., eds.: Proceedings of the International Conference on
User Modeling. (2007) 107–116

7. Harpstead, E., MacLellan, C., Koedinger, K.R., Aleven, V., Dow, S.P., Myers, B.:
Investigating the Solution Space of an Open-Ended Educational Game Using Con-
ceptual Feature Extraction. In: Proceedings of the International Conference on
Educational Data Mining. (2013)

