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Abstract. We are starting to integrate Carnegie Learning’s Cognitive Tutor 

(CT) into the Army Research Laboratory’s Generalized Intelligent Framework 

for Tutoring (GIFT), with the aim of extending the tutoring systems to under-

stand the impact of integrating non-cognitive factors into our tutoring.  As part 

of this integration, we focus on ways in which non-cognitive factors can be as-

sessed, measured, and/or “detected.”  This research provides the groundwork 

for an Office of the Secretary of Defense (OSD) Advanced Distributed Learn-

ing (ADL)-funded project on developing a “Hyper-Personalized” Intelligent 

Tutor (HPIT).  We discuss the integration of the HPIT project with GIFT, high-

lighting several important questions that such integration raises for the GIFT ar-

chitecture and explore several possible resolutions. 
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1 Introduction 

Our goal in developing a “Hyper-Personalized” Intelligent Tutor (HPIT) is to bring 

learning systems to the next level of user/student adaptation. In addition to traditional 

features of systems like Carnegie Learning’s Cognitive Tutor (CT), HPIT includes 

non-cognitive factors to provide a more personalized experience for users of the sys-

tem. In this paper, we discuss features of HPIT and situate the work in the context of 

the Generalized Intelligent Framework for Tutoring (GIFT) architecture. 
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1.1 Cognitive Tutors 

Carnegie Learning’s Cognitive Tutor (CT) [1] is an adaptive, computer-based tutoring 

system (CBTS) or intelligent tutoring system (ITS) based on the Adaptive Control of 

Thought—Rational (ACT-R) theory of cognition [2] used every year by hundreds of 

thousands of learners, from middle school students through college undergraduates.  

To date, Carnegie Learning’s development of the CT has focused primarily on math-

ematics. 

1.2 Generalized Intelligent Framework for Tutoring (GIFT) 

The Army Research Laboratory (ARL) is working to develop the Generalized Intelli-

gent Framework for Tutoring (GIFT). The GIFT project aims to provide a “modular 

CBTS framework and standards [that] could enhance reuse, support authoring and 

optimization of CBTS strategies for learning, and lower the cost and skillset needed 

for users to adopt CBTS solutions for military training and education” [3].  Given 

substantial efforts in both academia and industry to develop ITSs, integrating aspects 

of this work with ARL’s GIFT is important for future development.  We briefly pro-

vide an overview of GIFT before describing a particular project that will integrate 

architecture for “hyper-personalized” versions of ITSs, like Carnegie Learning’s CT, 

with GIFT. 

GIFT provides a modular framework to achieve and support three goals or “con-

structs” [3]: (1) affordable, easy authoring of CBTS components, (2) instructional 

management for integrating pedagogical best practices, and (3) experimental analysis 

of effectiveness. 

GIFT’s service-oriented architecture (SOA) currently provides four modules, 

among other functional elements, around which CBTSs can be implemented and into 

which existing ITSs can be integrated.  Three modules are domain-independent: the 

Sensor Module, User Module, and Pedagogical Module. The Domain Module con-

tains all domain-specific content, including problems sets, hints, misconceptions, etc.  

One functional element outside of “local tutoring processes” in the GIFT archi-

tecture is important for the present discussion: Persistent Learner Models.  These 

models are intended to “maintain a long term view of the learner’s states, traits, de-

mographics, preference, and historical data (e.g., survey results, performance, compe-

tencies)” [3]. As we review several key, non-cognitive factors upon which we seek to 

base a “hyper-personalized” CT, the importance of data intended to be tracked by 

Persistent Learner Models will be clear.  However, the notion of “persistence” for this 

data becomes less clear. 

2 Non-Cognitive Factors 

While the CT and other ITSs adapt content presented to students based on cognitive 

factors such as skill mastery, there are many other (cognitive and non-cognitive) fac-

tors for which the student learning experience might be adapted and personalized.  

We present several examples of recent research focusing on the impact of non-

cognitive factors on student learning in ITSs.   
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2.1 Gaming the System and Off-Task Behavior 

A wide variety of behaviors in an ITS or CBTS like CT may be associated with learn-

ing.  Two specific behaviors that have been widely studied in the recent literature 

include “gaming the system” behavior and off-task behavior [4] [5].  This research 

has not only studied the association of these behaviors with learning but has also led 

to the development of software “detectors” of such behavior from ITS log data. 

Sometimes students attempt to advance through material in ITSs like the CT 

without actually learning the content and developing mastery of appropriate skills.  

Such behavior is generally referred to as “gaming the system.”  Examples of such 

behavior include rapid or systematic guessing and “hint-abuse.”  “Hint-abuse” refers 

to repeated student hint requests, sometimes until a final or “bottom-out” hint (essen-

tially) provides the answer to a problem or problem step [10]. 

Software “detectors” of gaming the system behavior have been developed (e.g., 

[7]) and correlated with field-observations of student behavior.  Such software detec-

tors rely on various features that are “distilled” from CT log files [8]. Studies find an 

association [4] [9] [10] and evidence for a causal link [11] [12] between gaming the 

system behavior and decreased student learning.  Similar software has also been de-

veloped, and validated via field-observations, to detect off-task behavior [5]. 

Other types of behavior, of course, may also be important for learning in CBTSs 

and ITSs.  While some behaviors may be “sensed” via physical, tactile, and/or physio-

logical sensors, we emphasize that state-of-the-art research attempts to detect different 

types of behavior from logs generated by CBTSs and ITSs. 

2.2 Affect 

Building on success in developing detectors of student behavior, current research 

seeks to detect student affect (e.g., boredom, engaged concentration, frustration, etc.) 

without sensors (i.e., without physical, tactile, and/or physiological sensors) [13]. 

Such detectors have also been validated by field-observations of students using ITS in 

the classroom.  Further, these detectors have been successfully deployed to predict 

student learning via standardized test scores [14].   

While student affect and behavior might also be physically “sensed”, inferred, or 

measured via survey instruments (e.g., mood via survey [15]), data-driven detection 

of student affect and behavior is a promising approach to achieve the GIFT design 

goal of supporting “low-cost, unobtrusive (passive) methods… to inform models to 

classify (in near real-time) the learner’s states (e.g., cognitive and affective)” [3]. 

2.3 Preferences 

Carnegie Learning’s middle school mathematics CT product, MATHia, allows stu-

dents to set preferences for various interest areas (e.g., sports, art) and probabilistical-

ly tailors problem presentation based on those preferences.  On-going research aims to 

determine if and how presenting students with problems related to their preference 

areas is associated with engagement and benefits student learning (e.g., [16-17]). Oth-
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er student preferences might be ascertained via surveys, configuration settings, or 

inferred from data, at different levels of granularity and time scales. 

2.4 Personality and Other Learner Characteristics 

Other characteristics of learners may prove important for learning.  We consider two 

prominent examples that are being considered as we develop HPIT.  Investigating 

other learner characteristics is also a topic for future research. 

 

Grit. 

Grit [18-19] is defined as the tendency to persist in tasks over the long term, when 

reaching the goal is far off in the future. Duckworth et al. [18] found that grit, meas-

ured by a survey instrument [19], predicted retention among cadets at the United 

States Military Academy at West Point, educational attainment among adults, and 

advancement to the final round among contestants in the Scripps National Spelling 

Bee.  

Educational environments like CT are able to adjust the rate at which difficulty of 

activities increases. Students high in grit may, for example, benefit more from rapid 

increases in the difficulty of course material compared to students low in grit, regard-

less of knowledge-levels. 

 

Motivation and Goals.  

Students’ motivation and goals are likely to be important for learner adaptation.  Re-

cent research [20] considers fine-grained assessment, via frequent surveys (occurring 

every few minutes) embedded within CT, of student motivation and goal orientation 

to better understand models self-regulated learning.  Elliot’s framework for achieve-

ment goals provides for two dimensions, definition (mastery vs. performance) and 

valence (approach vs. avoidance), along which goals are oriented [20-22].   

Particular problems or hints (or ways of providing hints) might, for example, be 

best suited to students with a mastery avoidance goal orientation that seek to avoid 

failure, and so on.  In addition to ascertaining the influence of goals and motivation on 

learning, determining whether students’ motivation and goals (at various levels of 

granularity) are relatively static or dynamic through a course, and possibly influenced 

by students’ experience in a course, remains a topic of active research [20].  

3 Hyper-Personalizing Cognitive Tutors 

One particularly important aspect of CTs from an architectural perspective is that they 

are driven by user inputs (called “transactions” [23]). From a system perspective, an 

update to the learner model happens only when the student takes some action within 

the system (e.g., attempting to answer a question or asking for a hint).  Other student-

initiated inputs might include, for example, student ratings of whether particular prob-

lems are interesting (e.g., an ever-present 5-star ranking system attached to each prob-

lem).  Student-initiated inputs range in time from the nearly continuous to being sepa-

rated by significant amounts of time.  
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In a more general system like GIFT, updates to the student model happen, not on-

ly at different timescales, but can also be initiated by actors (or factors) other than the 

learner. Examples include: acquiring data to update the student model through sur-

veys given to the student at times determined by the system (e.g., only at course-

beginning and end vs. periodically between problems or units), through real-time 

sensors (e.g., an eye-tracker), through student-determined inputs, etc.  Furthermore, in 

some learning environments, the student model might be updated by factors linked to 

the passage of time (e.g., inferring that a skill has been “forgotten” because the stu-

dent does not use a tutor for a substantial amount of time or updating students’ 

knowledge state after a chemical reaction occurs following some time-lapse in a 

simulation-based chemistry tutor). The mode and frequency of data collection, in part, 

determine the kinds of pedagogical moves that the ITS can take. 

The ADL-funded Hyper-Personalized Intelligent Tutor (HPIT) project seeks to 

develop a modular, plug-in-like architecture using various data collection and pro-

cessing elements to inform CT’s provision of problems, feedback, hints, etc.  Each 

factor (whether cognitive or non-cognitive) may contribute to varying degrees to the 

decision-making process, as data are collected and inferences drawn about learner 

“state.” A plug-in architecture allows for “voting” schemes to drive the personaliza-

tion process (e.g., perhaps two non-cognitive factors and one cognitive factor are all 

equally weighted, or not).  Methods will be developed to resolve conflicts (i.e., break 

“ties”) when multiple recommendations are appropriate given a student’s “state.” 

While cognitive factors are crucial for adapting educational content for disparate 

users, HPIT’s primary innovation is the creation of a platform and framework for 

adapting content based on non-cognitive factors.  To do so, HPIT will draw on data 

from software detectors, surveys, and possibly physical sensors.   Perhaps more im-

portant from an architectural perspective, however, is the fact that the measurement, 

inference, or assessment of various cognitive and non-cognitive factors may occur on 

different time scales and at different levels of granularity.  

For example, if a student is both bored (as, for example, inferred from a software 

detector applied to real-time log data) and uninterested in material currently being 

presented (as inferred from survey results), material similar in difficulty, but provid-

ing examples better suited to student preferences, might be presented.  However, a 

different strategy might be required if we lack data about their interests. Adapting 

pedagogical strategies based on data that is currently available is a virtue of the flexi-

bility of the HPIT architecture we are developing.     

4 Implications for GIFT Architecture 

The GIFT architecture and recent research (e.g., [15]) focuses on using physical sen-

sors and surveys to gather information about a learner’s non-cognitive state.  The 

HPIT framework builds on work to infer/measure student state with surveys and 

software detectors that use data from tutor logs.  These software detectors rely on data 

generated by the ITS following student-initiated input to the ITS.  We discuss several 

implications for the GIFT architecture and the integration of existing ITSs into GIFT. 
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4.1 Surveys 

In GIFT, Persistent Learner Models store survey results and communicate with the 

User/Learner Module via the SOA.  However, HPIT requires that surveys be deploy-

able at nearly any point in the learning experience, rather than simply before and after 

a “chunk” (e.g., unit) of course material.  Furthermore, surveys/polls might be con-

ducted that assess momentary characteristics of the student experience, rather than the 

persistent state of a student
6
.   

Some survey-like elements may be deployed nearly continuously.  Thus, it might 

be initially attractive to conceptualize surveys are as a particular type of sensor.  

However, the processing of the type of survey data we have in mind seems fundamen-

tally different than processing sensor data (e.g., an eye-tracker).  Consider, for exam-

ple, the previously noted five-star rating system for problems.  While the rating sys-

tem may be deployed for near-continuous collection of data, frequently students may 

not choose to rate many problems.  Perhaps we find that a student who rates problems 

infrequently assigns two particular problems a 1-star (low) rating.  Given the lack of 

input from this student, these data may be especially salient and require special con-

sideration compared to a student who frequently rates problems, and with high varia-

bility.  Such possibilities seem to suggest that we treat discrete survey data (even with 

high-polling rates) differently than sensors that continuously provide data.   

4.2 (Sensor-Free) Detectors in the GIFT Architecture 

For purposes of software implementation, detectors are essentially sensors (i.e., both 

process, filter, and/or aggregate streams of data to make inferences about student 

state); “detector processing” would be nearly identical to “sensor processing” within 

the Sensor Module.  However, the input characteristics of software detectors are much 

different than those of sensors in the GIFT architecture, as the notion of a sensor with-

in GIFT, to date, focuses on physical sensors.    Detectors generally rely on stu-

dent/user-initiated input mediated by the learning environment, but detectors might 

also be developed that do not rely on user-initiated input (e.g., a detector of “forget-

ting” based on time-lapse in usage of the ITS).  

One possible resolution would have the Domain Module (and/or the Tutor-User 

Interface) as input to the Sensors element, so that software-based detectors that rely 

on tutor log data are also conceptualized as Sensors. This proposal may stretch the 

notion of Sensors too far.  In response, one might include a new type of Detec-

tor/Analysis Module that would take Domain Module (and possibly Pedagogical 

Module or Tutor-User Interface) data as input and provide information to the User 

Module about learners’ affective and cognitive states via software detectors.  This 

achieves the goal of keeping the relatively domain-independent detectors outside of 

the Domain Module. This requires that Domain Module output is sufficiently rich for 

use by detectors; as currently conceptualized, this is not clear. 

                                                           
6
 The HPIT architecture maintains such flexibility so that the investigator is free 

to make (or not make) distinctions about persistent versus non-persistent student char-

acteristics (and concomitant timing decisions about assessment, measurement, or 

detection). 
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5 Discussion 

Overall, we suggest that the GIFT architecture is well-served by considering the con-

sequences of integrating a broader range of input and output relationships among its 

component modules (or possibly new types of modules) and other functional elements, 

including considerations of the presence, timing, granularity, and content of data 

passed between components. 

Current research provides for data-driven means to use CT (and other CBTS) 

logs to classify and “detect” student behavior and affect without physical sensors, 

whether transactions and inputs are student-initiated or system-initiated.  Integrating 

capabilities necessary for HPIT will be a fruitful extension of GIFT. 

Furthermore, detectors rely on data from the ITS to determine whether students 

are off-task, gaming, bored, frustrated, etc. Such detectors require relatively rich log 

data and would not be served by the impoverished (i.e., abstract) assessment catego-

ries of “above standard,” “below standard,” etc., provided by the Domain Module. 

This suggests that detectors are a part of the Domain Module, but they are also (rela-

tively) domain independent. Thus, it is not clear that they should be included in the 

Domain Module.  Requiring detectors be a part of the Domain Module would also 

incur costs in terms of reusability and modularity.  Alternatively, richer data might be 

provided to an enhanced Learner Module that subsumes (aspects of) the Sensor Mod-

ule and our proposed detectors (i.e., the Detector/Analysis Module) to better infer 

characteristics of a learner’s state.  Further, other open questions remain as to the 

proper placement of other components of CTs within the GIFT architecture.  
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