
��������	��
���
��	�����������������������
�����
Nancy L. Green

University of North Carolina
Greensboro

Greensboro, NC 27402 USA
1-336-256-1133

nlgreen@uncg.edu

ABSTRACT
This paper presents our ideas on generating formative feedback in

the Genetics Argumentation Inquiry Learning (GAIL) system.

GAIL will provide undergraduate biology students with tools for

constructing Toulmin-style arguments on questions in genetics.

Feedback will be based in part on the output of GAIL’s argument

analyzer, which will compare learner arguments to automatically

constructed expert arguments. In addition to identifying problems

in the learner’s arguments, the analyzer will recognize the

argumentation scheme used to construct acceptable arguments.

From that, GAIL can instantiate critical questions, a unique form

of feedback in intelligent learning environments.

Keywords

Educational Argumentation Systems, Undergraduate Genetics

Education.

1. INTRODUCTION
We are developing the Genetics Argumentation Inquiry Learning

(GAIL) system for improving undergraduate biology students’

argumentation skills in the domain of genetics. As in many

educational argumentation systems, GAIL will provide the learner

with tools for representing arguments in diagrams due to the

cognitive benefit of diagrams [1-3]. In addition, educational

systems can exploit the learner’s argument diagram as a source of

information for providing educational feedback. A prototype

graphical user interface (GUI) for GAIL is shown in Figure 1.

The top left-hand side of the screen presents a problem, e.g., to

make an argument for the claim that J.B., an imaginary patient,

has the genetic condition called cystic fibrosis. Below that are

possible hypotheses, data about the patient and his biological

family members, and biomedical principles that may be relevant

to the current problem. The learner can drag these elements into

the argument diagramming workspace in the center of the screen

to construct an argument in a Toulmin-influenced [4] box-and-

arrow notation; a vertical arrow from the data points upward to

the claim/conclusion and the warrant is attached at a right-angle

to the arrow.

In this paper we describe our planned approach to providing

formative feedback based upon automatic analysis of learners’

argument diagrams. Expert models for argument analysis will be

automatically constructed by GAIL using an argument generator

module similar to the argument generator developed for the

GenIE Assistant [5]. The expert model will contain all acceptable

arguments that can be generated automatically for a given claim

from an underlying knowledge base (KB) representing the

problem domain. GAIL’s argument analyzer will compare the

user’s argument to the generated expert arguments to identify

acceptable learner arguments and weaknesses in the learner’s

argument. Weaknesses in student arguments are identified using

non-domain-specific, non-content-specific rules that recognize

common error types, e.g., those observed in a pilot study reported

in section 3. In addition, if an argument is acceptable, the analyzer

will recognize and output the argumentation scheme underlying

the student’s argument and its associated critical questions. The

output of GAIL’s argument analyzer will be utilized by GAIL’s

feedback generator to provide formative feedback.

In some previous educational argumentation systems, the

student’s argument diagram is compared to a manually-

constructed expert model to provide problem-specific support.

However, expert models are expensive to construct and may not

cover all possible solutions or errors [6]. In GAIL’s approach the

expert model is constructed automatically. Other systems use

simulation of reasoning to evaluate formal validity but do not

provide problem-specific support [6]. GAIL’s approach is similar

in that it reasons like an expert to generate an argument. Unlike

those systems, however, GAIL’s approach will provide problem-

specific support.

This paper presents how the expert model is generated (section 2),

a pilot study of GAIL’s GUI prototype that motivated the

classification of weaknesses in learners’ arguments (section 3),

implementation of a prototype argument analyzer (section 4),

some issues to be addressed in the planned feedback generator

(section 5), and conclusions (section 6).

2. EXPERT MODEL
Generation of expert arguments in GAIL will be done following

the approach to argument generation used in the GenIE Assistant,

a proof-of-concept system for generating first-drafts of genetic

counseling patient letters [5]. Written by genetic counselors to

their clients, this type of letter contains biomedical arguments to

justify diagnostic testing, the diagnosis of genetic conditions, and

the probable genotypes of family members. GenIE’s internal

components include

• domain models, causal models of genetic conditions used by

genetic counselors in communication with their clients [7],

• an argumentation engine that uses computational definitions

of argumentation schemes [8] to guide search in the domain

model for data and warrant needed to support a particular

claim, and

• a letter drafter that organizes and expresses the arguments as

English text using natural language generation techniques.

GAIL’s expert arguments will be produced using a similar

approach to the GenIE Assistant’s domain models and

argumentation engine. However, the natural language generation

module, the letter drafter, will not be needed to generate expert

arguments.

The domain models in the GenIE Assistant are represented

computationally as qualitative probabilistic networks (QPN) [9].

A QPN consists in part of a directed acyclic graph whose nodes

are random variables. In addition, a QPN specifies qualitative

constraints on variables in terms of influence (S+, S-), additive

synergy (Y+, Y-), and product synergy (X0, X-) relations. For

(Boolean) random variables A, B and C, S+(A,B) [or S-(A,B)] can

be paraphrased as If A is true then it is more [less] likely that B is

true; Y+({A,C},B) [or Y-({A,C},B) as If A and C are true then A

enables [prevents] C from leading to B being true;

X0({A,C},B)[or X-({A,C},B)] as if both [either] A and C are true

then it is likely that B is true.

To illustrate S+, if a patient has two mutated BRCA1 alleles then

it is more likely she will develop breast cancer; Y+, someone who

has inherited a genetic mutation for familial hypercholesterolemia

is at a higher risk of heart disease if she is obese; X-, breast cancer

can be caused by mutation of BRCA1 or some other gene; and X0,

together the mother and the father can pass an autosomal recessive

mutation to their offspring. A QPN representing knowledge about

a genetic condition can be reused for different patient cases.

Representative domain models for testing the GenIE Assistant

were built quickly using information from genetics reference

books. The size of a QPN to be used in GAIL would be of the

same scale as those used to generate letters in the GenIE Assistant

(less than 50 nodes). For more information on domain modeling

see [5].

Computational definitions of argumentation schemes are used by

the GenIE Assistant’s argumentation engine to construct a genetic

counselor’s arguments for the diagnosis and genotypes of family

members [5]. The argumentation schemes are formalized in a

structure including claim, data, and warrant. Since the

argumentation engine and schemes do not encode domain-specific

or patient case-specific content, they can be used to generate

arguments in any domain whose domain knowledge can be

represented in a similar format. The propositions used as claim or

data describe states of variables in a QPN. The warrant expresses

formal constraints on the nodes of the QPN in terms of influence

and synergy relations mentioned above. The distinction between

the two types of premises reflects their difference in function and

source of information. Claims and data are facts or hypotheses

about a particular case, whereas warrants describe (biomedical or

other) generalizations.

In addition to those components, argumentation schemes in the

GenIE Assistant include a field called the applicability constraint,

a constraint that must be true to generate an argument from that

scheme. Note that conclusions of the argumentation schemes are

not necessarily deductively valid, and the applicability constraint

is a type of critical question [8]. As discussed in section 5, the

critical questions of GAIL’s argumentation schemes provide a

systematic means of challenging the conclusion of an argument.

To illustrate, consider an abductive reasoning scheme used in the

GenIE Assistant:

Claim: A � a

Data: B � b

Warrant: S*(<A,a>, <B,b>)

App. constraint: ¬ exists C X
-
({C,A},<B,b>): C � c

In the above, uppercase-initial terms -- A, B, C -- are random

variables in the QPN, S* is a chain of one or more positive

influence relations S+. Lowercase-initial terms – a, b, c – are

values of the random variables, and in this scheme are threshold

values. To paraphrase this scheme, (warrant) there is a (chain of)

possible positive causal influence(s) from A to B; (data) B is at

least b; therefore (claim) A is at least a; (applicability constraint)

provided that there is no C such that C and A are mutually

exclusive positive influences on B and C is at least c. For

example, (warrant) having a genotype with two mutated alleles of

CFTR can lead to (abnormal CFTR protein which can lead to

abnormal pancreas enzyme level which can lead to) growth

failure; (data) this patient has growth failure; therefore (claim) this

patient has cystic fibrosis; (applicability constraint) as long as

there is no other condition believed to explain growth failure.

An argument for a given claim is automatically constructed by

searching the domain model and data about the patient’s case for

information fitting GenIE’s argumentation schemes instantiated

with the claim. In addition to the above abductive argumentation

scheme, other schemes support abductive reasoning about

alternative causes or jointly necessary causes, reasoning from

cause to effect, reasoning from negative evidence, and reasoning

by elimination of alternatives. The argumentation schemes reflect

those used in a corpus of genetic counselor-authored letters. Note

that the GenIE Assistant’s argumentation engine can construct

complex arguments involving multiple pieces of evidence and

chains of arguments. The same approach will be used in GAIL to

generate expert arguments for a given claim. In a performance

evaluation of the GenIE Assistant, two letters, each containing

multiple arguments, were generated in 22 seconds on a desktop

computer [5]. Note that the time should be less than that in GAIL,

since the arguments will not be realized in English. Also, they can

be generated off-line if necessary.

Fig. 2. Example of simple argument structures.

Some example arguments that can be generated are illustrated in

Figures 2 and 3 in the box and arrow style of notation used in the

GAIL interface. (To save space, the diagrams contain variables

rather than the text that would be used in the GUI.) The diagram

on the left of Figure 2 is a chain of two abductive arguments. The

claim (A) that patient P has cystic fibrosis (two mutated CFTR

alleles) is supported by the hypothesis (C) that P has abnormal

CFTR protein and is warranted by the positive influence relation

between CFTR alleles and CFTR protein. Hypothesis C is

supported by the data (D) that P has frequent respiratory

infections and the positive influence relation between CFTR

protein and respiratory infections. The diagram on the right of

 E

 B

S+(B,E)

 A

 C

S+(A,C)

D

S+(C, D)

Figure 2 is a causal/predictive argument for the claim (E) that

individual M (the patient’s mother) is a carrier of a CFTR

mutation. E is supported by the family history data that M has a

certain ethnicity and is warranted by the higher probability of

being a carrier if an individual has that ethnic background.

Figure 3 shows part of an argument for the claim (A=1) that P’s

mother has exactly one mutated CFTR allele. The left-hand

subargument is for the hypothesis that she has one or two mutated

CFTR alleles. That subargument is supported by the hypothesis

(D=2) that P has cystic fibrosis (two mutated CFTR alleles), and

is warranted by the synergy relation, X0(<A=1,B=1>, D=2), i.e.,

that a child who has two mutated alleles inherited one from the

mother and one from the father. Note that the claim D=2 would be

supported by another subargument (not shown in Figure 3). The

right-hand subargument is for the hypothesis that the mother does

not have two mutated CFTR alleles. This is supported by the data

(¬C) that she does not have cystic fibrosis symptoms, and

warranted by the positive influence relation between CFTR alleles

and symptoms of cystic fibrosis.

Fig. 3. Example of part of more complex argument.

3. PILOT STUDY
A formative evaluation of GAIL’s prototype user interface was

done in fall 2011 through spring 2012 with a total of 10 paid

undergraduate volunteers, the first seven of which were recruited

from biology classes and the last three computer science students.

Each participant was first asked to read a seven-page patient

education document, which we had found on the internet and

printed for this study, on the inheritance and diagnosis of cystic

fibrosis. After a participant read the document, it was put away

and the research assistant narrated a silent video tutorial

describing the components of an acceptable argument, and

showing the features of the GAIL GUI and the process of

constructing several different arguments using GAIL. Afterwards,

the research assistant pointed out a chat box in the GAIL GUI for

communicating with the assistant if necessary. The assistant then

left the room, but could view the participant’s computer screen on

another computer monitor.

Listed in the upper left-hand corner of the GAIL GUI, the

problems for which the first seven participants were asked to

construct arguments are as follows.

Problem 1: Give two arguments for the diagnosis that J.B. has

cystic fibrosis.

Problem 2: Give one argument for the diagnosis that J.B.’s

brother has cystic fibrosis.

Problem 3: Give one argument against the diagnosis that J.B.’s

brother has cystic fibrosis.

Problem 4: Give one argument for hypothesis that J.B.’s mother

and father are both “carriers” of the CFTR gene mutation that

causes cystic fibrosis

Note that the hypotheses, observations, generalizations (warrants),

and problems shown on GAIL were written by the author of this

paper based on information from a college genetics textbook. (J.B.

refers to a fictitious patient.)

None of the first seven students created acceptable arguments. At

that point in the study, it was decided to modify the materials and

procedure. First, the problems were reduced in number

(eliminating Problem 2, requiring an argument with conjunction).

Second, when the participant submitted a response, the research

assistant reviewed it using a checklist of error types created by the

author after reviewing the arguments created by the first group of

participants. If the participant’s response contained any of those

types of errors then the research assistant gave the participant

feedback (as discussed below) through the chat box and asked the

student to revise his argument. After three tries, the student was

told to proceed to the next problem in the set. Third, to expedite

the revised study, the remaining three students were recruited

from computer science.

The distribution of error types is shown in Table 1. A Type 1 error

was an argument whose claim did not match the claim for which

the student was asked to give an argument. Type 2 was an

argument where the data was not evidence for the claim. Type 3

was an argument where the warrant did not relate the data to the

claim. Type 4 was an argument where the opposite type of link

was required. Type 5 was a chained argument in which a

subargument was missing or incorrect. For example, consider the

chained argument on the left of Figure 2. If the learner failed to

give a subargument in support of C, or if the learner skipped the

intermediate conclusion C and showed D as directly supporting A,

the error would be classified as Type 5. Type 6 errors involved

incorrect use of conjunctions. Type 7 was omission of the warrant.

Table 1. Average number of errors per error type per person

in each group

Error Type Group 1 Group 2

1:Incorrect claim 1.9 0.8

2:Incorrect data 2.6 0.3

3:Incorrect warrant 2 1

4:Incorrect pro/con 0.9 0.3

5:Incorrect/missing chained claim 1.4 0

6:Incorrect/missing conjunction 0.9 NA

7: Missing warrant 0.1 0.4

In Table 1, Group 1 comprises the first seven students, who were

given no feedback. Group 2 comprises the last three students, who

were given feedback and three tries on each problem. The number

of errors on each try for each student in Group 2 was totaled and

the average was computed by dividing by nine (i.e., three students

with three tries each). From the first group, it can be seen that the

 A=1 or A=2

A=1

&

 A�2

¬C

S+(A=2,C)

D=2

X0(<A,B>, D=2)

most frequent errors (in descending frequency) were incorrect

data, incorrect warrant, and incorrect claim. Although the quantity

of errors in the first and second groups cannot be compared, it

should be noted that the top three error types in Group 1 remained

the top three in Group 2.

Group 2 received feedback from the research assistant based on

the following guidelines:

1. Does the hypothesis match the problem? If not, tell the

student that the hypothesis must match the problem.

2. Is everything OK except that the student has used Pro instead

of Con or vice versa? If so, explain the difference.

3. Is the data relevant to the hypothesis (could you make a good

argument using that data)? If not, suggest he/she try to use

some other data.

4. Is the data relevant but the generalization (warrant) does not

link the data to the hypothesis? If yes, suggest he/she try a

generalization that links the two.

5. Is the generalization (warrant) relevant (could you make a

good argument with it) but the data does not fit the warrant?

If yes, suggest that he/she try different data that fits the

warrant.

6. Did the student include some data in a conjunction that is

unnecessary? If so, suggest that he/she remove the conjuncts

that do not fit the warrant.

7. Did the student appear to skip a step in a chained argument

that has a sub-argument for the data of the top argument? If

yes, help the student break it into the main argument and the

sub-argument.

Table 2 shows the types of errors made by the three students in

Group 2 after receiving feedback on their first and second answers

on each problem. Problem 1 was solved correctly by two students

on the first try, and by the third student on the second try.

Problems 2 and 3 were solved correctly by only one student (on

the third try). Problem 3 was solved correctly by two students on

the second try. These results suggest that on the more difficult

problems (Problems 2 and 3), the feedback may have helped to

reduce the number of errors.

Table 2. Types of errors in group 2 (after feedback).

Student

�

Try Problem 1 Problem 2 Problem 3

1 1st
� 1, 3 ,4 2, 3

 2nd
� 1, 3 7

 3rd
� 3, 4 2, 7

2 1st
� 1 1, 3 1, 7

 2nd
� 1, 3

 3rd
� 1

3 1st
� 3, 4 2, 3, 7

 2nd
� 3

 3rd
�

At the end of the session, students were asked to complete a user

experience survey. The survey results, shown in Table 3, indicate

that the students had a favorable response to using the software

despite making errors.

Table 3. Average scores on user experience survey (N=10).

Possible responses: 3(True), 2(Somewhat true), 1(False).

Question Score

My background … helped me answer the

problems in this study.

2.3

I found the subject of genetic conditions and

inheritance interesting.

3

I found the tools for diagramming arguments

easy to use.

2.8

I found the tutorial on how to use the

argument diagramming tools helpful.

3

I prefer using the argument diagramming tools

to writing arguments.

2.7

I would like to use a program like this in my

courses on genetics

2.9

4. ARGUMENT ANALYZER
The expert model will contain all acceptable arguments that can

be automatically generated for a given claim from an underlying

knowledge base (KB) representing the problem domain. The

generated arguments are simple or complex argument structures

containing KB elements. Text elements provided to the learner

through GAIL’s GUI are linked internally to KB elements. The

inputs to GAIL’s argument analyzer will be the learner’s

argument and the expert model, both in the same format.

Implemented in Prolog, the prototype argument analyzer

determines if a student’s argument diagram represents an

acceptable argument and if not acceptable, identifies its

weaknesses.

The algorithm to determine acceptability merely checks whether

the user’s argument matches one of the acceptable arguments. If

the user’s argument does not match an acceptable argument, its

weaknesses are identified using pattern-matching rules motivated

mainly by the types of errors seen in the study described in the

previous section. The rules are non-domain-specific and non-

problem-specific. For example, if the user’s data and claim match

the expert’s, but the warrant does not, the analyzer identifies the

problem as an unacceptable warrant (Type 3). The prototype

argument analyzer implementation outputs an error message for

each error detected. However, in the future implementation of

GAIL, the argument analyzer’s output would be used by the

Feedback Generator, which will be responsible for selecting

which error(s) to highlight and providing appropriate feedback.

If the learner’s argument is acceptable, i.e., it matches an expert

argument, then knowledge of the argumentation scheme used to

generate the expert argument provides an additional resource for

generation of feedback as described in the next section.

5. FEEDBACK GENERATOR
The feedback generator has not been implemented yet. Currently,

we are gathering information to guide its design. As discussed in

the previous section, the feedback generator will have access to

the output of the argument analyzer. If the learner’s argument

contains errors such as those types listed in Table 1, some design

questions are: which of the errors to address (and in what order),

when to provide feedback, what feedback content to provide, and

in what syntactic form. Before designing a feedback generator that

answers these questions, we are running a think-aloud study to get

a better understanding of why students make these errors. For

example, a type 4 error might be due to a misunderstanding of the

argument representation used in GAIL’s GUI. If that is indeed the

case, then it would seem that addressing such an error should be

given higher priority by the feedback generator. On the other

hand, we hypothesize that a type 1, 2 or 3 error may be due to a

deeper problem, either in the learner’s understanding of what

constitutes an acceptable argument, or in understanding the

genetics information provided by GAIL as possible building

blocks for the learner’s argument diagram.

A key point to note is that our approach supports content-based

feedback. Many of the types of errors listed in Table 1 are

content-based errors that can be detected by the argument

analyzer based on the expert model. In addition to using it to

identify content-based errors, GAIL will be able to use the expert

model to provide content-based feedback. This is illustrated in the

following imaginary scenario. Figure 4 depicts abstractly a student

argument diagram in which the data, B, is not related by the

warrant, S+(A,C), to the conclusion A. Our approach supports

providing feedback to the effect that this argument is not

acceptable because the warrant does not relate the data to the

conclusion; and supports giving the advice to look for other data

that is consistent with the given warrant or to look for another

warrant that links the given data to the conclusion. Suppose that

the expert model contains an argument similar to that in Fig. 4,

but using C as data. If the student is unable to make use of the

more general advice to replace the data or warrant in the diagram,

a hint could then be generated asking whether C is in the

observations or hypotheses on the GUI screen.

Fig. 4. Abstract example of unacceptable argument.

Figure 5 shows that with the help of this feedback, the imaginary

student has replaced the data in the argument diagram with C.

However, suppose that C was listed on the GUI screen as a

hypothesis rather than an observation. In that case, a sub-

argument for C would be required. The argument analyzer could

recognize that the sub-argument for C in the expert model is

missing in the student’s diagram. Then the feedback generator

could inform the student that C must be supported by a sub-

argument since it is only a hypothesis.

Fig. 5. Abstract example of partly fixed, unacceptable argument.

Figure 6 shows that with the help of this feedback the student

adds a sub-argument for C to the diagram, matching an acceptable

expert argument.

Fig. 6. Abstract example of acceptable argument.

In this domain, however, the conclusions of acceptable arguments

are not necessarily deductively valid. As discussed in Section 2,

each abstract argumentation scheme is associated with certain

critical questions, which provide a way of challenging an

argument constructed from that scheme. Critical questions support

a different type of feedback, which could inspire a learner to

consider multiple arguments pro and con the same claim. To

illustrate, one of the critical questions of the abductive

argumentation scheme is whether there is another plausible

explanation of a certain observation. Having recognized the

learner’s argument as an instance of this scheme, the feedback

generator could instantiate this critical question. Suppose that the

learner has constructed an acceptable abductive argument for a

diagnosis of cystic fibrosis; instantiating this critical question

could support generating feedback such as Can you make an

argument for an alternative diagnosis that explains the patient’s

frequent respiratory infections? or, What if he has some other

condition that could explain those symptoms?

Some other critical questions of GAIL’s abductive argumentation

schemes, where B is an observation and A is a putative cause of

B, include (Green 2010):

• (Missing Enabler) is there a C such that C is required for A

to cause B, and C is absent? (Example: Has exposure to

bacteria occurred, which is required for thickened mucous to

lead to frequent respiratory infections?)

• (Mitigation) is there a C whose presence may mitigate the

effect of A on B? (Example: Is the patient taking antibiotics,

which will prevent respiratory infections?)

• (Inapplicable Warrant) Despite the similarity of individual

I to the population described by the warrant, is there is a

difference that could make it inapplicable to I? (Example:

Although the mother is from a geographic region with a high

rate of cystic fibrosis, is her ethnic background different

from most of the population there?)

• (False Positive) Is p(¬A | B) too high? (Example: Is the false

positive rate for the laboratory test used to diagnose this

condition high?)

• (Low Certainty of Data) Is p(B) too low? (Example: Are we

confident that there is accurate information about the health

of the biological mother who gave the patient up for

adoption when he was an infant?)

 A

 C

S+(A,C)

D

S+(C, D)

 A

 B

S+(A,C)

 A

 C

S+(A,C)

Again note that feedback can be given without requiring problem-

specific knowledge to be embedded in the feedback generator.

Also note that semantic, not syntactic, forms of critical questions

are associated with argumentation schemes. Thus, using natural

language generation from semantic forms to generate syntactic

variations, one could study the varying effectiveness of different

ways of asking the same critical question.

6. CONCLUSIONS
This paper presents our ideas on generating formative feedback in

the Genetics Argumentation Inquiry Learning (GAIL) system.

GAIL will provide learners with tools for constructing Toulmin-

style arguments in diagrams using blocks of text provided by the

system. The text is linked internally to KB elements. An argument

generator like one previously developed for another application

will use the KB and abstract argumentation schemes to

automatically generate expert arguments. GAIL’s argument

analyzer will determine if a learner’s argument is acceptable by

comparing it to the expert arguments. A prototype argument

analyzer has been implemented using non-domain-specific, non-

content-specific rules that recognize common error types. The

error types are based on those observed in a pilot study. GAIL’s

formative feedback generator will use the argument analyzer’s

output. In addition to identifying problems in the learner’s

argument, if the argument is acceptable the analyzer will inform

the feedback generator of critical questions of the argumentation

scheme underlying the student’s argument. The critical questions

can be used to generate feedback stimulating the learner’s critical

thinking.

7. ACKNOWLEDGMENTS
Graduate students B. Wyatt and C. Martensen implemented the

prototype of GAIL’s GUI in summer 2011, and Martensen ran the

user study in fall 2011 through spring 2012; both received support

from a UNCG Faculty Research Grant. We would like to thank

the reviewers as well for asking many interesting questions that

we have tried to address in the camera-ready version of this paper

or would like to address in future work.

8. REFERENCES
[1] Kirschner et al. 2003. Kirschner, P.A., Buckingham Shum,

S.J., and Carr, C.S. (Eds.) 2003. Visualizing Argumentation.

London: Springer.

[2] Scheuer et al. 2010. Scheuer, O., Loll, F., Pinkwart, N., and

McLaren, B.M. 2010. Computer-Supported Argumentation: A

Review of the State of the Art. Computer-Supported

Collaborative Learning 5(1): 43-102.

[3] Pinkwart and McLaren 2012. Pinkwart, N., McLaren, B.M.

(Eds.) 2012. Educational Technologies for Teaching

Argumentation Skills. Sharjah: Bentham Science Publishers

[4] Toulmin, S. 1998. Toulmin, S.E. 1998. The uses of argument,

Cambridge: Cambridge University Press.

[5] Green, N., R. Dwight, K. Navoraphan, and B. Stadler. 2011.

Natural language generation of transparent arguments for lay

audiences. Argument and Computation, 2(1): 23-50.

[6] Scheuer et al. 2012. Scheuer, O., McLaren, B.M., Loll, F.,

Pinkwart, N. 2012. Automated Analysis and Feedback

Techniques to Support and Teach Argumentation: A Survey.

In Pinkwart and McLaren (Eds.) 2012. Educational

Technologies for Teaching Argumentation Skills.

[7] Green, N. 2005 A Bayesian network coding scheme for

 annotating biomedical information presented to genetic

 counseling clients. Journal of Biomedical Informatics 38,

 130-144.

[8] Walton et al. 2008. Walton, D., C. Reed, and F. Macagno.

2008. Argumentation Schemes, Cambridge: Cambridge

University Press.

[9] Druzdzel and Henrion 1993. Druzdzel, M. J., and Henrion, M.

1993. Efficient Reasoning in Qualitative Probabilistic

Networks. In Proceedings of the 11th National Conference on

AI, 548-553. Washington, DC.

[10] Green, N. 2010. Towards intelligent learning environments

for scientific argumentation. In Workshop on Ill-defined

Problems and Ill-defined Domains, Intelligent Tutoring

Systems 2010 (Pittsburgh, PA).

.

Fig. 1. Screen shot of GAIL prototype user interface in formative evaluation of fall 2011 – spring 2012.

